COMP4300 — Course Update

Assignment 1 is due 14 April, 11:55PM

» A well-written, solid explanation of the methodology and
rationale pursued to solve the different tasks and the
results obtained in your report is essential to pass the
assignment

» Start early...
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A likely table of contents for the second part of the course.
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Motivation for Parallel Computers!

Shared Memory Parallel Programming, Pthreads

Thread Synchronization, Implementation of Locks

Shared Memory Parallel Programming with OpenMP, OpenMP Tasks
Shared Memory Computer Architecture: Snooping-Based Cache-Coherence

Shared Memory Computer Architecture: Directory-Based Cache Coherence,
Memory Consistency

Hardware Threading, SIMD (intrinsics and OpenMP)
GPU Architecture, CUDA (GPU) Programming and Execution Models
CUDA Memory Hierarchy and Memory Management, Streams and Concurrency

Performance Assessment with Roofline CPU and GPU
GPU Program Tuning, Multi-GPU Programming

Review & exam preparation
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» R. Dennard et al., “Design of lon- Implanted MOSFETs with Very Small Physical
Dimensions,” IEEE J. Solid State Circuits, vol. 9, no. 5, 1974, pp. 256—-268.

» M. T. Bohr and I. A. Young, "CMOS Scaling Trends and Beyond," in IEEE Micro, vol.
37, no. 6, pp. 20-29, November/December 2017, doi: 10.1109/MM.2017.4241347.

» M. B. Taylor, "A Landscape of the New Dark Silicon Design Regime," in IEEE
Micro, vol. 33, no. 5, pp. 8-19, Sept.-Oct. 2013, doi: 10.1109/MM.2013.90.

» The Free Lunch Is Over. A Fundamental Turn Toward Concurrency in Software. Herb
Sutter. http://www.gotw.ca/publications/concurrency-ddj.htm
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Performance Boost

Scalability Prowess

Real-World Expertise

Career Advantage

Problem-Solving Prowess
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Solve problems significantly faster by harnessing
the power of multiple processors or cores.

Tackle large datasets and complex problems with
ease by efficiently utilizing multiple computing
resources.

Gain the skills to model and analyze real-world
systems using the world’s fastest supercomputers

Stay ahead of the curve in an increasingly parallel
computing-driven world.

Develop advanced problem-solving skills
applicable to various domains.
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Increased Performance
Improved Scalability

Better Resource
Utilization

Potential for Simulating
Real-World Systems

Increased Complexity

Overhead Costs

Limited Applicability

Hardware and Software
Requirements



Overcome Performance Limits

Tackle Large-Scale Problems

Simulate Complex Systems

Improve Efficiency

Drive Innovation
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Traditional single-core processors have
reached physical performance limitations.
Parallel computers offer a way to continue
increasing computational power.

They can manage massive datasets and
complex calculations that single-processor
systems cannot handle.

Parallel computers can accurately model real-
world phenomena that involve multiple
simultaneous interactions (e.g., weather
patterns, biological systems).

Parallel computers often complete
computationally heavy tasks much faster than
single-processor machines, saving time and
resources.

The need for parallel computing pushes
advancements in hardware, software, and
algorithms, expanding computational
possibilities.
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CSIR Mk 1 with Hollerith equipment, Sydney 1952
Source: Museums Victoria
Public Domain (Licensed as Public Domain Mark)



https://creativecommons.org/publicdomain/mark/1.0/
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The end of Dennard scaling (2002-2004) 259 Nationdl

With feature size below K < 65nm (currently 4nm)
P - QfCV2 + Vl|eakage1 (4)

The leakage current grows exponentially with the voltage, as we decrease
feature size K,

f = Kb, Q = K2Qq, Px = K°Py (9)

To keep the same power envelope, large number of transistors are switched
off (dark silicon effect), operated at lower frequencies (dim silicon effect) or
organized in different ways.

1 This is formally the correct equation, however for feature size > 65 NM ligakage ~ O

12



The end of the uniprocessor era
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Clock rate capped (< 4 GHz) by

power constraints

Instruction Level Parallelism (ILP),
superscalarity and pipelining,
saturated

Power saturated (limitations in heat

removal)

13
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Why do we care so much about power?

>
>

Energy efficiency is the limitation

shifted from desktop to our smart phone

democratization of HPC: e.g. ultrascale cloud computing (costs > 50%

power)
loT

physical limitations! Micro-processors are at their thermal limit.




