
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

COMP4300 - Course Update
Ø Quiz 2 released 18 April

Ø Must be completed by Monday 28/04/2025, 11:55PM.
Ø Will cover lectures 7-13

Ø Assignment 2
Ø Will be released on 24 April
Ø Due 26/05/2025, 11:55PM
Ø Start early

1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

References
Ø Chapter 12 from Computer Systems A Programmer’s

Perspective, Third Edition, Randal E. Bryant and
David R. O’Hallaron, Pearson Education Heg USA,
ISBN 9781292101767.

Ø Programming with POSIX Threads, David R.
Butenhof, Addison-Wesley Professional, ISBN-13 :
978-0201633924.

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

SHARED MEMORY PARALLEL COMPUTING

THREAD SYNCRONIZATION

3

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DEMO
 Pthreads based Concurrency

4

Ø Pthreads have low creation overhead

Ø Pthreads allows rapid switching between threads

Ø Pthreads can deliver excellent weak and strong scaling

Ø Pthreads do not require message passing

Ø Accessing shared data requires careful control

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

5

Quick Review

Why threads tend to have higher efficiency than processes in
shared-memory parallelization?

What is the main risk of using shared memory address space?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
 for (int i = 0; i < 10000; ++i) {
 // Critical section: Increment the shared counter
 shared_counter++;
 }
 pthread_exit(NULL);
}

int main() {
 pthread_t thread1, thread2;

 // Create two threads
 pthread_create(&thread1, NULL, increment_counter, NULL);
 pthread_create(&thread2, NULL, increment_counter, NULL);

 // Wait for both threads to finish
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 // Print the final value of the shared counter
 printf("Final shared counter value: %d\n", shared_counter);

 return 0;
}

What do you expect the code is going
to print when executed on a
multiprocessor?

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
 for (int i = 0; i < 10000; ++i) {
 // Critical section: Increment the shared counter
 shared_counter++;
 }
 pthread_exit(NULL);
}

int main() {
 pthread_t thread1, thread2;

 // Create two threads
 pthread_create(&thread1, NULL, increment_counter, NULL);
 pthread_create(&thread2, NULL, increment_counter, NULL);

 // Wait for both threads to finish
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 // Print the final value of the shared counter
 printf("Final shared counter value: %d\n", shared_counter);

 return 0;
}

What do you expect the code is going
to print when executed on a single
processor?

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
 for (int i = 0; i < 10000; ++i) {
 // Critical section: Increment the shared counter
 shared_counter++;
 }
 pthread_exit(NULL);
}

int main() {
 pthread_t thread1, thread2;

 // Create two threads
 pthread_create(&thread1, NULL, increment_counter, NULL);
 pthread_create(&thread2, NULL, increment_counter, NULL);

 // Wait for both threads to finish
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 // Print the final value of the shared counter
 printf("Final shared counter value: %d\n", shared_counter);

 return 0;
}

Results:

> Final shared counter value: 14765
> Final shared counter value: 16237
> Final shared counter value: 12583

???

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

State Diagrams
Ø A state diagram models the execution of n

concurrent execution flows as a trajectory
through an n-dimensional Cartesian space
(only uniprocessor!)

Ø For thread i the instructions (Li , Ui , Si)
that manipulate the contents of the
shared variable cnt constitute a
critical section

Ø The instructions of a critical section must
be all executed by a single thread at a
time.

9

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

State Diagrams
Ø In order to obtain correct results, each

threads must have mutually exclusive
access to the shared variable while it is
executing instructions in the critical
section (mutual exclusion).

Ø A trajectory that skirts the unsafe
region will not cause run time errors
(safe trajectory).

Ø In order to guarantee correct execution,
we must synchronize threads so that they
take safe trajectories.

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Critical Section Problem
Ø The critical section problem is a

fundamental synchronization problem in
computer science and operating
systems.

Ø It arises when multiple concurrent
processes or threads share a common
resource (such as memory, files, or
hardware devices) and need to access it
in an exclusive manner.

Ø The goal is to ensure that only one
process can execute its critical section
(the part of code that accesses the
shared resource) at any given time.

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Critical Section Problem
Requirements:

Ø Mutual Exclusion: At most one
process can be in its critical section
simultaneously.

Ø Freedom from deadlock: If no
process is in its critical section and
some processes want to enter, one
of them should be allowed to enter.

