COMPA4300 - Course Update

» Quiz 2 released 18 April
» Must be completed by Monday 28/04/2025, 11:55PM.
» Will cover lectures 7-13

» Assighment 2
» Will be released on 24 April
» Due 26/05/2025, 11:55PM
» Start early

SHARED MEMORY PARALLEL COMPUTING
THREAD SYNCRONIZATION

References

» Chapter 12 from Computer Systems A Programmer’s
Perspective, Third Edition, Randal E. Bryant and
David R. O’Hallaron, Pearson Education Heg USA,
ISBN 9781292101767.

» Programming with POSIX Threads, David R.
Butenhof, Addison-Wesley Professional, ISBN-13 :
978-0201633924.

v

\

\4

DEMO
Pthreads based Concurrency

Pthreads have low creation overhead

Pthreads allows rapid switching between threads
Pthreads can deliver excellent weak and strong scaling
Pthreads do not require message passing

Accessing shared data requires careful control

Quick Review

Why threads tend to have higher efficiency than processes in

shared-memory parallelization?

What is the main risk of using shared memory address space?

Synchronization Pitfalls

What do you expect the code is going
to print when executed on a single
processor?

@

Synchronization Pitfalls

What do you expect the code is going
to print when executed on a
multiprocessor?

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter{void* arg) {
for (int i = 0; i < 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;

}
pthread_exit(NULL);
}
int main() {
pthread_t thread1, thread2;
// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);
// Wait for both threads to finish
pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return 0;

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
for (int i = 0; i < 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;

}
pthread_exit(NULL);
int main() {
pthread_t thread1, thread2;
// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);
// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return 0;

Synchronization Pitfalls

Results:

> Final shared counter value: 14765
> Final shared counter value: 16237
> Final shared counter value: 12583

-~J
-~J
-~J

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
for (int i = 0; i < 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;

}
pthread_exit(NULL);
int main() {
pthread_t thread1, thread2;
// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);
// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return 0;

State Diagrams State Diagrams

Asm code for thread i

movl (%rdi),%ecx
movl $0,%edx
»> A state diagram models the execution of n e b s » In order to obtain correct results, each . i [L"‘ b
. R movl (hrdi) , hecx B code for thread i oadcat
concurrent execution flows as a trajectory o sk [LH, Head threads must have mutually exclusive R P R
through an n-dimensional Cartesian space Coode ortressi i] o access to the shared variable while it is s I
. for (1=0; i <niters; i++) ’;‘;’K ‘(Z;x hrip) heax| L () Update cnt capl Yiecx, fedx - Tai
(only uniprocessor!) i NN | ot executing instructions in the critical L e
oy [section (mutual exclusion).
> For thread i the instructions (L;, U;, S;) — Thread 2
that manipulate the contents of the Thead2 > A trajectory that skirts the unsafe 7, | sate taiectory t
shared variable cnt constitute a . - region will not cause run time errors I Uneatoregon | Unsafe
critical section : . T (safe trajectory). s 1 | wajectory
s T cacton { Us
. wrt cnt
» The instructions of a critical section must v _ T > In order to guarantee correct execution, L
b.e all executed by a single thread at a L we must synchronize threads so that they "
time.) - ’
H take safe trajectories. noL o s
o 5 m B T| Thread 1 %,—/
Critical section wrt cnt.
. ©
The Critical Section Problem The Critical Section Problem
» The critical section problem is a Requirements:
fundamental synchronization problem in S a2
:) rea rea
computer science and operating C e e » Mutual Exclusion: At most one et
systems. T, | Safetrajectory T - L. . 7,| Safe trajectory T
> . h itiol process can be in its critical section
It arises when multiple concurrent s o nete simultaneously. s Unsafe region nste
processes or threads share a common ot B > Freedom f deadlock: If o | "
resource (such as memory, files, or section 3 Lo ree 0"_‘ .r0|.'n e.a. ock: .no section o Uz
hardware devices) and need to access it . process is in its critical section and L
in an exclusive manner. . some processes want to enter, one
. H; H,
> The goal is to ensure that only one T] of them should be allowed to enter. BT I
process can execute its critical section S — » Bounded Waiting: There exists an —
Critical section wrt cnt. Critical section wrt cnt.
(the part of code that accesses the

upper bound on the number of
times a process can wait to enter its
critical section.

shared resource) at any given time.

