
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

COMP4300 - Course Update
Ø COMP4300 is a fast-paced 4000-level course: It assumes you are

mature and independent programmers.
Ø The course introduces the basics of the semantics of the

programming models (Pthreads, OpenMP, CUDA).
Ø You are left with the task and the responsibility of their

further exploration and practice to master these
programming models.

Ø This is particularly important for the second half of the course.

1
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

SHARED MEMORY PARALLEL
COMPUTING

USING MULTIPLE CORES

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

References
Ø Chapter 12 from Computer Systems A Programmer’s

Perspective, Third Edition, Randal E. Bryant and
David R. O’Hallaron, Pearson Education Heg USA,
ISBN 9781292101767.

Ø Programming with POSIX Threads, David R.
Butenhof, Addison-Wesley Professional, ISBN-13 :
978-0201633924.

3
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

How can we avoid the flaws of
process-based concurrency?

4

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A thread is a logical flow that runs within the context of
a process.

Ø So far we have discussed programs that consisted
of a single thread per process.

Ø Multiple “independent” threads can be added to
an existing process rather than starting a new
process.

Ø Threads are scheduled by the OS and run as
independent entities largely because they
duplicate only the bare essential resources that
enable them to exist as executable code.

Parallel Programming with Threads

Understanding Pthreads concepts
helps developers grasp fundamental
parallel programming principles

5
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø A thread is a logical flow that runs within
the context of a process.

Ø So far we discussed programs that consisted
of a single thread per process.

Ø Multiple “independent” threads can be
added to an existing process rather than
starting a new process.

Ø Threads are able to be scheduled by the OS
and run as independent entities largely
because they duplicate only the bare
essential resources that enable them to
exist as executable code.

Parallel
Programming with
Threads

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Each process is created with a single thread
called the main thread.

Ø The main thread can create a peer thread,
and the two run concurrently.

Ø If they are scheduled on the same CPU/core,
the OS at some point will pass control from
the main to the peer thread via a context
switch.

Ø If they are scheduled by the OS on different
cores they will run in parallel.

Ø Threads associated with a process form a
pool of peers, where each one can kill or wait
for any other to terminate.

Ø Each peer can read and write the same
shared data.

Thread Execution
Model

7
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Historically, hardware vendors have implemented their own proprietary versions of threads, making it difficult for
programmers to develop portable threaded applications.

Ø POSIX Threads provide a standard interface, specified by the IEEE 1003.1 (1995) standard, for manipulating
threads from C programs.

Ø Pthreads are defined as a set of C language programming types and procedure calls, implemented with an
#include <pthread.h> header file and a thread library (this may be part of another library, such as libc, in some
implementations).

Ø The specification contains about 60 functions that allow programs to create, kill, and reap threads, to share data
safely with peer threads, and to notify peers about changes in the system state.

POSIX Threads (Pthreads)

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Pthread_create: This function creates a new thread:

• The first argument references
the pthread_t thread variable.

• The second argument can specify
attributes (NULL for default).

• The third argument is the function the
thread will run.

• The fourth argument can pass data to
the thread's function (NULL here).

Pthread_join: This function in the main thread waits
for the created thread to terminate.

This prevents the main program from exiting before
the thread has printed its output.

A Hello world example

9
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Creating Threads
ØCreates a new thread and runs the thread routine
f in the context of the new thread and with an
input argument of arg.

ØThe thread routine f takes as input a single generic
pointer and returns a generic pointer. If you want to
pass multiple arguments to a thread routine, then
you should put the arguments into a structure and
pass a pointer to the structure.

ØSimilarly, if you want the thread routine to return
multiple arguments, you can return a pointer to a
structure.

ØWhen pthread_create returns, argument tid
contains the ID of the newly created thread,
which can also be determined using

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Terminating Threads

Ø Implicit termination when its top-level
thread routine returns.

Ø Explicit termination using pthread
exit. Explicit termination of main
thread and will wait for all other peers
to terminate.

Ø A peer thread calls pthread_cancel
with the ID of the current thread.

Ø A peer thread calls exit terminating
the process and all its threads.

11
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Returning and reaping

Ø Current thread waits for thread tid to
terminate, blocking until it does so.

Ø Assigns the generic (void *) pointer
returned by the thread routine to the
location pointed to by
thread_return.

Ø Reaps any memory resources (e.g.
stack) held by the terminated thread.
Reaping memory resources involves
managing and reclaiming memory that
is no longer needed by a program.

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Detaching threads

Ø A thread is either joinable or detachable.
Ø Joinable: its memory resources (such as

the stack) are not freed until it is reaped
by another thread.

Ø A detached thread cannot be reaped by
other threads. Its memory resources are
freed automatically by the system when
it terminates.

Ø To avoid memory leaks, each joinable
thread should either be explicitly reaped
by another thread, or detached by a call
to pthread_detach

Threads can detach themselves by
calling pthread detach with an argument
of pthread_self.

