COMP4300 - Course Update SHARED MEMORY PARALLEL
» COMP4300 is a fast-paced 4000-level course: It assumes you are CO M P UTI N G

mature and independent programmers.
» The course introduces the basics of the semantics of the
programming models (Pthreads, OpenMP, CUDA). USING MULTIPLE CORES | L Ava
> You are left with the task and the responsibility of their
further exploration and practice to master these
programming models.

» This is particularly important for the second half of the course.

References

» Chapter 12 from Computer Systems A Programmer’s
Perspective, Third Edition, Randal E. Bryant and .
David R. O’Hallaron, Pearson Education Heg USA, HOW can we aVOId the flaws Of
ISBN 9781292101767. process-based concurrency?

» Programming with POSIX Threads, David R.
Butenhof, Addison-Wesley Professional, ISBN-13 :
978-0201633924.

g g P 3 -t h User Address Space
rogramming wi etz | ot o]
A thread is a logical flow that runs within the context of e i
2 process Threads
Thread 1 | routinel() varl —f
> So far we have discussed programs that consisted > Athread is a logical flow that runs within stack VRER
of a single thread per process. X
Understanding Pthreads concepts the context of a process.
Multiple “independent” threads can be added to . ; main()
an existing process rather than starting a new helps developers g.rasp f.unc.iamental g ztfj;‘asrirg?e(:ltlaig;zegeergrgor?g;that consisted o b0
process. parallel programming principles
. » Multiple “independent” threads can be
» Threads are scheduled by the OS and run as added to an existing process rather than dota | 2=
independent entities largely because they starting 3 new process arrays
duplicate only the bare essential resources that g P) .
enable them to exist as executable code. > Threads are able to be scheduled by the 0S Y S |
and run as independent entities largely
because they duplicate only the bare THREADS WITHIN A UNIX PROCESS
essential resources that enable them to
exist as executable code.

Thread Execution POSIX Threads (Pthreads)
M od e I Time Historically, hardware vendors have implemented their own proprietary versions of threads, making it difficult for
Thread 1 Thread 2 programmers to develop portable threaded applications.
» Each process is created with a single thread (main thread)| (peer thread) > POSIX Threads provide a standard interface, specified by the IEEE 1003.1 (1995) standard, for manipulating
called the main thread. threads from C programs.
s ::Z ??mzirt‘vtvgrf::f::ciﬁaeﬁ@ peer thread, } Thread context switch » Pthreads are defined as a set of C language programming types and procedure calls, implemented with an

#include <pthread.h> header file and a thread library (this may be part of another library, such as libc, in some

> If they are scheduled on the same CPU/core, implementations).
the OS at some point will pass control from
the main to the peer thread via a context -"‘":;7 ----- }Threadcontextswitch

switch. | | A .
» If they are scheduled by the OS on different 1

» The specification contains about 60 functions that allow programs to create, kill, and reap threads, to share data
safely with peer threads, and to notify peers about changes in the system state.

cores they will run in parallel. ::::ﬁ;;::: } Thread context switch WTEL icc -pthread c
» Threads associated with a process form a Linux icpe -pthread CH
pool of peers, where _each one can kill or wait o poce -Ipthread ¢
for any other to terminate. | |V Linux Ipthread o
)) pOCC -Lpt #
» Each peer can read and write the same o [— e
shared data.
Linux, Blue Gene gt -pthread GNUCH

POSIX Threads (Pthreads)

A Hello world example

#include <pthread.h> /
void *thread(void *vargp); /

int main() /

{ /
pthread_t tid; /
Pthread_create(&tid, NULL, thread, NULL); ~
Pthread_join(tid, NULL); __
exit(0); ™~

s

void *thread(void *vargp) /# Thread routine */

{ \‘“1
printf("Hello, world!\n");
return NULL;

Pthread_create: This function creates a new thread:

¢ The first argument references
the pthread_t thread variable.

¢ The second argument can specify
attributes (NULL for default).

¢ The third argument is the function the
thread will run.

¢ The fourth argument can pass data to
the thread's function (NULL here).

Pthread_join: This function in the main thread waits
for the created thread to terminate.

This prevents the main program from exiting before
the thread has printed its output.

