
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

TE
QS

A
PR

OV
ID

ER
 ID

:P
RV

12
00

2
(A

US
TR

AL
IA

N
UN

IV
ER

SI
TY

)
CR

IC
OS

PR

OV
ID

ER
 C

OD
E:

 0
01

20
C

SHARED MEMORY
PARALLEL COMPUTING
COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

APRIL 2024

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Logistics
Ø Personal attendance to lectures highly encouraged
Ø Lecture material uploaded on Wattle and Parallel Systems

website before the live lecture
Ø Careful with usage of Gadi resources
Ø Assignment 1 due this week on Thu, April XXth @midnight

Assignment 2 released on Fri, April XXst; due on Fri, May 26th, 5
PM. Results of MSE released on Wattle today

Ø Feedback (also through SELT, opening soon): We are here to
support you learning!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Logistics
Ø COMP4300 is a fast-paced 4000-level course: It

assumes you are mature and independent
programmers.

Ø The course introduces the basics of the semantics
of the programming models (Pthreads, OpenMP,
CUDA).

Ø You are left with the task and the responsibility
of their further exploration and practice to
master these programming models.

Ø This is particularly important for the second half of the
course and a main difference with COMP3320.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

References
Ø Chapter 12 from Computer Systems A Programmer’s

Perspective, Third Edition, Randal E. Bryant and
David R. O’Hallaron, Pearson Education Heg USA,
ISBN 9781292101767.

Ø Programming with POSIX Threads, David R.
Butenhof, Addison-Wesley Professional, ISBN-13 :
978-0201633924.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

PARALLEL
COMPUTERS &
PROGRAMMING
MODELS, PTHREADS

ANU SCHOOL OF LAW | PRESENTATION NAME GOES HERE5 DD MMM YY

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

USING MULTIPLE
CORES

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

How can we avoid the flaws of
process-based concurrency?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A thread is a logical flow that runs within the context of
a process.

Ø So far we have discussed programs that consisted
of a single thread per process.

Ø Multiple “independent” threads can be added to
an existing process rather than starting a new
process.

Ø Threads are scheduled by the OS and run as
independent entities largely because they
duplicate only the bare essential resources that
enable them to exist as executable code.

Parallel Programming with Threads

Understanding Pthreads concepts
helps developers grasp fundamental
parallel programming principles

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø A thread is a logical flow that runs within the
context of a process.

Ø So far we discussed programs that consisted of a
single thread per process.

Ø Multiple “independent” threads can be added to
an existing process rather than starting a new
process.

Ø Threads are able to be scheduled by the OS and
run as independent entities largely because they
duplicate only the bare essential resources that
enable them to exist as executable code.

Parallel
Programming with
Threads

APRIL 2024ANU SCHOOL OF COMPUTING | 9

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Each process is created with a single thread
called the main thread.

Ø The main thread can create a peer thread, and
the two run concurrently.

Ø If they are scheduled on the same CPU/core, the
OS at some point will pass control from the main
to the peer thread via a context switch.

Ø If they are scheduled by the OS on different
cores they will run in parallel.

Ø Threads associated with a process form a pool of
peers, where each one can kill or wait for any
other to terminate.

Ø Each peer can read and write the same shared
data.

Thread Execution
Model

APRIL 2024ANU SCHOOL OF COMPUTING | 10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Historically, hardware vendors have implemented their own proprietary versions of threads, making it difficult for
programmers to develop portable threaded applications.

Ø POSIX Threads provide a standard interface, specified by the IEEE 1003.1 (1995) standard, for manipulating
threads from C programs.

Ø Pthreads are defined as a set of C language programming types and procedure calls, implemented with an
#include <pthread.h> header file and a thread library (this may be part of another library, such as libc, in some
implementations).

Ø The specification contains about 60 functions that allow programs to create, kill, and reap threads, to share data
safely with peer threads, and to notify peers about changes in the system state.

POSIX Threads (Pthreads)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Pthread_create: This function creates a new thread:

• The first argument references
the pthread_t thread variable.

• The second argument can specify
attributes (NULL for default).

• The third argument is the function the
thread will run.

• The fourth argument can pass data to
the thread's function (NULL here).

Pthread_join: This function in the main thread waits
for the created thread to terminate.

This prevents the main program from exiting before
the thread has printed its output.

A Hello world example

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Creating Threads

ØCreates a new thread and runs the thread
routine f in the context of the new thread and
with an input argument of arg.

ØThe thread routine f takes as input a single
generic pointer and returns a generic pointer. If
you want to pass multiple arguments to a thread
routine, then you should put the arguments into a
structure and pass a pointer to the structure.

ØSimilarly, if you want the thread routine to
return multiple arguments, you can return a
pointer to a structure.

