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COMP4300 - Course Update
Ø Quiz 2 released 18 April

Ø Must be completed by Monday 28/04/2025, 11:55PM.
Ø Will cover lectures 7-13

Ø Assignment 2
Ø Will be released on 24 April
Ø Due 26/05/2025, 11:55PM
Ø Start early
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References
Ø Chapter 12 from Computer Systems A Programmer’s 

Perspective, Third Edition, Randal E. Bryant and 
David R. O’Hallaron, Pearson Education Heg USA, 
ISBN 9781292101767.

Ø Programming with POSIX Threads, David R. 
Butenhof, Addison-Wesley Professional, ISBN-13 : 
978-0201633924.
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SHARED MEMORY PARALLEL COMPUTING

THREAD SYNCRONIZATION
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DEMO
 Pthreads based Concurrency

4

Ø Pthreads have low creation overhead

Ø Pthreads allows rapid switching between threads

Ø Pthreads can deliver excellent weak and strong scaling

Ø Pthreads do not require message passing

Ø Accessing shared data requires careful control
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Quick Review

Why threads tend to have higher efficiency than processes in 
shared-memory parallelization?

What is the main risk of using shared memory address space?
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Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
    for (int i = 0; i < 10000; ++i) {
        // Critical section: Increment the shared counter
        shared_counter++;
    }
    pthread_exit(NULL);
}

int main() {
    pthread_t thread1, thread2;

    // Create two threads
    pthread_create(&thread1, NULL, increment_counter, NULL);
    pthread_create(&thread2, NULL, increment_counter, NULL);

    // Wait for both threads to finish
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);

    // Print the final value of the shared counter
    printf("Final shared counter value: %d\n", shared_counter);

    return 0;
}

What do you expect the code is going 
to print when executed on a 
multiprocessor?
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Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
    for (int i = 0; i < 10000; ++i) {
        // Critical section: Increment the shared counter
        shared_counter++;
    }
    pthread_exit(NULL);
}

int main() {
    pthread_t thread1, thread2;

    // Create two threads
    pthread_create(&thread1, NULL, increment_counter, NULL);
    pthread_create(&thread2, NULL, increment_counter, NULL);

    // Wait for both threads to finish
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);

    // Print the final value of the shared counter
    printf("Final shared counter value: %d\n", shared_counter);

    return 0;
}

What do you expect the code is going 
to print when executed on a single 
processor?
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Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
    for (int i = 0; i < 10000; ++i) {
        // Critical section: Increment the shared counter
        shared_counter++;
    }
    pthread_exit(NULL);
}

int main() {
    pthread_t thread1, thread2;

    // Create two threads
    pthread_create(&thread1, NULL, increment_counter, NULL);
    pthread_create(&thread2, NULL, increment_counter, NULL);

    // Wait for both threads to finish
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);

    // Print the final value of the shared counter
    printf("Final shared counter value: %d\n", shared_counter);

    return 0;
}

Results:

> Final shared counter value: 14765
> Final shared counter value: 16237
> Final shared counter value: 12583

???
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State Diagrams
Ø A state diagram models the execution of n 

concurrent execution flows as a trajectory 
through an n-dimensional Cartesian space 
(only uniprocessor!)

Ø For thread i the instructions (Li , Ui , Si ) 
that manipulate the contents of the 
shared variable cnt constitute a 
critical section

Ø The instructions of a critical section must 
be all executed by a single thread at a 
time.

9



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

State Diagrams
Ø In order to obtain correct results, each 

threads must have mutually exclusive 
access to the shared variable while it is 
executing instructions in the critical 
section (mutual exclusion).

Ø A trajectory that skirts the unsafe 
region will not cause run time errors 
(safe trajectory).

Ø In order to guarantee correct execution, 
we must synchronize threads so that they 
take safe trajectories.
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The Critical Section Problem
Ø The critical section problem is a 

fundamental synchronization problem in 
computer science and operating 
systems. 

Ø It arises when multiple concurrent 
processes or threads share a common 
resource (such as memory, files, or 
hardware devices) and need to access it 
in an exclusive manner. 

Ø The goal is to ensure that only one 
process can execute its critical section 
(the part of code that accesses the 
shared resource) at any given time.
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The Critical Section Problem
Requirements:

Ø Mutual Exclusion: At most one 
process can be in its critical section 
simultaneously.

Ø Freedom from deadlock: If no 
process is in its critical section and 
some processes want to enter, one 
of them should be allowed to enter.

