COMP4300 - Course Update

» Quiz 2 released 18 April
» Must be completed by Monday 28/04/2025, 11:55PM.
» Will cover lectures 7-13

» Assignment 2
» Will be released on 24 April
» Due 26/05/2025, 11:55PM
» Start early




References

» Chapter 12 from Computer Systems A Programmer’s
Perspective, Third Edition, Randal E. Bryant and
David R. O'Hallaron, Pearson Education Heg USA,
ISBN 9781292101767 .

» Programming with POSIX Threads, David R.
Butenhof, Addison-Wesley Professional, ISBN-13 :
978-0201633924.



SHARED MEMORY PARALLEL COMPUTING
THREAD SYNCRONIZATION

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



DEMO
Pthreads based Concurrency

» Pthreads have low creation overhead

» Pthreads allows rapid switching between threads

» Pthreads can deliver excellent weak and strong scaling
» Pthreads do not require message passing

» Accessing shared data requires careful control



Quick Review

Why threads tend to have higher efficiency than processes in
shared-memory parallelization?

What is the main risk of using shared memory address space?



Synchronization Pitfalls

What do you expect the code is going
to print when executed on a
multiprocessor?

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
for (inti=0; i< 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;
}
pthread_exit(NULL);
}

int main() {
pthread_t threadl, thread2;

// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);

// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return O;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

—]
—
~—/
"=



Synchronization Pitfalls

What do you expect the code is going
to print when executed on a single
processor?

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
for (inti=0; i< 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;
}
pthread_exit(NULL);
}

int main() {
pthread_t threadl, thread2;

// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);

// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return O;

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

—]
—
~—/
"=



Synchronization Pitfalls e sl

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {

for (inti=0; i< 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;

Results: \

pthread_exit(NULL);
}

> Final shared counter value: 14765 | o
> Final shared counter value: 16237 | Phreadtthreads thread
. . // Create two threads
> Flnal Shared Counte r va lue . l 2 5 8 3 pthread_create(&thread1, NULL, increment_counter, NULL);

pthread_create(&thread2, NULL, increment_counter, NULL);

// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

-J
-~J
J

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return O;

—]
—
~—/
N>~

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



State Diagrams

» A state diagram models the execution of n
concurrent execution flows as a trajectory
through an n-dimensional Cartesian space
(only uniprocessor!)

» For thread i the instructions (L;, U;, S;)
that manipulate the contents of the
shared variable cnt constitute a
critical section

> The instructions of a critical section must
be all executed by a single thread at a
time.

Asm code for thread i

movl (%rdi),%ecx
movl $0,%edx

cmpl ecx, hedx Hi: Head
) jge .L13
C code for thread i .LMu:wvl cntirip) oax L;: Load cnt
i o - S b s h R
for (C;t-(i,+.1 <niters; it++) - 1nel Yoax U;: Update cnt
: movl Yeax,cnt(Yrip) || Sit Store cnt
incl Yedx
cmpl Jecx, hedx - Tai
i1 L Ti: Tail
.L13:
Thread 2
A  §
 §
Sz
A
Uz
'Y
Ly
 §
Ha
= & Thread 1
H, Ly Uy S T

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



State Diagrams

10

> In order to obtain correct results, each
threads must have mutually exclusive
access to the shared variable while it is
executing instructions in the critical
section (mutual exclusion).

» A trajectory that skirts the unsafe
region will not cause run time errors
(safe trajectory).

» In order to guarantee correct execution,
we must synchronize threads so that they
take safe trajectories.

Asm code for thread i

movl (%rdi),%ecx
movl $0,%edx

cmpl Yecx, %hedx H;: Head
) jge .L13
C code for thread i 'Llll;ovl sty o L Load cat
for (C;t-?.,-‘.l <niters; i++) - incl °/,eaxw o U;: Update cnt
. movl Yeax,cnt(Yrip) || Si: Store cnt
incl Yedx
cmpl Jecx, hedx - Tai
T T;: Tail
.L13:
Thread 2
T, | Safe trajectory A 4
: e . °
S b Unsafe region A Unsafe
2 trajectory
Critical A A
section < Uz
wrt cnt E . = >
A A
Ly
A A
Hy
> - > Thread 1

3

J

Y

Critical section wrt cnt

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



The Critical Section Problem

11

» The critical section problem is a
fundamental synchronization problem in
computer science and operating
systems.

» It arises when multiple concurrent
processes or threads share a common
resource (such as memory, files, or
hardware devices) and need to access it
in an exclusive manner.

» The goal is to ensure that only one
process can execute its critical section
(the part of code that accesses the
shared resource) at any given time.