Ø Bounded Waiting: There exists an
upper bound on the number of
times a process can wait to enter its
critical section.

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Critical Section Problem
The synchronization mechanism ensures
correctness.
Ø It uses statements places before and after

the critical section, called preprotocol and
postprotocol, respectively.

Ø Assumption: assignment statements are
atomic statements, as are evaluations of
boolean conditions in control statements.

Ø An atomic statement is executed to
completion without the possibility of
interleaving/interrupt from another
thread.

13

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
 for (int i = 0; i < 10000; ++i) {
 // Critical section: Increment the shared counter
 shared_counter++;
 }
 pthread_exit(NULL);
}

int main() {
 pthread_t thread1, thread2;

 // Create two threads
 pthread_create(&thread1, NULL, increment_counter, NULL);
 pthread_create(&thread2, NULL, increment_counter, NULL);

 // Wait for both threads to finish
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 // Print the final value of the shared counter
 printf("Final shared counter value: %d\n", shared_counter);

 return 0;
}

Explanation:

Ø We have a shared global
variable shared_counter.

Ø Two threads (thread1 and thread2) increment this
counter independently.

Ø The critical section (increment operation) is not
protected by any synchronization mechanism (e.g.,
mutex or semaphore).

Ø As a result, a data race occurs when both threads
simultaneously read and
modify shared_counter.

Ø The final value of shared_counter is
unpredictable due to the race condition.

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
 for (int i = 0; i < 10000; ++i) {
 // Critical section: Increment the shared counter
 shared_counter++;
 }
 pthread_exit(NULL);
}

int main() {
 pthread_t thread1, thread2;

 // Create two threads
 pthread_create(&thread1, NULL, increment_counter, NULL);
 pthread_create(&thread2, NULL, increment_counter, NULL);

 // Wait for both threads to finish
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 // Print the final value of the shared counter
 printf("Final shared counter value: %d\n", shared_counter);

 return 0;
}

Ø To solve the synchronization pitfall in the previous
example, we need to introduce proper
synchronization mechanisms to protect the
critical section (the shared counter increment).

Ø Specifically, we’ll use a mutex (short for mutual
exclusion) to ensure that only one thread can
access the shared counter at a time.

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Mutexes and Locks with Pthreads
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable
pthread_mutex_t counter_mutex; // Mutex for synchronization

void* increment_counter(void* arg) {
 for (int i = 0; i < 10000; ++i) {
 // Acquire the mutex before accessing the shared counter
 pthread_mutex_lock(&counter_mutex);
 shared_counter++;
 // Release the mutex after modifying the shared counter
 pthread_mutex_unlock(&counter_mutex);
 }
 pthread_exit(NULL);
}

Ø Specifically, we’ll use a mutex (short for mutual
exclusion) to ensure that only one thread can
access the shared counter at a time.

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Mutexes and Locks with Pthreads
int main() {
 pthread_t thread1, thread2;

 // Initialize the mutex
 pthread_mutex_init(&counter_mutex, NULL);

 // Create two threads
 pthread_create(&thread1, NULL, increment_counter, NULL);
 pthread_create(&thread2, NULL, increment_counter, NULL);

 // Wait for both threads to finish
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 // Clean up: Destroy the mutex
 pthread_mutex_destroy(&counter_mutex);

 // Print the final value of the shared counter
 printf("Final shared counter value: %d\n", shared_counter);

 return 0;
}

Ø In main we now initialize the mutex (short for
mutual exclusion) to ensure that only one thread
can access the shared counter at a time

> Final shared counter value: 20000

Thread Safety and volatile:
Ø While volatile ensures proper reads and writes,

it does not provide thread safety
Ø It does not prevent data races or guarantee

atomicity
Ø For synchronization between threads, use

mutexes, semaphores, or other synchronization
primitives

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Synchronization Pitfalls
Why does this code give the incorrect result on a
uniprocessor?

Ø The OS will run threads concurrently: on a
uniprocessor instructions will be interleaved.

Ø Some of the interleaving ordering will produce the
correct results, others will not.

Ø What about a multiprocessor execution?