Ø Bounded Waiting: There exists an 
upper bound on the number of 
times a process can wait to enter its 
critical section.
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The Critical Section Problem
The synchronization mechanism ensures 
correctness.
Ø It uses statements places before and after 

the critical section, called preprotocol and 
postprotocol, respectively.

Ø Assumption: assignment statements are 
atomic statements, as are evaluations of 
boolean conditions in control statements.

Ø An atomic statement is executed to 
completion without the possibility of 
interleaving/interrupt from another 
thread.
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Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
    for (int i = 0; i < 10000; ++i) {
        // Critical section: Increment the shared counter
        shared_counter++;
    }
    pthread_exit(NULL);
}

int main() {
    pthread_t thread1, thread2;

    // Create two threads
    pthread_create(&thread1, NULL, increment_counter, NULL);
    pthread_create(&thread2, NULL, increment_counter, NULL);

    // Wait for both threads to finish
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);

    // Print the final value of the shared counter
    printf("Final shared counter value: %d\n", shared_counter);

    return 0;
}

Explanation:

Ø We have a shared global 
variable shared_counter.

Ø Two threads (thread1 and thread2) increment this 
counter independently.

Ø The critical section (increment operation) is not 
protected by any synchronization mechanism (e.g., 
mutex or semaphore).

Ø As a result, a data race occurs when both threads 
simultaneously read and 
modify shared_counter.

Ø The final value of shared_counter is 
unpredictable due to the race condition.
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Synchronization Pitfalls #include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
    for (int i = 0; i < 10000; ++i) {
        // Critical section: Increment the shared counter
        shared_counter++;
    }
    pthread_exit(NULL);
}

int main() {
    pthread_t thread1, thread2;

    // Create two threads
    pthread_create(&thread1, NULL, increment_counter, NULL);
    pthread_create(&thread2, NULL, increment_counter, NULL);

    // Wait for both threads to finish
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);

    // Print the final value of the shared counter
    printf("Final shared counter value: %d\n", shared_counter);

    return 0;
}

Ø To solve the synchronization pitfall in the previous 
example, we need to introduce proper 
synchronization mechanisms to protect the 
critical section (the shared counter increment). 

Ø Specifically, we’ll use a mutex (short for mutual 
exclusion) to ensure that only one thread can 
access the shared counter at a time.
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Mutexes and Locks with Pthreads
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable
pthread_mutex_t counter_mutex; // Mutex for synchronization

void* increment_counter(void* arg) {
    for (int i = 0; i < 10000; ++i) {
        // Acquire the mutex before accessing the shared counter
        pthread_mutex_lock(&counter_mutex);
        shared_counter++;
        // Release the mutex after modifying the shared counter
        pthread_mutex_unlock(&counter_mutex);
    }
    pthread_exit(NULL);
}

Ø Specifically, we’ll use a mutex (short for mutual 
exclusion) to ensure that only one thread can 
access the shared counter at a time.
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Mutexes and Locks with Pthreads
int main() {
    pthread_t thread1, thread2;

    // Initialize the mutex
    pthread_mutex_init(&counter_mutex, NULL);

    // Create two threads
    pthread_create(&thread1, NULL, increment_counter, NULL);
    pthread_create(&thread2, NULL, increment_counter, NULL);

    // Wait for both threads to finish
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);

    // Clean up: Destroy the mutex
    pthread_mutex_destroy(&counter_mutex);

    // Print the final value of the shared counter
    printf("Final shared counter value: %d\n", shared_counter);

    return 0;
}

Ø In main we now initialize the mutex (short for 
mutual exclusion) to ensure that only one thread 
can access the shared counter at a time

> Final shared counter value: 20000

Thread Safety and volatile:
Ø While volatile ensures proper reads and writes, 

it does not provide thread safety
Ø It does not prevent data races or guarantee 

atomicity
Ø For synchronization between threads, use 

mutexes, semaphores, or other synchronization 
primitives

17
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Synchronization Pitfalls
Why does this code give the incorrect result on a 
uniprocessor?

Ø The OS will run threads concurrently: on a 
uniprocessor instructions will be interleaved.

Ø Some of the interleaving ordering will produce the 
correct results, others will not.

Ø What about a multiprocessor execution?