The multicore era

Australian
<) National

University

The only way to increase performance is to use parallel

Computers (e.g. multi-core) efficiently.

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

@ Thisis very different from the

golden years of ILP where
hardware architects did all the
work for us.

Programmers are now forced to
bear the burden of finding and
exploiting parallelism.

This is also an exciting era of
opportunities for computational
scientists: new algorithms and
efficient implementations make
a difference on what is
achievable in computing.

15
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» The end of the road for general purpose processors & the future of computing. John

Hennessy. https://www.hanahaus.com/blog-1/2019/1/3/ newport-beach-a-fascinating-location-
mpsfz-rwrbk

» The Free Lunch Is Over. A Fundamental Turn Toward Concurrency in Software. Herb
Sutter. http://www.gotw.ca/publications/concurrency-ddj.htm

» Chapter 12 from Computer Systems A Programmer’s Perspective, Third Edition,
Randal E. Bryant and David R. O’Hallaron, Pearson Education Heg USA, ISBN
9781292101767.

» Programming with POSIX Threads, David R. Butenhof, Addison-Wesley
Professional, ISBN-13 : 978-0201633924.
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Parallel Computers,

Programming Models,
& Pthreads



Limitations of ILP

Fetch/Decode

X[i]

ALU
(Functional Units)

Execution
Context

mov (%r2), %ro
mul %rd, %ro, %rl
mul %r@, %rl, %rl

aov %rod, (%r2)

result[i]
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What is Instruction Level Parallelism
(ILP)?

* |LP refers to a microarchitectural design
principle that focuses on executing
multiple instructions simultaneously
within a single processor.

* The goal is to increase throughput (the
number of instructions completed in a
given time) without solely relying on
increasing the clock speed of the
processor.

18



Limitations of ILP

Fetch/Decode

X[i]

ALU
(Functional Units)

Execution
Context

mov (%r2), %ro
mul %rd, %ro, %rl
mul %r@, %rl, %rl

Hov %rod, (%r2)

result[i]
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Significance of ILP

*Performance Benefits: ILP was essential

in driving performance gains at a time
when increasing CPU clock speeds was
hitting physical limitations.

*Foundation for Innovation: Techniques
developed for exploiting ILP form the
basis of modern processor designs using
multi-core and vector processing
architectures.

19



Limitations of ILP

Fetch/Decode

X[i]

ALU
(Functional Units)

Execution
Context

mov (%r2), %ro
mul %r@, %rd, %rl
mul %r@, %rl, %rl

;riov %rd, (%r2)

result[i]
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Techniques to Implement ILP:

Pipelining: Breaking down an instruction's execution
into smaller stages (e.g., fetch, decode, execute, write
back). This assembly-line-like approach allows multiple
instructions to be in different stages of processing
simultaneously. Pipelines can have 15+ stages.
Superscalar Execution: Having multiple execution units
of the same type within a processor. This allows the
processor to execute multiple similar instructions (e.g.,
multiple additions or multiplications) in parallel.
Out-of-Order Execution: Modern processors
dynamically analyze instruction sequences, identify
independent instructions, and re-order their execution
if needed to increase parallelism and avoid stalls.
Branch Prediction: Speculatively executing instructions
following a branch before the branch outcome is
determined. This helps keep the pipeline filled even

with conditional jumps.
20



Limitations of ILP
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Branches Code Example (Conditional Branch):
Definition: Branches are instructions in '?E X = 1)0{;

if (x>5
COd.e that Cause.the program flow t.O // Code to execute if x is greater than 5
deviate from a linear sequence. This printf("x is greater than 5\n");
means that instead of executing the next }else {
instruction in order, the processor jumps Vi Gt i e s (e e ar cgre) o 2
to a different location in the code printf{"x is less than or equal to S\n");

' }

Types:

Code Example (Unconditional Branch):

Conditional Branches: The decision to
void my_function() {

branch depends on a condition (e.g., if- // Some code here
else statements). }
int main() {
Unconditional Branches: The program /] ... some other code
| . diff | . my_function(); // Unconditional branch - jumps to my_function
always jumps to a dirterent location // ... code continues here after my_function returns
(e.g., function calls, goto statements). }

21
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Memory Aliasing

Definition: Memory aliasing occurs when the same memory location can be
accessed through multiple different names (pointers, variables, etc.).