The Critical Section Problem Synchronization Pitfalls [r=zm:

#include <stdlib.h>
#include <pthread.h>

The synchronization mechanism ensures global variables int shared_counter = 0; // Shared global variable
correctness. p q Explanation: void increment_counter{void arg)
local variables local variables for (inti=0; < 10000; ++i {
// Critical section: Increment the shared counter

>t uses. s.tatemeths places before and after loop forever loop forever > We have a shared global | Shored-counterss;

the critical section, called preprotocol and non-critcal section non-critical section variable shared counter. pthread_exit(NULL);

postprotocol, respectively. ey preprotocol preprotocol » Two threads (threadl and thread2) increment this !
> Assumption: assignment statements are tial section (ritical setion] counter independently. et threadt, thread?;

atomic statements, as are evaluations of postprotocol postprotocol > The critical section (|ncrem.ent.operat|on) is not 1 Create two threads

boolean conditions in control statements protected by any synchron|zat|on mechanism (e_g_' pthread_create(&thread1, NULL, increment_counter, NULL);

pthread_create(&thread2, NULL, increment_counter, NULL);
mutex or semaphore).

> An atomic statement is executed to > As aresult, a data race occurs when both threads e e "
completion without the possibility of simultaneously read and pthread_join{thread2, NULL)
interleaving/interrupt from another modify shared_counter. J1 rin the finl value of the shared counter
X —) printf("Final shared counter value: %d\n", shared_counter);
thread. > The final value of shared counter is

return 0;

unpredictable due to the race condition.

Synchronization Pitfalls e Mutexes and Locks with Pthreads

#include <pthread.h>

int shared_counter = 0; // Shared global variable

. #include <stdio.h>
> To solve the synchronization pitfall in the previous void increment_counter(void® arg) { tinclude <stdlib.h>
i for (inti=0; i< 10000; ++i) { t
example, we need to introduce proper e e the shared counter #include <pthread.h>
i i i hared ter++;
synchronlzatlon mechanisms to prOteCt the } shared_counterr int shared_counter = 0; // Shared global variable
critical section (the shared counter increment). pthread_exit(NULL); pthread_mutex_t counter_mutex; // Mutex for synchronization
}
— » Specifically, we’ll use a mutex (short for mutual Void* increment_counter(void* arg) {
= 7 int main| . . L B
> Specifically, we'll use a mutex (short for mutual pthread_t thread, thread2; exclusion) to ensure that only one thread can f°;/(':‘ i=0; 't: 1°°°t°? ’:'2(e the shared count
H . cquire the mutex before accessing the sharea counter
exclusion) to ensure that only one thread can) Create two threads access the shared counter at a time. > pthread_mutex_lock(&counter_mutex);
access the shared counter at a time. pthread_create(&thread1, NULL, increment_counter, NULL);

shared_counter++;
“~a // Release the mutex after modifying the shared counter

// Wait for both threads to finish pthread_mutex_unlock(&counter_mutex);
pthread_join(thread1, NULL); }
pthread_join(thread2, NULL); pthread_exit(NULL);

pthread_create(&thread2, NULL, increment_counter, NULL);

// Print the final value of the shared counter }
printf("Final shared counter value: %d\n", shared_counter);

return 0;

Mutexes and Locks with Pthreads

» In main we now initialize the mutex (short for
mutual exclusion) to ensure that only one thread
can access the shared counter at a time

>Final shared counter value: 20000

Thread Safety and volatile:

» While volatile ensures proper reads and writes,
it does not provide thread safety

» It does not prevent data races or guarantee
atomicity

» For synchronization between threads, use
mutexes, semaphores, or other synchronization
primitives

int main() {
pthread_t thread1, thread2;

// Initialize the mutex
pthread_mutex_init(&counter_mutex, NULL);

// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);

// Wait for both threads to finish
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);

"4, // Clean up: Destroy the mutex
pthread_mutex_destroy(&counter_mutex);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return 0;

Example Solution: Dekker’s Algorithm

>

The variables wantp and wantqg ensure mutual
exclusion.

Suppose p detects contention by finding wantp
== true (p3):it will consult the shared
variable turn, to check whether it is its turn
(turn == 1) to insist on entering its critical
section.

If so, it executes the loop at p3 and p4, called a
busy-wait loop, until q resets wantqgto false,
either by terminating its critical section at q10 or
by deferring in g5.

If not, p will reset wantp to false and defer to
thread g, waiting until g changes the value of
turn after executing its critical section.

Synchronization Pitfalls

Why does this code give the incorrect result on a
uniprocessor?

» The OS will run threads concurrently: on a
uniprocessor instructions will be interleaved.

» Some of the interleaving ordering will produce the
correct results, others will not.

» What about a multiprocessor execution?