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
    for (int i = 0; i < 10000; ++i) {
        // Critical section: Increment the shared counter
        shared_counter++;
    }
    pthread_exit(NULL);
}

int main() {
    pthread_t thread1, thread2;

    // Create two threads
    pthread_create(&thread1, NULL, increment_counter, NULL);
    pthread_create(&thread2, NULL, increment_counter, NULL);

    // Wait for both threads to finish
    pthread_join(thread1, NULL);
    pthread_join(thread2, NULL);

    // Print the final value of the shared counter
    printf("Final shared counter value: %d\n", shared_counter);

    return 0;
}
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Example Solution: Dekker’s Algorithm
Ø The variables wantp and wantq ensure mutual 

exclusion.
Ø Suppose p detects contention by finding wantp 

== true (p3): it will consult the shared 
variable turn, to check whether it is its turn 
(turn == 1) to insist on entering its critical 
section.

Ø If so, it executes the loop at p3 and p4, called a 
busy-wait loop, until q resets wantq to false, 
either by terminating its critical section at q10 or 
by deferring in q5.

Ø If not, p will reset wantp to false and defer to 
thread q, waiting until q changes the value of 
turn after executing its critical section.

19
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Semaphores
#include <sys/sem.h>
#include <sys/ipc.h> 

// Define a semaphore
int semid;

// Initialize the semaphore
void initSemaphore() {
    key_t key = 1234; // Unique key for the semaphore
    int nsems = 1;    // Number of semaphores in the set
    semid = semget(key, nsems, IPC_CREAT | 0666);
    if (semid < 0) {
        perror("Semaphore creation failed");
        exit(1);
    }
    // Set the initial value of the semaphore (e.g., 1)
    semctl(semid, 0, SETVAL, 1);
}

// Perform the critical section operation
void criticalSection(int* sharedVar) {
    (*sharedVar)++;
    printf("Shared variable value: %d\n", *sharedVar);
}

A semaphore ensures that only one process 
can access the shared variable at a time.

We create a semaphore using semget and 
initialize it with an initial value (e.g., 1).

Both the parent and child processes 
use sem_wait to wait for the semaphore 
before entering the critical section.

20
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Semaphores
int main() {
    int sharedVar = 0;

    // Initialize the semaphore
    initSemaphore();

    int pid = fork();
    if (pid < 0) {
        perror("Fork failed");
        exit(1);
    } else if (pid == 0) {
        // Child process
        sem_wait(&semid); // Wait for the semaphore
        printf("Child process entered critical section\n");
        criticalSection(&sharedVar);
        sem_post(&semid); // Release the semaphore
    } else {
        // Parent process
        sem_wait(&semid); // Wait for the semaphore
        printf("Parent process entered critical section\n");
        criticalSection(&sharedVar);
        sem_post(&semid); // Release the semaphore
    }

    return 0;
}

In this example, we create two processes 
(parent and child) that share a common 
variable using a semaphore.

Both the parent and child processes 
use sem_wait to wait for the semaphore 
before entering the critical section.

After performing the critical section 
operation (incrementing the shared 
variable), they release the semaphore 
using sem_post.

21
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Semaphores
Signaling Mechanism:
• Semaphores work based on 

signaling.
• Two fundamental atomic 

operations:
• Wait (P): Decrements the 

semaphore value. If the value 
becomes negative, the calling 
thread waits (blocks).

• Signal (V): Increments the 
semaphore value. If any 
threads were waiting, one of 
them is unblocked.

Advantages:
• Multiple threads can access the critical section 

simultaneously (controlled by the semaphore 
value).

• Semaphores are machine-independent.
• Allows a specified number of processes to 

enter (useful for limiting resources).
Common Use Cases:
• Controlling access to a pool of resources (e.g., 

limiting the number of concurrent database 
connections).

• Implementing producer-consumer patterns.
• Coordinating multiple threads or processes.

22
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Demo
Race Condition & Synchronisation

23

Ø Three C programs to illustrate managing the race condition shown previously.
Ø A version in which no synchronization mechanisms are used
Ø An alternative version using sempahores 
Ø An alternative version using mutexes

Ø Each program 
Ø Creates two threads that each increment a shared counter 10,000 times 
Ø Final counter value is printed
Ø Measures execution time for both individual threads and the overall 

program
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Demo
Race Condition & Synchronisation

24

Ø Race conditions produce inconsistent results.

Ø While semaphores offer greater flexibility and can be used for a variety of 
synchronization tasks, they come with additional overhead that can make them 
slower compared to mutexes for simple mutual exclusion scenarios.

Ø For tasks that require only mutual exclusion (binary), mutexes are generally the 
preferred and more efficient choice.