POSIX Threads (Pthreads)

Creating Threads

» Creates a new thread and runs the thread routine
£ in the context of the new thread and with an
input argument of arg.

» The thread routine f takes as input a single generic
pointer and returns a generic pointer. If you want to
pass multiple arguments to a thread routine, then
you should put the arguments into a structure and
pass a pointer to the structure.

» Similarly, if you want the thread routine to return
multiple arguments, you can return a pointer to a
structure.

»When pthread create returns, argument tid ~»
contains the ID of the newly created thread, —
which can also be determined using

#include <pthread.h>
typedef void *(func)(void #);

int pthread_create(pthread_t *tid, pthread attr_t attr,
func *f, void arg);

Returns: 0if OK, nonzero on error

#include <pthread.h>

pthread_t pthread self (void);

Returns: thread ID of caller

POSIX Threads (Pthreads)

Terminating Threads

Implicit termination when its top-level
thread routine returns.

Explicit termination using pthread
exit. Explicit termination of main
thread and will wait for all other peers
to terminate.

A peer thread calls pthread cancel
with the ID of the current thread.

A peer thread calls exit terminating
the process and all its threads.

#include <pthread.h>

void pthread_exit(void *thread return);
Returns: 0if OK, nonzero on error

#include <pthread.h>

int pthread_cancel(pthread_t tid);
Returns: 0 if OK, nonzero on error

POSIX Threads (Pthreads)

Returning and reaping

» Current thread waits for thread tid to

terminate, blocking until it does so.

» Assigns the generic (void *) pointer
returned by the thread routine to the
location pointed to by

#include <pthread.h>

int pthread_join(pthread_t tid, void *thread return);

Returns: 0f OK, nonzero on error

thread return.

> Reaps any memory resources (e.g.
stack) held by the terminated thread.
Reaping memory resources involves
managing and reclaiming memory that
is no longer needed by a program.

POSIX Threads (Pthreads)

Detaching threads

» Athread is either joinable or detachable.

» Joinable: its memory resources (such as
the stack) are not freed until it is reaped
by another thread.

» A detached thread cannot be reaped by
other threads. Its memory resources are
freed automatically by the system when
it terminates.

» To avoid memory leaks, each joinable
thread should either be explicitly reaped
by another thread, or detached by a call
to pthread detach

Hnclude <pthread b>

int pthread detach(pthread ¢ t1d);
Returns:0if OK, nonzero on error

Threads can detach themselves by
calling pthread detach with an argument
of pthread self.

Pthreads Memory Model

» Thread context: TID, stack, stack
pointer (SP), program counter (PC),

condition codes (CC), registers values.

» Shared: process virtual address space

- code, read/write data, heap,
shared libraries, open files.

).

Pthreads Memory Model

» The key advantage of threads is the
efficiency and ease with which they
can share data

» The key disadvantage is the
potential for complicated bugs
that do not appear in serial code.

» To write correct threaded
programs a clear understanding of
the sharing mechanisms and risks
is required

Pthreads Memory Model

» Registers, Condition Codes (CC),
Program Counter (PC), the Stack
Pointer (SP) are private. Thread
stack is usually accessed
independently by each thread.
However, thread stacks are not
protected!

»~ If a thread accesses a stack pointer
to another thread’s stack, it can
read and write to it!

4
5

8
9

8

T ¥include "csapp.h

7 int main()

0}

#define N 2
void *thread(void *vargp);

char *#ptr; /* Global variable */

{
int i;
pthread_t tid;
char *msgs[N] = {
"Hello from foo",
"Hello from bar"

h

ptr = msgs;
for (i =0; i <Nj i+4)

Pthread_create(ftid, NULL, thread, (void x)i);
Pthread_exit (NULL) ;

void *thread(void *vargp)

int myid = (int)vargp;
static int cnt = 0;
printf("[4d]: %s (cnt=Yd)\n", myid, ptrlmyid], ++cnt);
return NULL;
)3

Mapping Variables to Memory

» global variables: declared outside functioV 1

only one copy in virtual memory area,
readable/writable by any thread.

» local automatic variables: declared inside
functions, each thread’s stack contains its own
instance of it. E.g. tid and myid.

» local static variables: declared inside functions
with the static attribute. There is only one copy
in virtual memory area, readable/writable by
any thread.