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

int shared_counter = 0; // Shared global variable

void* increment_counter(void* arg) {
for (int i = 0; i < 10000; ++i) {
// Critical section: Increment the shared counter
shared_counter++;

}
pthread_exit(NULL);
}
int main() {
pthread_t thread1, thread2;
// Create two threads
pthread_create(&thread1, NULL, increment_counter, NULL);
pthread_create(&thread2, NULL, increment_counter, NULL);
// Wait for both threads to finish
pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

// Print the final value of the shared counter
printf("Final shared counter value: %d\n", shared_counter);

return 0;

Algorithm 3.10: Dekker's algorithm

boolean wantp « false, wantq « false
integer turn « 1

) q

pl:
p2:
p3:
pd:
p5:
p6:
pr:

loop forever loop forever

non-critical section ql: non-critical section
wantp < true q2 wantq < true
while wantq g3 while wantp
if turn = 2 q4: if tun = 1
wantp « false 95 wantq « false
await turn = 1 q6: await turn = 2
wantp « true q7: wantq « true

p8: (critical section q8: (" critical section
p9: | turn <2 q9: | turn <1
p10: | wantp < false q10: | wantq < false

Semaphores

A semaphore ensures that only one process
can access the shared variable at a time.

We create a semaphore using semget and
initialize it with an initial value (e.g., 1).

—_
Both the parent and child processes

use sem_wait to wait for the semaphore
before entering the critical section. _—

#include <sys/sem.h>
#include <sys/ipc.h>

// Define a semaphore
int semid;

// Initialize the semaphore
void initSemaphore() {
key_t key = 1234; // Unique key for the semaphore
intnsems =1; // Number of semaphores in the set
semid = semget(key, nsems, IPC_CREAT | 0666);
if (semid < 0) {
perror("Semaphore creation failed");
exit(1);

// Set the initial value of the semaphore (e.g., 1)
semctl(semid, 0, SETVAL, 1);
}

// Perform the critical section operation

void criticalSection(int* sharedVar) {
(*sharedVar)++;
printf("Shared variable value: %d\n", *sharedVar)y

Semaphores

In this example, we create two processes
(parent and child) that share a common

int main() {
int sharedVar = 0;

// Initialize the semaphore
initSemaphore();

Semaphores

Signaling Mechanism:
e Semaphores work based on

Advantages:

Multiple threads can access the critical section

variable using a semaphore. int pid = fork(); signaling. simultaneously (controlled by the semaphore
feid<op(= * Two fundamental atomic value).
) perror("Fork failed"); .) i
Both the parent and child processes exit(1); operations: * Semaphores are machine-independent.

use sem_wait to wait for the semaphore
before entering the critical section.

After performing the critical section
operation (incrementing the shared
variable), they release the semaphore
using sem_post.

}else if (pid == 0) {
// Child process
> sem_wait(& id); // Wait for the h
printf("Child process entered critical section\n");
criticalSection(&sharedVar);
> sem_post(&semid); // Release the semaphore
}else {
// Parent process
sem_wait(&semid); // Wait for the semaphore

printf("Parent process entered critical section\n");

criticalSection(&sharedVar);
sem_post(&semid); // Release the semaphore

}

return 0;

* Wait (P): Decrements the
semaphore value. If the value
becomes negative, the calling
thread waits (blocks).

* Signal (V): Increments the
semaphore value. If any
threads were waiting, one of
them is unblocked.

Allows a specified number of processes to
enter (useful for limiting resources).

Common Use Cases:

Controlling access to a pool of resources (e.g.,
limiting the number of concurrent database
connections).

Implementing producer-consumer patterns.
Coordinating multiple threads or processes.

Demo
Race Condition & Synchronisation

Demo
Race Condition & Synchronisation

» Three C programs to illustrate managing the race condition shown previously.
» A version in which no synchronization mechanisms are used
» An alternative version using sempahores
» An alternative version using mutexes

» Race conditions produce inconsistent results.

» While semaphores offer greater flexibility and can be used for a variety of
synchronization tasks, they come with additional overhead that can make them

» Each program . . .
slower compared to mutexes for simple mutual exclusion scenarios.

» Creates two threads that each increment a shared counter 10,000 times

» Final counter value is printed

» Measures execution time for both individual threads and the overall
program

» For tasks that require only mutual exclusion (binary), mutexes are generally the
preferred and more efficient choice.

History of Concurrent Programming

Fork

» The concept of "fork" originated in Unix operating systems.

» Forking was a fundamental mechanism for multitasking in Unix.

» The fork() system call is used to create a new process by duplicating the existing process.