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

25

OpenMP:
Part I
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OpenMP Reference Material
Ø Using OpenMP – The Next Step, R. van der Pas, E. Stotzer, and C. Terboven, 

Chapter 1
Ø http://www.openmp.org/
Ø Introduction to High Performance Computing for Scientists and Engineers, 

Hager and Wellein, Chapter 6 & 7
Ø High Performance Computing, Dowd and Severance, Chapter 11
Ø Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V. 

Kumar
Ø Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan. 

J.McDonald, R.Menon

26

http://www.openmp.org/
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History of Concurrent Programming

27

Fork
Ø The concept of "fork" originated in Unix operating systems.
Ø Forking was a fundamental mechanism for multitasking in Unix.
Ø The fork() system call is used to create a new process by duplicating the existing process.

Threads
Ø As computing needs grew, the limitations of process-based concurrency became apparent, 

particularly the overhead associated with creating and managing processes.
Ø Threads enabled finer-grained parallelism and improved performance for applications 

requiring concurrent execution of tasks.

OpenMP
Ø OpenMP (Open Multi-Processing) is an API that supports multi-platform shared memory 

multiprocessing programming in C, C++, and Fortran.
Ø OpenMP uses compiler directives, library routines, and environment variables to control 

parallelism.
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Shared Memory Parallel Programming
Ø Explicit thread programming is messy

Ø low-level primitives
Ø complex data scoping and initialization not easy to port
Ø significant amount of boiler-plate code
Ø used by system programmers, but …. application programmers have OpenMP!

Ø Many application codes can be supported by higher level constructs with the same 
performance
Ø led to proprietary directive based approaches of Cray, SGI, Sun, etc.

Ø OpenMP is an API for shared memory parallel programming targeting Fortran, C and 
C++
Ø standardizes the form of the proprietary directives
Ø avoids the need for explicitly setting up mutexes, condition variables, data scope, 

and a good part of explicit initialization

28
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OpenMP
Ø Specifications maintained by OpenMP Architecture Review Board (ARB) 

Ø members include AMD, Intel, Fujitsu, IBM, NVIDIA
Ø Versions 1.0 (Fortran ’97, C ’98), 1.1 and 2.0 (Fortran ’00, C/C++ ’02), 2.5 (unified 

Fortran and C, 2005), 3.0 (2008), 3.1 (2011), 4.0 (2013), 4.5 (2015), 5.0 (2018), 6.0 
(2024)

Ø Comprises compiler directives, library routines and environment variables 
Ø C directives (case sensitive)

   #pragma omp directive_name [clause-list]
Ø library calls begin with omp_

   void omp_set_num_threads(nthreads)
Ø environment variables begin with OMP_

   export OMP_NUM_THREADS=4
Ø OpenMP requires compiler support

Ø set -fopenmp (gcc) or -qopenmp (icc) compiler flags
29



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Parallel Directive
Ø OpenMP uses a fork/join model, i.e. programs execute serially until 

they encounter a parallel directive:
• this creates a group of threads
• the number of threads dependent on an environment variable or 

set via function call
• the main thread becomes master with thread id 0

#pragma omp parallel [ clause - list ]
  /* structured block */

Ø Each thread executes the structured block
Ø In C/C++ this is a brace-enclosed ({ code }) sequence of statements and 

declarations.
30
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Ø An OpenMP starts in serial mode with one thread 
executing the serial code (master thread)

Ø At the beginning of the parallel region additional 
threads are created (forking from the master) by the 
runtime system forming a thread team

Ø All threads are active in the parallel regions, executing 
the program in parallel.

Ø At the end of the parallel region threads are joined, 
with only the master continuing through the serial 
portion.

Ø This is called the fork-join model.

31

The OpenMP 
Execution Model
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Ø The number of threads execution in the parallel 
region can be set through the OMP_NUM_THREADS 
environment variable.

Ø If the number of threads need to be more dynamic, 
the omp_set_num_threads may be used prior to a 
parallel region.

Ø An alternative is to use the num_threads<nt> 
clause on the parallel directive.

Ø Because of the join operation, the end of the 
parallel region is an implicit synchronization point 
(barrier).

32

The OpenMP 
Execution Model
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Ø Underlying the OpenMP standard is the 
pthreads memory model, but the distinction 
between private and shared is clearer.

Ø Whether a variable is private or shared as well as 
their initialization can be defined by default rules

Ø These can also be explicitly controlled through 
appropriate clauses on a construct.

Ø It is recommended to not rely on the default 
rules and explicitly label or “scope" variables.

33

The OpenMP 
Memory Model
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Private and Shared Variables
Ø Private variables can be accessed only by the owning 

thread, no other thread may interfere.

Ø Threads may even use the same name for a private 
variable without the risk of any conflict.