» shared variables: a variable is shared only, and
only if, one of its instances is referenced by
more than one thread. E.g. cnt.

T #include "csapp.h
3, #define N 2
¥ roid *thresd(void *vargp) ;

char ##ptr; /* Global variable */

int main()
8 {
9 int i;
. pthread_t tid;
1 char *msgs[N] = {
2 "Hello from foo",
"Hello from bar"

Y

6 ptr = msgs;
for (i = 0; i <N; i++)

8 Pthread_create(ktid, NULL, thread, (void %)i);
Pthread_exit (NULL) ;

o}

void *thread(void *vargp)

int myid = (int)vargp;

Ll static int cnt = 0;

bo printf("[%d]: %s (cnt=%d)\n", myid, ptrlmyid], ++cnt);
2 return NULL;

bs)

Pthreads

Example: Computing Pi

» The ratio of area of circle radius=1 to the
square is T /4

» Generate random numbers for xand y within the
domain of square ie range [-1,1] for each axis

» identify those that are distance less than 1
from origin

» The ratio of points in circle to the total points
is/4

Pthreads

Example: Computing Pi

» The ratio of area of circle radius=1 to the

square is T /4

» Generate random numbers for xand y within the

domain of square ie range [-1,1] for each axis

» identify those that are distance less than 1 from

origin

» The ratio of points in circle to the total points is

/4

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <pthread.h>

#define NUM_THREADS 4
#define NUM_THROWS 1000000

double total_points_inside_circle = 0;
int main() {
pthread_t threads[NUM_THREADS];
int thread_ids[NUM_THREADS];

srand(time(NULL));

for (inti = 0; i < NUM_THREADS; i++) {
thread_ids[i] = i;

}
for (int i = 0; i < NUM_THREADS; i++) {
pthread_join(threadsl[i], NULL);
}
double pi_estimate = 4.0 * total_points_inside_circle / NUM_THROWS;
printf("Estimated value of r: %If\n", pi_estimate);

return 0;

pthread_create(&threads[i], NULL, computePl, (void*)&thread_ids[i]);

Pthreads

Example: Computing Pi

» The ratio of area of circle radius=1 to the
square is T /4

» Generate random numbers for xand y within the
domain of square ie range [-1,1] for each axis

» identify those that are distance less than 1
from origin

» The ratio of points in circle to the total points
is/4

double total_points_inside_circle = 0;

void* computePl(void* arg) {
int myNum = *(int*)arg;
double x, y;

for (int i = myNum; i < NUM_THROWS; i += NUM_THREADS)
{
x = (double)rand() / RAND_MAX * 2.0 - 1.0;
y = (double)rand() / RAND_MAX * 2.0 - 1.0;

if(x*x+y*y<=1.0){
total_points_inside_circle++;

}

pthread_exit(NULL);
}

>

DEMO
Pthreads based Concurrency

Problem Definition
» Computing Tt
» The exact result is 3.1415..., which makes it easy to verify our numerical
approximation
» We use Mont Carlo integration
Sequential Algorithm
» Computes the integration over N samples
» Evaluates the function at each point
» Check if the point is inside the unit circle
Parallelization Strategy
» Each process handles its own contiguous portion of the N samples
» Added 64 bytes of padding to the thread data structure to avoid false
sharing (where threads invalidate each other's cache lines).
» Each thread can maintain its own counter in an array element —no Mutex
» The parent process sums the results from each thread
Performance Measurement
» Uses clock() to measure execution time for both sequential and parallel
algorithms — need to allow for measurement of time on all threads
» Calculates and reports speedup

DEMO
Pthreads based Concurrency

» Computing it

» The exact result is 3.1415..., which makes it easy to verify our numerical

approximation
» We use Mont Carlo integration
Sequential Algorithm
» Computes the integration over N samples

» Evaluates the function at each point

» Check if the point is inside the unit circle
Parallelization Strategy

» Each process handles its own portion of the N samples

» Local results are combined using pipes

» The parent process collects the final result from the child processes
Performance Measurement

» Uses clock() to measure execution time for both sequential and parallel

algorithms — need to allow for measurement of time on all threads
» Calculates and reports speedup

TEQSA ROVIOE . RVIZE0 AUSTAALANUNIVERSTY) GRS PAOVIOER CO0E COL2C