Why it matters: This can lead to unexpected behavior if you modify the
memory location through one name and then read its value through
another name because the compiler might make assumptions about values
not changing.

Code Example:

int *p = malloc(sizeof(int)); // Allocate memory
*p=5; // Set the value at the memory location

int &q = *p; // qis now an alias for the same memory location
*p=10; // Changes the value through the pointer p

printf("%d\n", q); // Will print 10, since q refers to the same location

22
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How Branches and Memory Aliasing Interact

Optimization Challenges: Memory aliasing can make it difficult for compilers to apply certain
performance optimizations. This is because the compiler cannot always be sure whether two
pointers refer to the same memory location, leading to potentially conservative optimizations.

Branch Prediction Impact: Branches, especially conditional ones, introduce complexity in
predicting which code path will be taken. Incorrect predictions can lead to performance
penalties. Memory aliasing can further complicate this prediction process for a compiler.

Code Example:
The Challenge: If ptrl and ptr2 happen to point to the same memory location (i.e., they are aliases), the
compiler might assume that their values are independent. This could prevent optimizations like keeping
the value of *ptr2 in a register, assuming it won't change unexpectedly.

int should_optimize = 0; // Some condition that may change

void some_function(int *ptrl, int *ptr2) {
if (should_optimize) {
*ptrl = *ptr2 + 5;
}
} 23
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How to manage Aliasing

Minimize Aliasing: When feasible, try to limit situations where multiple pointers reference the
same memory. When a compiler sees multiple pointers in your code, it has to assume that they
might point to the same memory location (aliasing). This conservative approach is needed for
correctness but can prevent these optimizations.

Compiler Directives: Some languages provide keywords or compiler flags (e.g., restrict in C) to give
compilers hints about aliasing, allowing for better optimization opportunities. Using restrict
incorrectly can lead to undefined behavior if you break your promise about aliasing. Use wisely!

Careful with Optimization: Be aware that aggressive optimizations based on assumptions about
memory aliasing might lead to unexpected behavior if those assumptions are violated in your
program.

Code Example:

void my_function(int * restrict p, int * restrict g, int n) {
for (inti=0;i<n;i++){
plil = p[i] + alil;
}

}
24
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Large numbers of transistors are used for logic that help a
single instruction stream run faster.

X[1i]
Fetch/De Fetch/De /
code 1 code 2 . mov (%r2), %ro
Cache (a big one ...) mul %r@, %ro, %ril

ALU1 ALU 2
Out-Of-Order Logic

mul %ro, %rl, %rl

: Branch Prediction
E t
e mon mov %r@, (%r2)

Context

Prefetch

result[i]

This had diminishing returns!

25



Limitations of ILP
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Actual clock cycles per instruction (CPI)

In reality, the actual CPI is almost always higher than the
theoretical best case due to various factors:

Instruction Complexity: Not all instructions take a single
cycle. Complex operations (e.g., multiplication, floating-
point operations) generally take more cycles.

Memory Access: If an instruction needs to load data
from memory (especially slower levels of cache or
RAM), it will introduce stalls, increasing CPI.

Branch Misprediction: If the processor incorrectly
predicts which way a branch will go, it might need to
flush the pipeline and start over, leading to wasted
cycles and a higher CPI.

Resource Contention: If multiple instructions need to
access the same execution units simultaneously, stalls

can occur, increasing the CPI.
26
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42 Years of Microprocessor Trend Data
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The performance free lunch is over! .,




The multicore era

X[1]

X[3]

Fetch/Decode

mov (%r2), %rd
mul %rd, %re, %rl

Fetch/Decode mov (%r2), %r@

mul %r@, %rd, %rl

mul %r@, %rl, %rl

mul %r@, %rl, %rl

Execution
mov %rd, (%r2) Context

result[i]

Processor Core 1

Chip-Chi
ngrlc 4
(2:1)

MCM-MCM .{
(2:1)

GX Bus
(n:1) {

Execution -
Context mov %r@, (%r2)

result[j]

Processor Core 1

Fabric
(2:1)

— ] Mczg-:%cu
wa

L3 Controller
Mem Controller —

IBM Power4 — first multiprocessor (2001)
http://ixbtlabs.com/articles/ibmpower4/
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Rather than use transistors to
increase the sophistication of
single instruction stream, use
additional transistors to add
more cores on one die.