Thread 2

\ |
\ |

T, | Safe trajectory A

o o
s & Unsafe region A Unsafe
G trajectory

Critical A
section < Uz
wrt cnt

A

\
\

o £ > Thread 1
1

Critical section wrt cnt

)

@

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



The Critical Section Problem

Requirements:

Thread 2

\ |
\ |

A A

T, | Safe trajectory

» Mutual Exclusion: At most one
process can be in its critical section f .
simultaneously. s, : RhE=iR e T o
» Freedom from deadlock: If no oiea | g T )
process is in its critical section and e T
some processes want to enter, one o
of them should be allowed to enter. e S
> Bounded Waiting: There exists an S
Critical section wrt cnt
upper bound on the number of
times a process can wait to enter its

critical section.

\
\

12
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



The Critical Section Problem

The synchronization mechanism ensures
correctness.

» |t uses statements places before and after
the critical section, called preprotocol and
postprotocol, respectively.

» Assumption: assignment statements are
atomic statements, as are evaluations of
boolean conditions in control statements.

» An atomic statement is executed to
completion without the possibility of
interleaving/interrupt from another
thread.

13

global variables

p q
local variables local variables
loop forever loop forever
non-critical section non-critical section
Ly Preprotocol preprotocol
L critical section | L_critical section |
= postprotocol postprotocol

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C




Synchronization Pitfalls

Explanation:

» We have a shared global
variable shared counter.

» Two threads (threadl and thread2) increment this
counter independently.

» The critical section (increment operation) is not
protected by any synchronization mechanism (e.g.,
mutex or semaphore).

» As aresult, a data race occurs when both threads
simultaneously read and
modify shared counter.

> The final value of shared counter is
unpredictable due to the race condition.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
for (inti=0; i< 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;
}
pthread_exit(NULL);
}

int main() {
pthread_t threadl, thread?2;

// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);

// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return O;

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

—]
—
N



Synchronization Pitfalls

» To solve the synchronization pitfall in the previous
example, we need to introduce proper
synchronization mechanisms to protect the
critical section (the shared counter increment).

» Specifically, we’ll use a mutex (short for mutual
exclusion) to ensure that only one thread can
access the shared counter at a time.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
for (inti=0; i< 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;

}
pthread_exit(NULL);

}

int main() {
pthread_t threadl, thread2;

// Create two threads

pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);

// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

// Print the final value of the shared counter

printf("Final shared counter value: %d\n", shared_counter);

return O;

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

—]
—
N



Mutexes and Locks with Pthreads

» Specifically, we’ll use a mutex (short for mutual

exclusion) to ensure that only one thread can
access the shared counter at a time.

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable
pthread_mutex_t counter_mutex; // Mutex for synchronization

void* increment_counter(void* arg) {
for (inti=0;i<10000; ++i) {
// Acquire the mutex before accessing the shared counter

pthread_mutex_lock(&counter_mutex);
shared_counter++;

// Release the mutex after modifying the shared counter
pthread_mutex_unlock(&counter_mutex);

}
pthread_exit(NULL);

}

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C




Mutexes and Locks with Pthreads

» In main we now initialize the mutex (short for
mutual exclusion) to ensure that only one thread

can access the shared counter at a time

>Final shared counter value: 20000

Thread Safety and volatile:

» While volatile ensures proper reads and writes,
it does not provide thread safety

» It does not prevent data races or guarantee
atomicity

» For synchronization between threads, use
mutexes, semaphores, or other synchronization
primitives

int main() {
pthread_t threadl, thread2;

// Initialize the mutex
pthread_mutex_init(&counter_mutex, NULL);

// Create two threads
pthread_create(&threadl, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);

// Wait for both threads to finish

pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

// Clean up: Destroy the mutex
pthread_mutex_destroy(&counter_mutex);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return O;

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C




Synchronization Pitfalls

Why does this code give the incorrect result on a
uniprocessor?

» The OS will run threads concurrently: on a
uniprocessor instructions will be interleaved.

» Some of the interleaving ordering will produce the
correct results, others will not.

» What about a multiprocessor execution?

