COMP4300 - Course Update

>

>

COMP4300 is a fast-paced 4000-level course: It assumes you are
mature and independent programmers.

The course introduces the basics of the semantics of the
programming models (Pthreads, OpenMP, CUDA).

You are left with the task and the responsibility of their
further exploration and practice to master these
programming models.

This is particularly important for the second half of the course.

SHARED MEMORY PARALLEL
COMPUTING

USING MULTIPLE CORES

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

References

» Chapter 12 from Computer Systems A Programmer’s
Perspective, Third Edition, Randal E. Bryant and
David R. O'Hallaron, Pearson Education Heg USA,
ISBN 9781292101767 .

» Programming with POSIX Threads, David R.
Butenhof, Addison-Wesley Professional, ISBN-13 :
978-0201633924.

How can we avoid the flaws of
process-based concurrency?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSI ICOS PROVIDER CODE: 00120C

Parallel Programming with Threads

A thread is a logical flow that runs within the context of
a process.

» So far we have discussed programs that consisted
of a single thread per process.

» Multiple “independent” threads can be added to
an existing process rather than starting a new
process.

» Threads are scheduled by the OS and run as
independent entities largely because they
duplicate only the bare essential resources that
enable them to exist as executable code.

Understanding Pthreads concepts

helps developers grasp fundamental

parallel programming principles

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

7

Parallel
Programming with
Threads

>

>

A thread is a logical flow that runs within
the context of a process.

So far we discussed programs that consisted
of a single thread per process.

Multiple “independent” threads can be
added to an existing process rather than
starting a new process.

Threads are able to be scheduled by the OS
and run as independent entities largely
because they duplicate only the bare
essential resources that enable them to
exist as executable code.

User Address Space

Thread 2 routine2() wvarl Stack Pointer
stack var2 Prgrm. Counter
var3 Registers
Thread 1 routinel () varl Stack Pointer]
stack vard Prgrm. Counter
Registers
main()
text routinel()

routine2()

THREADS WITHIN A UNIX PROCESS

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Thread Execution
Model

Each process is created with a single thread
called the main thread.

» The main thread can create a peer thread,
and the two run concurrently.

» If they are scheduled on the same CPU/core,
the OS at some point will pass control from
the main to the peer thread via a context
switch.

» If they are scheduled by the OS on different
cores they will run in parallel.

» Threads associated with a process form a
pool of peers, where each one can kill or wait
for any other to terminate.

» Each peer can read and write the same
shared data.

Time

Thread 1
(main thread)

Thread 2
(peer thread)

—~— } Thread context switch

—= " } Thread context switch

—~ } Thread context switch

@

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)

Historically, hardware vendors have implemented their own proprietary versions of threads, making it difficult for
programmers to develop portable threaded applications.

» POSIX Threads provide a standard interface, specified by the IEEE 1003.1 (1995) standard, for manipulating
threads from C programs.

» Pthreads are defined as a set of C language programming types and procedure calls, implemented with an
#include <pthread.h> header file and a thread library (this may be part of another library, such as libc, in some
implementations).

» The specification contains about 60 functions that allow programs to create, kill, and reap threads, to share data
safely with peer threads, and to notify peers about changes in the system state.

Compiler / Platform Compiler Command Description
INTEL icc -pthread C
Linux icpc -pthread CHt
Pl pgce -lpthread C
Linux pyce -lpthread Gt
G gec -pthread GNUC
Linux, Blue Gene g+ -pthread GNU G+

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)

A Hello world exam ple Pthread_create: This function creates a new thread:
1 #include <pthread.h> * The first argument references
2 void *thread(void *vargp); the pthread_t thread variable.
3 * The second argument can specify
4 int mainQ attributes (NULL for default).
Z { pthread_t tid; * The third_argument is the function the
7 Pthread_create(&tid, NULL, thread, NULL); thread will run.
8 Pthread_join(tid, NULL); * The fourth argument can pass data to
9 exit (0); the thread's function (NULL here).
10 }
j
= void *thread(void *vargp) /#* Thread routine */
13 {
4 printf("Hello, world!\n"); Pthread_join: This function in the main thread waits
12) return NULL; for the created thread to terminate.

This prevents the main program from exiting before
the thread has printed its output.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)

Creating Threads

» Creates a new thread and runs the thread routine
f in the context of the new thread and with an
input argument of arg.