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
 for (int i = 0; i < 10000; ++i) {
 // Critical section: Increment the shared counter
 shared_counter++;
 }
 pthread_exit(NULL);
}

int main() {
 pthread_t thread1, thread2;

 // Create two threads
 pthread_create(&thread1, NULL, increment_counter, NULL);
 pthread_create(&thread2, NULL, increment_counter, NULL);

 // Wait for both threads to finish
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);

 // Print the final value of the shared counter
 printf("Final shared counter value: %d\n", shared_counter);

 return 0;
}

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Example Solution: Dekker’s Algorithm
Ø The variables wantp and wantq ensure mutual

exclusion.
Ø Suppose p detects contention by finding wantp

== true (p3): it will consult the shared
variable turn, to check whether it is its turn
(turn == 1) to insist on entering its critical
section.

Ø If so, it executes the loop at p3 and p4, called a
busy-wait loop, until q resets wantq to false,
either by terminating its critical section at q10 or
by deferring in q5.

Ø If not, p will reset wantp to false and defer to
thread q, waiting until q changes the value of
turn after executing its critical section.

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Semaphores
#include <sys/sem.h>
#include <sys/ipc.h>

// Define a semaphore
int semid;

// Initialize the semaphore
void initSemaphore() {
 key_t key = 1234; // Unique key for the semaphore
 int nsems = 1; // Number of semaphores in the set
 semid = semget(key, nsems, IPC_CREAT | 0666);
 if (semid < 0) {
 perror("Semaphore creation failed");
 exit(1);
 }
 // Set the initial value of the semaphore (e.g., 1)
 semctl(semid, 0, SETVAL, 1);
}

// Perform the critical section operation
void criticalSection(int* sharedVar) {
 (*sharedVar)++;
 printf("Shared variable value: %d\n", *sharedVar);
}

A semaphore ensures that only one process
can access the shared variable at a time.

We create a semaphore using semget and
initialize it with an initial value (e.g., 1).

Both the parent and child processes
use sem_wait to wait for the semaphore
before entering the critical section.

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Semaphores
int main() {
 int sharedVar = 0;

 // Initialize the semaphore
 initSemaphore();

 int pid = fork();
 if (pid < 0) {
 perror("Fork failed");
 exit(1);
 } else if (pid == 0) {
 // Child process
 sem_wait(&semid); // Wait for the semaphore
 printf("Child process entered critical section\n");
 criticalSection(&sharedVar);
 sem_post(&semid); // Release the semaphore
 } else {
 // Parent process
 sem_wait(&semid); // Wait for the semaphore
 printf("Parent process entered critical section\n");
 criticalSection(&sharedVar);
 sem_post(&semid); // Release the semaphore
 }

 return 0;
}

In this example, we create two processes
(parent and child) that share a common
variable using a semaphore.

Both the parent and child processes
use sem_wait to wait for the semaphore
before entering the critical section.

After performing the critical section
operation (incrementing the shared
variable), they release the semaphore
using sem_post.

21

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Semaphores
Signaling Mechanism:
• Semaphores work based on

signaling.
• Two fundamental atomic

operations:
• Wait (P): Decrements the

semaphore value. If the value
becomes negative, the calling
thread waits (blocks).

• Signal (V): Increments the
semaphore value. If any
threads were waiting, one of
them is unblocked.

Advantages:
• Multiple threads can access the critical section

simultaneously (controlled by the semaphore
value).

• Semaphores are machine-independent.
• Allows a specified number of processes to

enter (useful for limiting resources).
Common Use Cases:
• Controlling access to a pool of resources (e.g.,

limiting the number of concurrent database
connections).

• Implementing producer-consumer patterns.
• Coordinating multiple threads or processes.

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Demo
Race Condition & Synchronisation

23

Ø Three C programs to illustrate managing the race condition shown previously.
Ø A version in which no synchronization mechanisms are used
Ø An alternative version using sempahores
Ø An alternative version using mutexes

Ø Each program
Ø Creates two threads that each increment a shared counter 10,000 times
Ø Final counter value is printed
Ø Measures execution time for both individual threads and the overall

program

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Demo
Race Condition & Synchronisation

24

Ø Race conditions produce inconsistent results.

Ø While semaphores offer greater flexibility and can be used for a variety of
synchronization tasks, they come with additional overhead that can make them
slower compared to mutexes for simple mutual exclusion scenarios.

Ø For tasks that require only mutual exclusion (binary), mutexes are generally the
preferred and more efficient choice.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

25

OpenMP:
Part I

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Reference Material
Ø Using OpenMP – The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,

Chapter 1
Ø http://www.openmp.org/
Ø Introduction to High Performance Computing for Scientists and Engineers,

Hager and Wellein, Chapter 6 & 7
Ø High Performance Computing, Dowd and Severance, Chapter 11
Ø Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.