2 cores, each one slightly
slower (e.g. 0.75) than the
original processor. Potential

speedup 1.5x.

Problem: what happens if
we run our program on this
new processor?

28



The multicore era

Parallelism as the Norm

Multi-core computers have fundamentally
changed the computing landscape.

Beyond Single Threads: Before multi-core
processors, most software was written
sequentially. Multi-cores shifted the focus to
writing code that can take advantage of
multiple cores simultaneously.
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New Programming Challenges

Programmers now need to think about
concurrency, synchronization, and how to effectively
divide work among multiple cores.

Software Complexity: Programming for parallelism
often requires specialized design, algorithms, and
tools, adding complexity to development.

Amdahl's Law: Not all problems are easily
parallelizable. Amdahl's Law recognizes limitations on
speedup based on the inherently sequential portions

mov (%r2), %r@
mul %r@, %rd, %rl

Fetch/Decode

of code.

Fetch/Decode mov (%r2), %ro
mul %r@, %rd, %rl

mul %r@, %rl, %rl

mul %r@, %rl, %rl

| Execution
mov %r@, (%r2) Context

Execution
Context mov %r@, (%r2)

result[i]

result[j] 29
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Performance Breakthroughs

Beyond Clock Speed Limits: Increasing clock Computationally Intensive Workloads: Multi-
speeds hit diminishing returns. Multi-core core processors enabled demanding
processors enabled continued performance applications in scientific computing, machine
growth by adding more cores instead of solely learning, video editing, 3D rendering, and
relying on faster single cores. simulations that were previously not practical

on consumer computers (HPC).

Scalability: Problems can be scaled across

cores, often leading to significant speedups. Real-Time Performance: Tasks requiring real-
time execution and handling multiple inputs at

Improved User Experience: Even when a once benefited greatly.

single program isn't fully parallelizable, users

noticed better responsiveness because Targeted Power Usage: Not every task needs all
multiple programs can run in parallel on cores at full power. This allows for dynamic
different cores. power management and energy savings.

mov (%r2), %rd Fetch/Decode Fetch/Decode mov (%r2), %r@

more smoothly manage background il 470, 470, 411 il 479, %70, 411

ALU ALU

tasks, updates, and system services without
heavily impacting foreground applications.

Execution Execution

aov %re, (%r2) Context Context ;ov %re, (%r2)

F F
Background Tasks: Operating systems can !l

. result[j] 30
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Symmetric multiprocessing (SMP) systems face several limitations when it
comes to scaling the number of cores:

» As the number of cores increases, the competition for shared resources
like memory bandwidth and cache space intensifies which can hinder
performance gains.

» In SMP systemes, all cores share the same memory. As more cores are
added, the latency for memory access can increase.

» The bandwidth and power consumption of interconnects (buses or
crossbar switches) that connect the processors to the memory and 1I/0
devices can become a bottleneck.

» Managing synchronization between multiple cores becomes more complex
as the number of cores increases.

» Not all applications can be easily parallelized.

31



Using Multiple Cores:
From the beginning...

32



ﬁuitrali?n
. > Nationa
MPI vs OpenMP University

Different Focus:

» MPI, first released in 1994, was developed to address the need for
parallel computing on distributed memory systems, which were
more common in high-performance computing environments at
the time

» OpenMP, first released in 1997 was developed to simplify parallel
programming on shared memory systems, which became more
prevalent with the rise of multi-core processors

Technological Evolution:
» The development of multi-core processors and the increasing
availability of shared memory systems created a demand for a

simpler parallel programming model, leading to the development
of OpenMP

33
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Complementary Models

» OpenMP and MPI are often used together in hybrid programming
models, where OpenMP handles parallelism within a node (shared

memory) and MPI handles parallelism between nodes (distributed
memory)

34



Operating-System-Supported Multiprocessing

Concurrency

A UNIX process is the Operating System’s abstraction
for a running program.

Multiprocessing is the ability of the OSto run more
than one process concurrently.

Concurrency is about the structure of a program
and how it handles multiple tasks. A concurrent
program has parts that can make progress
seemingly at the same time or in an interleaved
fashion.

Time

.

read--

Disk interrupt ---

Return
from read

-

|
Process A : Process B

T~

y
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Focus: Concurrency is about logical
multitasking — managing multiple things in
progress at the same time.

Single Core Example: Think of a web server
handling multiple requests at the same time ie
concurrently. It might not be processing them
simultaneously, but it switches between
requests quickly, giving the illusion of parallel
activity.