ØWhen pthread create returns, argument
tid contains the ID of the newly created
thread, which can also be determined using

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Terminating Threads

Ø Implicit termination when its top-level
thread routine returns.

Ø Explicit termination using pthread
exit. Explicit termination of main
thread and will wait for all other peers to
terminate.

Ø A peer thread calls pthread cancel
with the ID of the current thread.

Ø A peer thread calls exit terminating the
process and all its threads.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Returning and reaping

Ø Current thread waits for thread tid to
terminate, blocking until it does so.

Ø Assigns the generic (void *) pointer
returned by the thread routine to the
location pointed to by thread return.

Ø Reaps any memory resources (e.g. stack)
held by the terminated thread. Reaping
memory resources involves managing and
reclaiming memory that is no longer
needed by a program

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

POSIX Threads (Pthreads)
Detaching threads

Ø A thread is either joinable or detachable.
Ø Joinable: its memory resources (such as

the stack) are not freed until it is reaped
by another thread.

Ø A detached thread cannot be reaped by
other threads. Its memory resources are
freed automatically by the system when
it terminates.

Ø To avoid memory leaks, each joinable
thread should either be explicitly reaped
by another thread, or detached by a call
to pthread detach

Threads can detach themselves by
calling pthread detach with an argument
of pthread_self.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads Memory Model

Ø The key advantage of threads is the
efficiency and ease with which they can share
data

Ø The key disadvanatge is the potential for
complicated bugs that do not appear in
serial code.

Ø To write correct threaded programs a clear
understanding of the sharing mechanisms
and risks is required

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads Memory Model

Ø Thread context: TID, stack, stack pointer
(SP), program counter (PC), condition codes
(CC), registers values.

Ø Shared: process virtual address space →
code, read/write data, heap, shared
libraries, open files.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads Memory Model

Ø Registers, Condition Codes (CC), Program
Counter (PC), the Stack Pointer (SP) are
private. Thread stack is usually accessed
independently by each thread. However,
thread stacks are not protected!

Ø If a thread accesses a stack pointer to
another thread’s stack, it can read and
write to it!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Mapping Variables to Memory
Ø global variables: declared outside functions,

only one copy in virtual memory area,
readable/writable by any thread.

Ø local automatic variables: declared inside
functions, each thread’s stack contains its own
instance of it. E.g. tid and myid.

Ø local static variables: declared inside functions
with the static attribute. There is only one copy
in virtual memory area, readable/writable by
any thread.

Ø shared variables: a variable is shared only, and
only if, one of its instances is referenced by
more than one thread. E.g. cnt.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Ø The ratio of area of circle radius=1 to the
square is ⁄𝜋 4

Ø Generate random numbers for x and y within the
domain of square ie range [-1,1] for each axis

Ø identify those that are distance less than 1 from
origin

Ø The ratio of points in circle to the total points is
⁄𝜋 4

Example: Computing Pi

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Ø The ratio of area of circle radius=1 to the
square is ⁄𝜋 4

Ø Generate random numbers for x and y within the
domain of square ie range [-1,1] for each axis

Ø identify those that are distance less than 1
from origin

Ø The ratio of points in circle to the total points
is ⁄𝜋 4

Example: Computing Pi

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <pthread.h>

#define NUM_THREADS 4
#define NUM_THROWS 1000000

double total_points_inside_circle = 0;

int main() {
 pthread_t threads[NUM_THREADS];
 int thread_ids[NUM_THREADS];

 srand(time(NULL));

 for (int i = 0; i < NUM_THREADS; i++) {
 thread_ids[i] = i;
 pthread_create(&threads[i], NULL, computePI, (void*)&thread_ids[i]);
 }

 for (int i = 0; i < NUM_THREADS; i++) {
 pthread_join(threads[i], NULL);
 }

 double pi_estimate = 4.0 * total_points_inside_circle / NUM_THROWS;
 printf("Estimated value of π: %lf\n", pi_estimate);

 return 0;
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Pthreads

Ø The ratio of area of circle radius=1 to the
square is ⁄𝜋 4

Ø Generate random numbers for x and y within the
domain of square ie range [-1,1] for each axis

Ø identify those that are distance less than 1
from origin

Ø The ratio of points in circle to the total points
is ⁄𝜋 4

Example: Computing Pi double total_points_inside_circle = 0;

void* computePI(void* arg) {
 int myNum = *(int*)arg;
 double x, y;

 for (int i = myNum; i < NUM_THROWS; i += NUM_THREADS)
{
 x = (double)rand() / RAND_MAX * 2.0 - 1.0;
 y = (double)rand() / RAND_MAX * 2.0 - 1.0;

 if (x * x + y * y <= 1.0) {
 total_points_inside_circle++;
 }
 }

 pthread_exit(NULL);
}