13
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads Memory Model
Ø The key advantage of threads is the

efficiency and ease with which they
can share data

Ø The key disadvantage is the
potential for complicated bugs
that do not appear in serial code.

Ø To write correct threaded
programs a clear understanding of
the sharing mechanisms and risks
is required

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads Memory Model

Ø Thread context: TID, stack, stack
pointer (SP), program counter (PC),
condition codes (CC), registers values.

Ø Shared: process virtual address space
→ code, read/write data, heap,
shared libraries, open files.

15
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads Memory Model

Ø Registers, Condition Codes (CC),
Program Counter (PC), the Stack
Pointer (SP) are private. Thread
stack is usually accessed
independently by each thread.
However, thread stacks are not
protected!

Ø If a thread accesses a stack pointer
to another thread’s stack, it can
read and write to it!

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Mapping Variables to Memory
Ø global variables: declared outside functions,

only one copy in virtual memory area,
readable/writable by any thread.

Ø local automatic variables: declared inside
functions, each thread’s stack contains its own
instance of it. E.g. tid and myid.

Ø local static variables: declared inside functions
with the static attribute. There is only one copy
in virtual memory area, readable/writable by
any thread.

Ø shared variables: a variable is shared only, and
only if, one of its instances is referenced by
more than one thread. E.g. cnt.

17
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Ø The ratio of area of circle radius=1 to the
square is ⁄" 4

Ø Generate random numbers for x and y within the
domain of square ie range [-1,1] for each axis

Ø identify those that are distance less than 1 from
origin

Ø The ratio of points in circle to the total points is
⁄" 4

Example: Computing Pi

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Ø The ratio of area of circle radius=1 to the
square is ⁄" 4

Ø Generate random numbers for x and y within the
domain of square ie range [-1,1] for each axis

Ø identify those that are distance less than 1
from origin

Ø The ratio of points in circle to the total points
is ⁄" 4

Example: Computing Pi

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <pthread.h>

#define NUM_THREADS 4
#define NUM_THROWS 1000000

double total_points_inside_circle = 0;

int main() {
 pthread_t threads[NUM_THREADS];
 int thread_ids[NUM_THREADS];

 srand(time(NULL));

 for (int i = 0; i < NUM_THREADS; i++) {
 thread_ids[i] = i;
 pthread_create(&threads[i], NULL, computePI, (void*)&thread_ids[i]);
 }

 for (int i = 0; i < NUM_THREADS; i++) {
 pthread_join(threads[i], NULL);
 }

 double pi_estimate = 4.0 * total_points_inside_circle / NUM_THROWS;
 printf("Estimated value of π: %lf\n", pi_estimate);

 return 0;
}

19
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Ø The ratio of area of circle radius=1 to the
square is ⁄" 4

Ø Generate random numbers for x and y within the
domain of square ie range [-1,1] for each axis

Ø identify those that are distance less than 1
from origin

Ø The ratio of points in circle to the total points
is ⁄" 4

Example: Computing Pi double total_points_inside_circle = 0;

void* computePI(void* arg) {
 int myNum = *(int*)arg;
 double x, y;

 for (int i = myNum; i < NUM_THROWS; i += NUM_THREADS)
{
 x = (double)rand() / RAND_MAX * 2.0 - 1.0;
 y = (double)rand() / RAND_MAX * 2.0 - 1.0;

 if (x * x + y * y <= 1.0) {
 total_points_inside_circle++;
 }
 }

 pthread_exit(NULL);
}

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DEMO
 Pthreads based Concurrency

21

Ø Problem Definition
Ø Computing π
Ø The exact result is 3.1415…, which makes it easy to verify our numerical

approximation
Ø We use Mont Carlo integration

Ø Sequential Algorithm
Ø Computes the integration over N samples
Ø Evaluates the function at each point
Ø Check if the point is inside the unit circle

Ø Parallelization Strategy
Ø Each process handles its own contiguous portion of the N samples
Ø Added 64 bytes of padding to the thread_data structure to avoid false

sharing (where threads invalidate each other's cache lines).
Ø Each thread can maintain its own counter in an array element – no Mutex
Ø The parent process sums the results from each thread

Ø Performance Measurement
Ø Uses clock() to measure execution time for both sequential and parallel

algorithms – need to allow for measurement of time on all threads
Ø Calculates and reports speedup

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DEMO
 Pthreads based Concurrency

22

Ø Problem Definition
Ø Computing π
Ø The exact result is 3.1415…, which makes it easy to verify our numerical

approximation
Ø We use Mont Carlo integration

Ø Sequential Algorithm
Ø Computes the integration over N samples
Ø Evaluates the function at each point
Ø Check if the point is inside the unit circle

Ø Parallelization Strategy
Ø Each process handles its own portion of the N samples
Ø Local results are combined using pipes
Ø The parent process collects the final result from the child processes

Ø Performance Measurement
Ø Uses clock() to measure execution time for both sequential and parallel

algorithms – need to allow for measurement of time on all threads
Ø Calculates and reports speedup