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
for (inti=0; i< 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;
}
pthread_exit(NULL);
}

int main() {
pthread_t threadl, thread?2;

// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);

// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return O;

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

—]
—
N



Example Solution: Dekker’s Algorithm

» The variables wantp and wantqg ensure mutual

exclusion. Algorithm 3.10: Dekker’s algorithm
. T boolean want false, want false
> Suppose p detects contention by finding wantp integerntzvmniT i A
== true (p3):it will consult the shared P q
variable turn, to check whether it is its turn loop forever loop forever
(turn —— 1) to insist on entering its critical pl:  non-critical section ql:  non-critical section
. p2:  wantp « true g2:  wantq < true
section. p3:  while wantq q3:  while wantp
> If so, it executes the loop at p3 and p4, called a P4 i S =2 e =
. . p5: wantp « false q5: wantq « false
busy-wait loop, until q resets wantgto false, o6: wait turn = 1 : wait turn = 2
either by terminating its critical section at g10 or pr: wantp — true qr: wantq « true
bv deferring in a5. p8: (* critical section q8: ( critical section
Y g 9 p9: | turn « 2 q9: | turn <1
» If not, p will reset wantp to false and defer to p10: | wantp « false ql0: { wantq « false

thread q, waiting until g changes the value of
turn after executing its critical section.

)

)

19 =

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



Semaphores

A semaphore ensures that only one process
can access the shared variable at a time.

We create a semaphore using semget and
initialize it with an initial value (e.g., 1).

Both the parent and child processes
use sem wait to wait for the semaphore
before entering the critical section.

q

#include <sys/sem.h>
#include <sys/ipc.h>

// Define a semaphore
int semid;

// Initialize the semaphore
void initSemaphore() {
key_t key = 1234; // Unique key for the semaphore
int nsems =1; // Number of semaphores in the set
semid = semget(key, nsems, IPC_CREAT | 0666);
if (semid < 0) {
perror("Semaphore creation failed");
exit(1);
}
// Set the initial value of the semaphore (e.g., 1)
semctl(semid, 0, SETVAL, 1);
}

// Perform the critical section operation

void criticalSection(int* sharedVar) {
(*sharedVar)++;
printf("Shared variable value: %d\n", *sharedVar);

}

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

7



Semaphores

In this example, we create two processes
(parent and child) that share a common
variable using a semaphore.

Both the parent and child processes
use sem wait to wait for the semaphore
before entering the critical section.

After performing the critical section
operation (incrementing the shared

variable), they release the semaphore
using sem_post.

P sem_wait(&semid); // Wait for the semaphore

J» sem_post(&semid); // Release the semaphore

int main() {
int sharedVar = 0;

// Initialize the semaphore
initSemaphore();

int pid = fork();

if (pid < 0) {
perror("Fork failed");
exit(1);

}else if (pid == 0) {
// Child process

printf("Child process entered critical section\n");
criticalSection(&sharedVar);

}else {
// Parent process
sem_wait(&semid); // Wait for the semaphore
printf("Parent process entered critical section\n");
criticalSection(&sharedVar);
sem_post(&semid); // Release the semaphore

}

return O;

}

21

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



Semaphores

Signaling Mechanism:

22

Semaphores work based on
signaling.

Two fundamental atomic
operations:

* Wait (P): Decrements the
semaphore value. If the value
becomes negative, the calling
thread waits (blocks).

e Signal (V): Increments the
semaphore value. If any
threads were waiting, one of
them is unblocked.

Advantages:

Multiple threads can access the critical section
simultaneously (controlled by the semaphore
value).

Semaphores are machine-independent.
Allows a specified number of processes to
enter (useful for limiting resources).

Common Use Cases:

Controlling access to a pool of resources (e.g.,
limiting the number of concurrent database
connections).

Implementing producer-consumer patterns.
Coordinating multiple threads or processes.



Demo
Race Condition & Synchronisation

» Three C programs to illustrate managing the race condition shown previously.
» A version in which no synchronization mechanisms are used
» An alternative version using sempahores
» An alternative version using mutexes

» Each program
» Creates two threads that each increment a shared counter 10,000 times
» Final counter value is printed
» Measures execution time for both individual threads and the overall
program

23



Demo
Race Condition & Synchronisation

» Race conditions produce inconsistent results.

» While semaphores offer greater flexibility and can be used for a variety of
synchronization tasks, they come with additional overhead that can make them
slower compared to mutexes for simple mutual exclusion scenarios.

» For tasks that require only mutual exclusion (binary), mutexes are generally the
preferred and more efficient choice.

24
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



OpenMP:
Part |

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



OpenMP Reference Material

>

26

Using OpenMP — The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,
Chapter 1

http://www.openmp.org/

Introduction to High Performance Computing for Scientists and Engineers,
Hager and Wellein, Chapter 6 & 7
High Performance Computing, Dowd and Severance, Chapter 11

Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.
Kumar

Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.
J.McDonald, R.Menon


http://www.openmp.org/

History of Concurrent Programming

Fork

» The concept of "fork" originated in Unix operating systems.

» Forking was a fundamental mechanism for multitasking in Unix.

» The fork() system call is used to create a new process by duplicating the existing process.