Threads

» As computing needs grew, the limitations of process-based concurrency became apparent,
particularly the overhead associated with creating and managing processes.

» Threads enabled finer-grained parallelism and improved performance for applications
requiring concurrent execution of tasks.

OpenMP

» OpenMP (Open Multi-Processing) is an API that supports multi-platform shared memory
multiprocessing programming in C, C++, and Fortran.

» OpenMP uses compiler directives, library routines, and environment variables to control
parallelism.

OpenMP Reference Material

» Using OpenMP — The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,
Chapter 1

» http://www.openmp.org/

» Introduction to High Performance Computing for Scientists and Engineers,
Hager and Wellein, Chapter 6 & 7

» High Performance Computing, Dowd and Severance, Chapter 11

» Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.
Kumar

» Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.
J.McDonald, R.Menon

Shared Memory Parallel Programming

» Explicit thread programming is messy
» low-level primitives
» complex data scoping and initialization not easy to port
» significant amount of boiler-plate code
» used by system programmers, but application programmers have OpenMP!
» Many application codes can be supported by higher level constructs with the same
performance
» led to proprietary directive based approaches of Cray, SGI, Sun, etc.
» OpenMP is an API for shared memory parallel programming targeting Fortran, C and
C++
» standardizes the form of the proprietary directives
» avoids the need for explicitly setting up mutexes, condition variables, data scope,
and a good part of explicit initialization

OpenMP

» Specifications maintained by OpenMP Architecture Review Board (ARB)
» members include AMD, Intel, Fujitsu, IBM, NVIDIA
» Versions 1.0 (Fortran ’97, C’98), 1.1 and 2.0 (Fortran '00, C/C++’02), 2.5 (unified
Fortran and C, 2005), 3.0 (2008), 3.1 (2011), 4.0 (2013), 4.5 (2015), 5.0 (2018), 6.0

(2024)

» Comprises compiler directives, library routines and environment variables

» Cdirectives (case sensitive)

#pragma omp directive name

» library calls begin with omp_

[clause-1list]

void omp set num threads (nthreads)

» environment variables begin with OMP_
export OMP NUM THREADS=4

» OpenMP requires compiler support

» set —fopenmp (gcc) or —gopenmp (icc) compiler flags

»
The OpenMP master thread
Execution Model)
fork)
arallel
» An OpenMP starts in serial mode with one thread Lp)
executing the serial code (master thread) region
o . join 3
» At the beginning of the parallel region additional i
threads are created (forking from the master) by the _ serial
runtime system forming a thread team region
» All threads are active in the parallel regions, executing _
the program in parallel. e
= team of
> At the end of the parallel region threads are joined, threads
with only the master continuing through the serial
portion. l
» This is called the fork-join model.

=2

The Parallel Directive

» OpenMP uses a fork/join model, i.e. programs execute serially until

they encounter a parallel directive:
* this creates a group of threads

* the number of threads dependent on an environment variable or

set via function call
* the main thread becomes master with thread

id0

#pragma omp parallel [clause -
/* structured block */

list]

» Each thread executes the structured block

» In C/C++ this is a brace-enclosed ({ code })sequence of statements and

declarations.

The OpenMP
Execution Model

» The number of threads execution in the parallel
region can be set through the OMP_NUM THREADS
environment variable.

» If the number of threads need to be more dynamic,
the omp_set num threads may be used prior to a
parallel region.

» An alternative is to use the num threads<nt>
clause on the parallel directive.

» Because of the join operation, the end of the
parallel region is an implicit synchronization point
(barrier).

master thread

~

_ parallel
" region

_ serial
region

fork 7

join~"

=, team of
threads

The OpenMP The OpenMP
Memory Model Memory Model

» Underlying the OpenMP standard is the
pthreads memory model, but the distinction
between private and shared is clearer.

Private and Shared Variables

» Private variables can be accessed only by the owning
thread, no other thread may interfere.

» Whether a variable is private or shared as well as > .
their initialization can be defined by default rules Thr.eads may even use.the same name foraprivate
variable without the risk of any conflict.

» These can also be explicitly controlled through

- » Each thread has read and write access to the same
appropriate clauses on a construct.

shared variable, that is only one instance of a given
shared variable exists.

» It is recommended to not rely on the default
rules and explicitly label or “scope" variables. >

Global or static variables are shared by default.