» The thread routine £ takes as input a single generic
pointer and returns a generic pointer. If you want to
pass multiple arguments to a thread routine, then
you should put the arguments into a structure and
pass a pointer to the structure.

» Similarly, if you want the thread routine to return
multiple arguments, you can return a pointer to a
structure.

»When pthread create returns, argument tid
contains the ID of the newly created thr@/v
which can also be determined using

10

#include <pthread.h>
typedef void *(func)(void *);

int pthread_create(pthread_t *tid, pthread_attr_t *attr,
func *f, void *arg);

Returns: 0 if OK, nonzero on error

#include <pthread.h>

pthreadt pthread_self (void);

Returns: thread 1D of caller

POSIX Threads (Pthreads)

Terminating Threads
» Implicit termination when its top-level binclude <pthread b
thread routine returns.
L]] . void pthread_exit(void ¥thread return);
> EXpIICIt termination using pthread Returns: 0 if OK; nonzero on error

exit. Explicit termination of main
thread and will wait for all other peers
to terminate. ,

#include <pthread.h>

» Apeer thread calls pthread cancel int pttresd, cancel (pthread. £ +10);
with the ID of the current thread. Returns: 0if OK, nonzero on error

» A peer thread calls exit terminating
the process and all its threads.

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012

POSIX Threads (Pthreads)

Returning and reaping

» Current thread waits for thread tid to
terminate, blocking until it does so.

» Assigns the generic (void *) pointer
returned by the thread routine to the int pthread_join(pthread_t tid, void **thread_return);
location pointed to by Returns: (if O, nonzero on error
thread return.

» Reaps any memory resources (e.g.
stack) held by the terminated thread.
Reaping memory resources involves
managing and reclaiming memory that
IS no longer needed by a program.

#include <pthread.h>

12

POSIX Threads (Pthreads)

13

Detaching threads

>
>

A thread is either joinable or detachable.

Joinable: its memory resources (such as
the stack) are not freed until it is reaped
by another thread.

A detached thread cannot be reaped by
other threads. Its memory resources are
freed automatically by the system when
it terminates.

To avoid memory leaks, each joinable
thread should either be explicitly reaped
by another thread, or detached by a call
to pthread detach

#include <pthread.h>

int pthread_detach(pthread_t tid);

Returns: 0 1f OK, nonzero on error

Threads can detach themselves by
calling pthread detach with an argument
of pthread self.

Pthreads Memory Model

» The key advantage of threads is the
efficiency and ease with which they
can share data

» The key disadvantage is the
potential for complicated bugs
that do not appear in serial code.

» To write correct threaded
programs a clear understanding of
the sharing mechanisms and risks
is required

private

Pthreads Memory Model

» Thread context: TID, stack, stack
pointer (SP), program counter (PC),
condition codes (CC), registers values.

» Shared: process virtual address space
— code, read/write data, heap,
shared libraries, open files.

Pthreads Memory Model

» Registers, Condition Codes (CC),
Program Counter (PC), the Stack
Pointer (SP) are private. Thread
stack is usually accessed
independently by each thread.
However, thread stacks are not
protected!

» If a thread accesses a stack pointer
to another thread’s stack, it can
read and write to it!

int main()
{

9 int i

10 pthread_t tid;

1 char *msgs[N] = {

12 "Hello from foo",
13 "Hello from bar"

14 };

15

16 ptr = msgs;

17 for (i = 0; 1 < N; i++)
18 Pthread_create(&tid, NULL, thread, (void *)i);
19 Pthread_exit (NULL) ;
20 }

\
22 void *thread(void *vargp)

s {
D4 int myid = (int)vargp;
D5 static int cnt = 0;
D6 printf (" [%d]: %s (cnt=Y%d)\n", myid, ptrlmyid], ++cnt);
7 return NULL;
ps }

#include "csapp.h"
#define N 2
void *thread(void *vargp);

char **ptr; /* Global variable */

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

7

Mapping Variables to Memory

1

#include "csapp.h"
#define N 2
void *thread(void *vargp);

» global variables: declared outside functions,
only one copy in virtual memory area,

readable/writable by any thread. : int main()

char **ptr; /* Global variable */

) int i
10 pthread_t tid;