Threads

» As computing needs grew, the limitations of process-based concurrency became apparent,

particularly the overhead associated with creating and managing processes.

» Threads enabled finer-grained parallelism and improved performance for applications
requiring concurrent execution of tasks.

OpenMP

» OpenMP (Open Multi-Processing) is an APl that supports multi-platform shared memory
multiprocessing programming in C, C++, and Fortran.

» OpenMP uses compiler directives, library routines, and environment variables to control
parallelism.

27

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012



Shared Memory Parallel Programming

» Explicit thread programming is messy
> low-level primitives
» complex data scoping and initialization not easy to port
» significant amount of boiler-plate code
» used by system programmers, but .... application programmers have OpenMP!
» Many application codes can be supported by higher level constructs with the same
performance
» led to proprietary directive based approaches of Cray, SGI, Sun, etc.
» OpenMP is an API for shared memory parallel programming targeting Fortran, C and
C++
» standardizes the form of the proprietary directives
» avoids the need for explicitly setting up mutexes, condition variables, data scope,
and a good part of explicit initialization

@

28
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



OpenMIP

» Specifications maintained by OpenMP Architecture Review Board (ARB)
» members include AMD, Intel, Fujitsu, IBM, NVIDIA
» Versions 1.0 (Fortran '97, C’98), 1.1 and 2.0 (Fortran ‘00, C/C++ ’02), 2.5 (unified
Fortran and C, 2005), 3.0 (2008), 3.1 (2011), 4.0 (2013), 4.5 (2015), 5.0 (2018), 6.0
(2024)
» Comprises compiler directives, library routines and environment variables
» Cdirectives (case sensitive)
#pragma omp directive name [clause-list]
» library calls begin with omp_
vold omp set num threads (nthreads)
» environment variables begin with OMP_
export OMP NUM THREADS=4
» OpenMP requires compiler support
» set —fopenmp (gcc) or —qopenmp (icc) compiler flags

29



The Parallel Directive

» OpenMP uses a fork/join model, i.e. programs execute serially until
they encounter a parallel directive:
* this creates a group of threads
 the number of threads dependent on an environment variable or
set via function call
* the main thread becomes master with thread id 0

#pragma omp parallel [ clause - list ]
/* structured block */

» Each thread executes the structured block
» In C/C++ this is a brace-enclosed ({ code })sequence of statements and
declarations.

)

D)

30



The OpenMP
Execution Model

>

An OpenMP starts in serial mode with one thread
executing the serial code (master thread)

At the beginning of the parallel region additional
threads are created (forking from the master) by the
runtime system forming a thread team

All threads are active in the parallel regions, executing
the program in parallel.

At the end of the parallel region threads are joined,
with only the master continuing through the serial
portion.

This is called the fork-join model.

master thread

_ parallel
region

join "
_ sernal
region

—

- :_____:_;_.5._:___‘__-_‘:;-_;;;‘__\ team of
threads

31

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



The OpenMP

> Because of the join operation, the end of the
parallel region is an implicit synchronization point
(barrier).

master thread
Execution Model |
fork 7 )
o ~ parallel
» The number of threads execution in the parallel region
region can be set through the OMP NUM THREADS
environment variable. . Y,
join -
> If the number of threads need to be more dynamic, _ serial
the omp set num threads may be used prior to a region
parallel region.
> An alternative is to use the num threads<nt> T —
clause on the parallel directive. =, _team of
threads

32

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



The OpenMP
Memory Model

» Underlying the OpenMP standard is the
pthreads memory model, but the distinction
between private and shared is clearer.

» Whether a variable is private or shared as well as
their initialization can be defined by default rules

» These can also be explicitly controlled through
appropriate clauses on a construct.

» It is recommended to not rely on the default
rules and explicitly label or “scope" variables.

33

A PROVIDER ID: PRV12002 (AUSTRALIAN UNIVEI

RSITY) CRICOS PROVIDER CODE: 0012(



The OpenMP
Memory Model

Private and Shared Variables

» Private variables can be accessed only by the owning
thread, no other thread may interfere.

» Threads may even use the same name for a private
variable without the risk of any conflict.

> Each thread has read and write access to the same
shared variable, that is only one instance of a given
shared variable exists.

» Global or static variables are shared by default.

34

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



The OpenMP
Memory Model

Default Rules

» \Variables declared outside the parallel region are
shared by default.

» Global and static variables are also shared by default.

» \Variables declared inside the parallel region are
private by default.

il

-

ETr

35

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

o

¢
N
=



Data Sharing Clauses

Theprivate (shared) clause may be used to
make a variable thread private (shared).

One needs to be careful with initialization.