User code

Kernel code } Co.ntext
switch

User code

Context

Kernel code } eviitch

User code
35
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Parallelism Key Points

Definition: Parallelism is about the physical All parallel programs are concurrent: If
execution of a program. A parallel program has parts a program is running on multiple cores
that literally run at the same time by using multiple at once, it's also concurrent.

processing units (e.g., cores, processors).
Not all concurrent programs are

Parallelism is about using multiple processing parallel: A single-core system can

resources to speed up computational tasks by achieve concurrency through time-

dividing the work. slicing and context switching between
tasks.

Multi-Core Example: A complex image processing
task that splits an image into sections and processes
each section simultaneously on different cores of a
multi-core processor. Concurrent programs

All programs

Sequential programs

Parallel
programs

36
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Example: The UNIX Operating system

The OS is ultimately responsible to map processes efficiently to the hardware, e.g. map different processes
to different cores, if available.

Each process is assigned a process identifier (PID) that is unique across the entire system (try using the
“ps” or "top” programs).

Processes usually correspond to completely different programs with their own set of instructions, global
data, stack and heap (a different virtual address space).

UNIX processes can, however, communicate using pipe(), socket()and various OS-supported shared-memory
areas.

Code example: Getting Process Information

#include <unistd.h>
#include <stdio.h>

int main() {
pid_t pid = getpid(); // Get current process ID
pid_t ppid = getppid(); // Get parent process ID

printf("Process ID: %d\n", pid);
printf("Parent Process ID: %d\n", ppid);
return O;
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Create a new UNIX process

Code Example
Any UNIX process can spawn new processes

(called “children”) using the UNIX fork() #include <unistd.h>
utility. #include <stdio.h>
#include <sys/wait.h>

fork() creates a clone of the parent program

replicating the code, global variables and int main() {

pid_t pid = fork();

stack.

if (pid == 0) {
In order to use fork() you have to #include // Child process code
<unistd.h> } else if (pid > 0) {

// Parent process code

wait(NULL); // Wait for child to finish
} else {

// Fork failed

perror("fork");

Parent and child: The only difference between
the parent and the child is that the latter
returns from fork() with 0, while the parent

returns with the PID of the child }
The execution of the parent/child resumes return O;
from the fork() call }

38
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When to use fork()

fork() is, however, used in a number of message

It is possible to use basic UNIX utilities like passing protocols whereby multiple copies of a

fork(), socket() and pipe() and shared program are created once at the beginning of
memory segments to generate a parallel execution and then communicate via a series of
program using multiple cores, however... messages.

” Message passing makes it complicated and
potentially inefficient for flows to communicate,
especially if they share large amounts of data.

Context switching: fork() is a “heavy weight
operation. fork() incurs overhead due to the
operating system's scheduler

User Address Space

Memory Overhead: taking substantial time

to make an identical copy of the parent et anb
process, e.g. it may have to replicate a . .
process that has many GB of memory. et nat )

data arrayA

Modern programming often offers better
multithreading solutions for fine-grained reap
parallelism.

39
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Operating-System-Supported Concurrency

» Problem Definition
» Computing 1t
» The exact result is 3.1415..., which makes it easy to verify our numerical
approximation
» We use Mont Carlo integration
» Sequential Algorithm
» Computes the integration over N samples
» Evaluates the function at each point
» Check if the point is inside the unit circle
» Parallelization Strategy
» Each process handles its own portion of the N samples
» Local results are combined using pipes
» The parent process collects the final result from the child processes
» Performance Measurement
» Uses gettimeofday() to measure execution time for both sequential and parallel
algorithms
» Calculates and reports speedup
» Computes the error compared to the exact analytical solution

COMP4300/8300 - Pipelining Il 2025 40
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Operating-System-Supported Concurrency

Using pipes in a C program for inter-process communication (IPC)
introduces several overheads:

» When data is written to or read from a pipe, the operating
system may need to perform context switches between the
processes involved.

» Pipes use buffers to temporarily store data being transferred
between processes. Buffer size is measured in pages.

» Each read and write operation on a pipe involves a system call,
which can be relatively expensive in terms of CPU cycles.

» Data written to a pipe is copied from the user space of the
writing process to the kernel space, and then from the kernel
space to the user space of the reading process.

COMP4300/8300 - Pipelining Il 2025 41