» local automatic variables: declared inside

functions, each thread’s stack contains its own i char *msgs[N] = {
. . . . 12 "Hello from foo",
instance of it. E.g. tid and myid. 13 . el ron Tax®
14 i
» local static variables: declared inside functions - .
. . . . 6 ptr = msgs;
with the static attribute. There is only one copy 17 for (i =0; i <N; i++)
. . . 18 Pthread_create(&tid, NULL, thread, (void *)i);
in virtual memory area, readable/writable by 19 Pthread_exit (NULL) ;
0 }
any thread. 8
. . . 22 void *thread(void *vargp)
» shared variables: a variable is shared only, and .
. . . . 4 int myid = (int)vargp;
only if, one of its instances is referenced by ey e e oeR
more than one thread. E.g. cnt. = P AR GRS, B, Jm i, et
return NULL;

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Example: Computing Pi

» The ratio of area of circle radius=1 to the
square is /4

» Generate random numbers for xand y within the
domain of square ie range [-1,1] for each axis

» identify those that are distance less than 1 from

origin

» The ratio of points in circle to the total points is
/4

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Example: Computing Pi

> The ratio of area of circle radius=1 to the
square is T /4

» Generate random numbers for xand y within the
domain of square ie range [-1,1] for each axis

» identify those that are distance less than 1
from origin

» The ratio of points in circle to the total points
is /4

19

#include <stdio.h>
#tinclude <stdlib.h>
#tinclude <math.h>
#include <pthread.h>

#define NUM_THREADS 4
#define NUM_THROWS 1000000

double total_points_inside_circle = 0;

int main() {
pthread_t threads[NUM_THREADS];
int thread_ids[NUM_THREADS];

srand(time(NULL));

for (inti = 0; i < NUM_THREADS; i++) {

thread_ids[i] = i;

pthread_create(&threads][i], NULL, computePI, (void*)&thread_ids[i]);
}

for (inti = 0; i < NUM_THREADS; i++) {
pthread_join(threads[i], NULL);
}

double pi_estimate = 4.0 * total_points_inside_circle / NUM_THROWS;
printf("Estimated value of r: %If\n", pi_estimate);

return 0;

.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Example: Computing Pi

> The ratio of area of circle radius=1 to the
square is T /4

» Generate random numbers for xand y within the
domain of square ie range [-1,1] for each axis

» identify those that are distance less than 1
from origin

» The ratio of points in circle to the total points
is /4

20

double total_points_inside_circle = 0;

void* computePl(void* arg) {
int myNum = *(int*)arg;
double x, y;

for (inti = myNum; i < NUM_THROWS; i += NUM_THREADS)
{
x = (double)rand() / RAND_MAX * 2.0 - 1.0;
y = (double)rand() / RAND_MAX * 2.0 - 1.0;

if(x*x+y*y<=1.0){
total_points_inside_circle++;
}
}

pthread_exit(NULL);
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DEMO
Pthreads based Concurrency

» Problem Definition
» Computing 1t
» The exact result is 3.1415..., which makes it easy to verify our numerical
approximation
» We use Mont Carlo integration
» Sequential Algorithm
» Computes the integration over N samples
» Evaluates the function at each point
» Check if the point is inside the unit circle
» Parallelization Strategy
» Each process handles its own contiguous portion of the N samples
» Added 64 bytes of padding to the thread data structure to avoid false
sharing (where threads invalidate each other's cache lines).
» Each thread can maintain its own counter in an array element — no Mutex
» The parent process sums the results from each thread
» Performance Measurement
» Uses clock() to measure execution time for both sequential and parallel
algorithms — need to allow for measurement of time on all threads
» Calculates and reports speedup

21
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DEMO
Pthreads based Concurrency

» Problem Definition
» Computing 1t
» The exact result is 3.1415..., which makes it easy to verify our numerical
approximation
» We use Mont Carlo integration
» Sequential Algorithm
» Computes the integration over N samples
» Evaluates the function at each point
» Check if the point is inside the unit circle
» Parallelization Strategy
» Each process handles its own portion of the N samples
» Local results are combined using pipes
» The parent process collects the final result from the child processes
» Performance Measurement
» Uses clock() to measure execution time for both sequential and parallel
algorithms — need to allow for measurement of time on all threads
» Calculates and reports speedup

\ \
—
N
=
22
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