The firstprivate clause guarantees that all
threads have a pre-initialized copy of a variable

The default clause is used to give a default data
sharing attribute (none, shared, private)to
all variables.

When default (none) is used, the programmer is
forced to specify data-sharing attributes for all
variables in the construct.

int x = 5; int y = 20;

int z[ NUM THREADS ] = {0};

# pragma omp parallel default (none ) shared ( z)
private (x) firstprivate (V)

{

x = 10; // x is undefined on entry, but now set
to 10

z[ omp get thread num ()] = omp get thread num ();

int w = x + y+ z[omp get thread num () ]; // y pre
- initialized to a value of 20

y = 30 // firstprivate var may be modified
}

36

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C




Data Sharing
Attributes

Default Rules

» Variables declared outside the parallel
region are shared by default.

> Global and static variables are also
shared by default.

» Variables declared inside the parallel
region are private by default.

/

F

int g = 0; // g
int main () {

is shared

int 1 = 0; // 1 is shared

static int a =

7; // a is shared

# pragma omp parallel

{

int b = a + 1

}

return 0O;

}

+ g; // b is private

37

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C




OpenMP:The Work-Sharing Directives

» Used to distribute work among threads in a team.

» They specify the way the work has to be distributed among threads.

» Work-sharing directive must bind to a parallel region, otherwise is simply ignored.

» Work-sharing constructs do not have a barrier at entry.

» By default, a barrier is implemented at the end of the work-sharing region. The
programmer can suppress the barrier with use of the nowaitclause.

| Functionality

| Syntax in C/C++

Syntax in Fortran |

Distribute iterations
over the threads

#pragma omp for

ISomp do

Distribute independent
work units

#pragma omp sections

ISomp sections

Only one thread executes
the code block

#pragma omp single

I$omp single

Parallelize array-syntax

I3omp workshare

38

)

@

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



The for Work-Sharing Directives

Used in conjunction with parallel directive to partition the for loop

immediately afterwards
» The loop index (i) is made private by default

» Only two directives plus the sequential code (code is easy to read/maintain)

» Limited to loops where number of iterations can be counted

# pragma omp parallel shared ( n)
{
# pragma omp for
for (1 =0; 1 < n; 1 ++) {
printf (" Thread % d , iteration % d\ n",
omp get thread num , 1);
}
} /* End of parallel region */

There is implicit synchronization at the end of the loop
» Canadd a nowait clause to prevent synchronization

39

A PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012



The for Work-Sharing Directives

40

The order in which threads execute is not
predictable (OS scheduled).

The way to map iterations to threads can
be specified by the programmer (see later
scheduleclause).

If the programmer does not specify the
mapping between threads and iterations,

the compiler decides which strategy to use.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

P, NN W W o O o

executes
executes
executes
executes
executes
executes
executes
executes
executes

loop
loop
loop
loop
loop
loop
loop
loop
loop

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

= W o 01 00 N N — O



The sections Work-Sharing Directives

» Consider partitioning of fixed number of
tasks across threads

» Each section must be a structured block that
is independent from the other sections.
» Separate threads will run taskA and taskB

» lllegal to branch in or out of section blocks

Note:

» Much less common than for loop
partitioning

» Explicit programming naturally limits
number of threads (scalability)

> Potential load imbalance

# pragma omp parallel

{

}

# pragma omp sections

{

# pragma omp section
task A ()

# pragma omp section
task B ()

} /* End of sections block */

/* End of parallel region */

0

_— ———
—
=

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



The single Work-Sharing Directives

» This directive specifies that only one thread must execute the
code in the structured block following it.

> It does not state which thread should execute the code.

# pragma omp parallel shared ( a, b, n)
{
# pragma omp single
{
a = 10;
} /* A barrier is automatically inserted here */
# pragma omp for
for (1 = 0; 1 < n; ++1i)
{
bl 1] = a;
}/* Another barrier is automatically inserted here */

42

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C



Combined parallel Work-Sharing Directives

» When there is only one work-
sharing directive it can be
combined with the parallel
one to improve readability.

» Only clauses that are allowed by
both the parallel and the
specific work-share directive are
allowed, otherwise the code is
illegal.

» The compiler may optimize code
further (e.g. remove redundant
barriers).

43

 ——

’ Full version

| Combined construct

F#pragma omp parallel

#pragma omp parallel for

{ for-loop
F#pragma omp for
for-loop
}
#pragma omp parallel #pragma omp parallel sections
{ {
F#pragma omp sections [#pragma omp section ]
{
[#pragma omp section ] structured block
structured block [#pragma omp section
[#pragma omp section structured block ]
structured block ] )
. }
}
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

@