Kumar
Ø Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.

J.McDonald, R.Menon

26

http://www.openmp.org/

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

History of Concurrent Programming

27

Fork
Ø The concept of "fork" originated in Unix operating systems.
Ø Forking was a fundamental mechanism for multitasking in Unix.
Ø The fork() system call is used to create a new process by duplicating the existing process.

Threads
Ø As computing needs grew, the limitations of process-based concurrency became apparent,

particularly the overhead associated with creating and managing processes.
Ø Threads enabled finer-grained parallelism and improved performance for applications

requiring concurrent execution of tasks.

OpenMP
Ø OpenMP (Open Multi-Processing) is an API that supports multi-platform shared memory

multiprocessing programming in C, C++, and Fortran.
Ø OpenMP uses compiler directives, library routines, and environment variables to control

parallelism.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory Parallel Programming
Ø Explicit thread programming is messy

Ø low-level primitives
Ø complex data scoping and initialization not easy to port
Ø significant amount of boiler-plate code
Ø used by system programmers, but …. application programmers have OpenMP!

Ø Many application codes can be supported by higher level constructs with the same
performance
Ø led to proprietary directive based approaches of Cray, SGI, Sun, etc.

Ø OpenMP is an API for shared memory parallel programming targeting Fortran, C and
C++
Ø standardizes the form of the proprietary directives
Ø avoids the need for explicitly setting up mutexes, condition variables, data scope,

and a good part of explicit initialization

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP
Ø Specifications maintained by OpenMP Architecture Review Board (ARB)

Ø members include AMD, Intel, Fujitsu, IBM, NVIDIA
Ø Versions 1.0 (Fortran ’97, C ’98), 1.1 and 2.0 (Fortran ’00, C/C++ ’02), 2.5 (unified

Fortran and C, 2005), 3.0 (2008), 3.1 (2011), 4.0 (2013), 4.5 (2015), 5.0 (2018), 6.0
(2024)

Ø Comprises compiler directives, library routines and environment variables
Ø C directives (case sensitive)

 #pragma omp directive_name [clause-list]
Ø library calls begin with omp_

 void omp_set_num_threads(nthreads)
Ø environment variables begin with OMP_

 export OMP_NUM_THREADS=4
Ø OpenMP requires compiler support

Ø set -fopenmp (gcc) or -qopenmp (icc) compiler flags
29

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Parallel Directive
Ø OpenMP uses a fork/join model, i.e. programs execute serially until

they encounter a parallel directive:
• this creates a group of threads
• the number of threads dependent on an environment variable or

set via function call
• the main thread becomes master with thread id 0

#pragma omp parallel [clause - list]
 /* structured block */

Ø Each thread executes the structured block
Ø In C/C++ this is a brace-enclosed ({ code }) sequence of statements and

declarations.
30

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø An OpenMP starts in serial mode with one thread
executing the serial code (master thread)

Ø At the beginning of the parallel region additional
threads are created (forking from the master) by the
runtime system forming a thread team

Ø All threads are active in the parallel regions, executing
the program in parallel.

Ø At the end of the parallel region threads are joined,
with only the master continuing through the serial
portion.

Ø This is called the fork-join model.

31

The OpenMP
Execution Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø The number of threads execution in the parallel
region can be set through the OMP_NUM_THREADS
environment variable.

Ø If the number of threads need to be more dynamic,
the omp_set_num_threads may be used prior to a
parallel region.

Ø An alternative is to use the num_threads<nt>
clause on the parallel directive.

Ø Because of the join operation, the end of the
parallel region is an implicit synchronization point
(barrier).

32

The OpenMP
Execution Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Underlying the OpenMP standard is the
pthreads memory model, but the distinction
between private and shared is clearer.

Ø Whether a variable is private or shared as well as
their initialization can be defined by default rules

Ø These can also be explicitly controlled through
appropriate clauses on a construct.

Ø It is recommended to not rely on the default
rules and explicitly label or “scope" variables.

33

The OpenMP
Memory Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Private and Shared Variables
Ø Private variables can be accessed only by the owning

thread, no other thread may interfere.

Ø Threads may even use the same name for a private
variable without the risk of any conflict.