The OpenMP Data Sharing Clauses
Memory Model

» Theprivate (shared) clause may be used to int x = 5; int y = 20;
make a variable thread private (shared). int z[NUM _THREADS] = {0};
pragma omp parallel default (none) shared (z)
Default Rules One needs to be careful with initialization. . private (x) firstprivate (y)
) . = 10; i defined try , but t
The firstprivate clause guarantees that all * . 10// *o4s undetined on entry ue o se
> Variables declared outside the parallel region are threads have a pre-initialized copy of a variable 2[omp_get_thread num ()] = omp_get_thread num ();
shared by default. » Thedefault clause is used to give a default data int w = x + y+ z[omp_get thread num ()]; // vy pre
- initialized to a value of 20
sharing attribute (none, shared, private)to
> Global and static variables are also shared by default. all variables. y = 30 // firstprivate var may be modified
}
» Whendefault (none) is used, the programmer is
. . . forced to specify data-sharing attributes for all
» Variables declared inside the parallel region are variables ir?theﬁéonstruct. €
private by default.

Data Sharing
Attributes

Default Rules

» Variables declared outside the parallel

region are shared by default.

> Global and static variables are also
shared by default.

» Variables declared inside the parallel
region are private by default.

by int g = 0; // g is shared

/ int main () {

int i = 0; // i is shared

static int a = 7; // a 1is shared

pragma omp parallel

{

int b =a + 1 + g; // b is private

/

}
return 0;

}

The for Work-Sharing Directives

Used in conjunction with parallel directive to partition the for loop

immediately afterwards
» The loop index (i) is made private by

default

» Only two directives plus the sequential code (code is easy to read/maintain)
» Limited to loops where number of iterations can be counted

pragma omp parallel shared (n)

{

pragma omp for

for (1 =0; 1 <n; 1 ++) {
printf (" Thread % d , iteration

omp_get_thread num , i)

}

} /* End of parallel region */

% d\ n",
;

OpenMP:The Work-Sharing Directives

Used to distribute work among threads in a team.

They specify the way the work has to be distributed among threads.

Work-sharing constructs do not have a barrier at entry.

>
>
» Work-sharing directive must bind to a parallel region, otherwise is simply ignored.
>
>

By default, a barrier is implemented at the end of the work-sharing region. The

programmer can suppress the barrier with use of the nowaitclause.

Functionality

Syntax in C/C++

Syntax in Fortran

Distribute iterations
over the threads

#pragma omp for

!Somp do

Distribute independent
work units

F#£pragma omp sections

I$Somp sections

Only one thread executes
the code block

#£pragma omp single

ISomp single

Parallelize array-syntax

!$Somp workshare

» The order in which threads execute is not
predictable (OS scheduled).

» The way to map iterations to threads can
be specified by the programmer (see later
schedule clause).

» If the programmer does not specify the
mapping between threads and iterations,

the compiler decides which strategy to use.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

There is implicit synchronization at the end of the loop
» Canadd a nowait clause to prevent synchronization

39

0 executes
0 executes
0 executes
3 executes
3 executes
2 executes
2 executes
1 executes
1 executes

loop
loop
loop
loop
loop
loop
loop
loop
loop

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

S W oy o1 oo NN - O

The sections Work-Sharing Directives

» Consider partitioning of fixed number of
tasks across threads

» Each section must be a structured block that
is independent from the other sections.

» Separate threads will run taskA and taskB

» lllegal to branch in or out of section blocks

Note:

» Much less common than for loop
partitioning

» Explicit programming naturally limits
number of threads (scalability)

» Potential load imbalance

pragma omp parallel
{
pragma omp sections
{
pragma omp section
task A ()

pragma omp section
task B ()

} /* End of sections block */

} /* End of parallel region */

Combined parallel Work-Sharing Directives

» When there is only one work-
sharing directive it can be

H H Full version Combined construct

Comb|ned WIth the parallel #pragma omp parallel #pragma omp parallel for

i ili for-loop
one to improve readability. Ltoragma omp for

» Only clauses that are allowed by y Terieer

both the parallel and the #pragma omp parallel #pragma omp parallel sections
specific work-share directive are #| #pragma omp secti G#pragma omp section]
a"owed otherwise the Code is [#pragma omp section] structured block

’ structured block [#tpragma omp section
i”egaL [#pragma omp section structured block]

» The compiler may optimize code
further (e.g. remove redundant
barriers).

structured block]

S

The single Work-Sharing Directives

» This directive specifies that only one thread must execute the
code in the structured block following it.

» It does not state which thread should execute the code.

pragma omp parallel shared (a, b, n)
{
pragma omp single
{
a = 10;
} /* A barrier is automatically inserted here */
pragma omp for
for (1 =0; 1 < n; ++1)
{
bl i] = a;
}/* Another barrier is automatically inserted here */