Ø Each thread has read and write access to the same 
shared variable, that is only one instance of a given 
shared variable exists.

Ø Global or static variables are shared by default.

34

The OpenMP 
Memory Model
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Default Rules

Ø Variables declared outside the parallel region are 
shared by default.

Ø Global and static variables are also shared by default.

Ø Variables declared inside the parallel region are 
private by default.

35

The OpenMP 
Memory Model
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Ø The private (shared) clause may be used to 
make a variable thread private (shared).

Ø One needs to be careful with initialization.

Ø The firstprivate clause guarantees that all 
threads have a pre-initialized copy of a variable

Ø The default clause is used to give a default data 
sharing attribute (none, shared, private) to 
all variables.

Ø When default(none)is used, the programmer is 
forced to specify data-sharing attributes for all 
variables in the construct.

36

Data Sharing Clauses
int x = 5; int y = 20;
int z[ NUM_THREADS ] = {0};
# pragma omp parallel default ( none ) shared ( z) 

private ( x) firstprivate ( y)
{
x = 10; // x is undefined on entry , but now set 

to 10
z[ omp_get_thread_num ()] = omp_get_thread_num ();
int w = x + y+ z[ omp_get_thread_num () ]; // y pre 

- initialized to a value of 20
...
y = 30 // firstprivate var may be modified
}
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Default Rules

Ø Variables declared outside the parallel 
region are shared by default.

Ø Global and static variables are also 
shared by default.

Ø Variables declared inside the parallel 
region are private by default.

37

Data Sharing 
Attributes

int g = 0; // g is shared 
int main (){
int i = 0; // i is shared
static int a = 7; // a is shared 
# pragma omp parallel
{
int b = a + i + g; // b is private
...

}
return 0;
}
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OpenMP:The Work-Sharing Directives
Ø Used to distribute work among threads in a team.
Ø They specify the way the work has to be distributed among threads.
Ø Work-sharing directive must bind to a parallel region, otherwise is simply ignored.

Ø Work-sharing constructs do not have a barrier at entry.
Ø By default, a barrier is implemented at the end of the work-sharing region. The 

programmer can suppress the barrier with use of the nowait clause.

38
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The for Work-Sharing Directives
Used in conjunction with parallel directive to partition the for loop 
immediately afterwards
Ø The loop index (i) is made private by default
Ø Only two directives plus the sequential code (code is easy to read/maintain)
Ø Limited to loops where number of iterations can be counted

There is implicit synchronization at the end of the loop
Ø Can add a nowait clause to prevent synchronization

# pragma omp parallel shared ( n)
{
# pragma omp for
for ( i = 0; i < n; i ++) {    
 printf (" Thread % d , iteration % d\ n",
   omp_get_thread_num , i);
 }
} /* End of parallel region */

39
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The for Work-Sharing Directives

Ø The order in which threads execute is not 
predictable (OS scheduled).

Ø The way to map iterations to threads can 
be specified by the programmer (see later 
schedule  clause).

Ø If the programmer does not specify the 
mapping between threads and iterations, 
the compiler decides which strategy to use.

40
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The sections Work-Sharing Directives
Ø Consider partitioning of fixed number of 

tasks across threads
Ø Each section must be a structured block that 

is independent from the other sections.
Ø Separate threads will run taskA  and taskB
Ø Illegal to branch in or out of section blocks

Note:
Ø Much less common than for loop 

partitioning
Ø Explicit programming naturally limits 

number of threads (scalability) 
Ø Potential load imbalance

# pragma omp parallel
{
  # pragma omp sections
  {
    # pragma omp section 
         task A ()

    # pragma omp section 
         task B ()

  } /* End of sections block */

} /* End of parallel region */
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The single Work-Sharing Directives
Ø This directive specifies that only one thread must execute the 

code in the structured block following it.
Ø It does not state which thread should execute the code.

# pragma omp parallel shared ( a, b, n)
{
  # pragma omp single
  {
     a = 10;
  } /* A barrier is automatically inserted here */ 
  # pragma omp for
  for ( i = 0; i < n; ++i)
  {
    b[ i] = a;
  }/* Another barrier is automatically inserted here */
}
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Combined parallel Work-Sharing Directives
Ø When there is only one work-

sharing directive it can be 
combined with the parallel 
one to improve readability.

Ø Only clauses that are allowed by 
both the parallel and the 
specific work-share directive are 
allowed, otherwise the code is 
illegal.

Ø The compiler may optimize code 
further (e.g. remove redundant 
barriers).
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