Ø Each thread has read and write access to the same
shared variable, that is only one instance of a given
shared variable exists.

Ø Global or static variables are shared by default.

34

The OpenMP
Memory Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Default Rules

Ø Variables declared outside the parallel region are
shared by default.

Ø Global and static variables are also shared by default.

Ø Variables declared inside the parallel region are
private by default.

35

The OpenMP
Memory Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø The private (shared) clause may be used to
make a variable thread private (shared).

Ø One needs to be careful with initialization.

Ø The firstprivate clause guarantees that all
threads have a pre-initialized copy of a variable

Ø The default clause is used to give a default data
sharing attribute (none, shared, private) to
all variables.

Ø When default(none)is used, the programmer is
forced to specify data-sharing attributes for all
variables in the construct.

36

Data Sharing Clauses
int x = 5; int y = 20;
int z[NUM_THREADS] = {0};
pragma omp parallel default (none) shared (z)

private (x) firstprivate (y)
{
x = 10; // x is undefined on entry , but now set

to 10
z[omp_get_thread_num ()] = omp_get_thread_num ();
int w = x + y+ z[omp_get_thread_num ()]; // y pre

- initialized to a value of 20
...
y = 30 // firstprivate var may be modified
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Default Rules

Ø Variables declared outside the parallel
region are shared by default.

Ø Global and static variables are also
shared by default.

Ø Variables declared inside the parallel
region are private by default.

37

Data Sharing
Attributes

int g = 0; // g is shared
int main (){
int i = 0; // i is shared
static int a = 7; // a is shared
pragma omp parallel
{
int b = a + i + g; // b is private
...

}
return 0;
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP:The Work-Sharing Directives
Ø Used to distribute work among threads in a team.
Ø They specify the way the work has to be distributed among threads.
Ø Work-sharing directive must bind to a parallel region, otherwise is simply ignored.

Ø Work-sharing constructs do not have a barrier at entry.
Ø By default, a barrier is implemented at the end of the work-sharing region. The

programmer can suppress the barrier with use of the nowait clause.

38

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The for Work-Sharing Directives
Used in conjunction with parallel directive to partition the for loop
immediately afterwards
Ø The loop index (i) is made private by default
Ø Only two directives plus the sequential code (code is easy to read/maintain)
Ø Limited to loops where number of iterations can be counted

There is implicit synchronization at the end of the loop
Ø Can add a nowait clause to prevent synchronization

pragma omp parallel shared (n)
{
pragma omp for
for (i = 0; i < n; i ++) {
 printf (" Thread % d , iteration % d\ n",
 omp_get_thread_num , i);
 }
} /* End of parallel region */

39

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The for Work-Sharing Directives

Ø The order in which threads execute is not
predictable (OS scheduled).

Ø The way to map iterations to threads can
be specified by the programmer (see later
schedule clause).

Ø If the programmer does not specify the
mapping between threads and iterations,
the compiler decides which strategy to use.

40

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The sections Work-Sharing Directives
Ø Consider partitioning of fixed number of

tasks across threads
Ø Each section must be a structured block that

is independent from the other sections.
Ø Separate threads will run taskA and taskB
Ø Illegal to branch in or out of section blocks

Note:
Ø Much less common than for loop

partitioning
Ø Explicit programming naturally limits

number of threads (scalability)
Ø Potential load imbalance

pragma omp parallel
{
 # pragma omp sections
 {
 # pragma omp section
 task A ()

 # pragma omp section
 task B ()

 } /* End of sections block */

} /* End of parallel region */

41

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The single Work-Sharing Directives
Ø This directive specifies that only one thread must execute the

code in the structured block following it.
Ø It does not state which thread should execute the code.

pragma omp parallel shared (a, b, n)
{
 # pragma omp single
 {
 a = 10;
 } /* A barrier is automatically inserted here */
 # pragma omp for
 for (i = 0; i < n; ++i)
 {
 b[i] = a;
 }/* Another barrier is automatically inserted here */
}

42

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Combined parallel Work-Sharing Directives
Ø When there is only one work-

sharing directive it can be
combined with the parallel
one to improve readability.

Ø Only clauses that are allowed by
both the parallel and the
specific work-share directive are
allowed, otherwise the code is
illegal.

Ø The compiler may optimize code
further (e.g. remove redundant
barriers).

43

