
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

COMP4300 - Course Update
Ø Assignment 1

Ø Marking nearly complete

Ø Assignment 2
Ø Released on 24 April
Ø Due 26/05/2025, 11:55PM
Ø Start early

1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2

OpenMP:
Part I

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Reference Material
Ø Using OpenMP – The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,

Chapter 1
Ø http://www.openmp.org/
Ø Introduction to High Performance Computing for Scientists and Engineers,

Hager and Wellein, Chapter 6 & 7
Ø High Performance Computing, Dowd and Severance, Chapter 11
Ø Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.

Kumar
Ø Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.

J.McDonald, R.Menon

3

http://www.openmp.org/

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

History of Concurrent Programming

4

Fork
Ø The concept of "fork" originated in Unix operating systems.
Ø Forking was a fundamental mechanism for multitasking in Unix.
Ø The fork() system call is used to create a new process by duplicating the existing process.

Threads
Ø As computing needs grew, the limitations of process-based concurrency became apparent,

particularly the overhead associated with creating and managing processes.
Ø Threads enabled finer-grained parallelism and improved performance for applications

requiring concurrent execution of tasks.

OpenMP
Ø OpenMP (Open Multi-Processing) is an API that supports multi-platform shared memory

multiprocessing programming in C, C++, and Fortran.
Ø OpenMP uses compiler directives, library routines, and environment variables to control

parallelism.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory Parallel Programming
Ø Explicit thread programming is messy

Ø low-level primitives
Ø complex data scoping and initialization not easy to port
Ø significant amount of boiler-plate code
Ø used by system programmers, but …. application programmers have OpenMP!

Ø Many application codes can be supported by higher level constructs with the same
performance
Ø led to proprietary directive based approaches of Cray, SGI, Sun, etc.

Ø OpenMP is an API for shared memory parallel programming targeting Fortran, C and
C++
Ø standardizes the form of the proprietary directives
Ø avoids the need for explicitly setting up mutexes, condition variables, data scope,

and a good part of explicit initialization
Ø When you compile an OpenMP program, the compiler often translates OpenMP

directives into pthreads calls to manage parallel execution
5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP
Ø Specifications maintained by OpenMP Architecture Review Board (ARB)

Ø members include AMD, Intel, Fujitsu, IBM, NVIDIA
Ø Versions 1.0 (Fortran ’97, C ’98), 1.1 and 2.0 (Fortran ’00, C/C++ ’02), 2.5 (unified

Fortran and C, 2005), 3.0 (2008), 3.1 (2011), 4.0 (2013), 4.5 (2015), 5.0 (2018), 6.0
(2024)

Ø Comprises compiler directives, library routines and environment variables
Ø C directives (case sensitive)

 #pragma omp directive_name [clause-list]
Ø library calls begin with omp_

 void omp_set_num_threads(nthreads)
Ø environment variables begin with OMP_

 export OMP_NUM_THREADS=4
Ø OpenMP requires compiler support

Ø set -fopenmp (gcc) or -qopenmp (icc) compiler flags

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Parallel Directive
Ø OpenMP uses a fork/join model, i.e. programs execute serially until

they encounter a parallel directive:
• this creates a group of threads
• the number of threads is dependent on an environment variable

or is set via function call
• the main thread becomes master with thread id 0

#pragma omp parallel [clause - list]
 /* structured block */

Ø Each thread executes the structured block
Ø In C/C++ this is a brace-enclosed ({ code }) sequence of statements and

declarations.
7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø An OpenMP starts in serial mode with one thread
executing the serial code (master thread)

Ø At the beginning of the parallel region additional
threads are created (forking from the master) by the
runtime system forming a thread team

Ø All threads are active in the parallel regions,
executing the program in parallel.

Ø At the end of the parallel region threads are
joined, with only the master continuing through
the serial portion.

Ø This is called the fork-join model.

8

The OpenMP
Execution Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø The number of threads execution in the parallel
region can be set through the OMP_NUM_THREADS
environment variable.

Ø If the number of threads need to be more dynamic,
the omp_set_num_threads may be used prior to a
parallel region.

Ø An alternative is to use the num_threads<nt>
clause on the parallel directive.

Ø Because of the join operation, the end of the
parallel region is an implicit synchronization point
(barrier).

9

The OpenMP
Execution Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Underlying the OpenMP standard is the
pthreads memory model, but the distinction
between private and shared is clearer.

Ø Whether a variable is private or shared as well as
their initialization can be defined by default rules

Ø These can also be explicitly controlled through
appropriate clauses on a construct.

Ø It is recommended to not rely on the default
rules and explicitly label or “scope" variables.

10

The OpenMP
Memory Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Private and Shared Variables
Ø Private variables can be accessed only by the owning

thread, no other thread may interfere.

Ø Threads may even use the same name for a private
variable without the risk of any conflict.

Ø Each thread has read and write access to the same
shared variable, that is only one instance of a given
shared variable exists.

Ø Global or static variables are shared by default.

11

The OpenMP
Memory Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Default Rules

Ø Variables declared outside the parallel region are
shared by default.

Ø Global and static variables are also shared by default.

Ø Variables declared inside the parallel region are
private by default.

12

The OpenMP
Memory Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø The private (shared) clause may be used
to make a variable thread private (shared).

Ø One needs to be careful with initialization.

Ø The firstprivate clause guarantees that all
threads have a pre-initialized copy of a variable

Ø The default clause is used to give a default
data sharing attribute (none, shared,
private) to all variables.

Ø When default(none)is used, the
programmer is forced to specify data-sharing
attributes for all variables in the construct.

13

Data Sharing Clauses
int x = 5; int y = 20;
int z[NUM_THREADS] = {0};
pragma omp parallel default (none) shared (z)

private (x) firstprivate (y)
{
x = 10; // x is undefined on entry , but now set

to 10
z[omp_get_thread_num ()] = omp_get_thread_num ();
int w = x + y+ z[omp_get_thread_num ()]; // y pre

- initialized to a value of 20
...
y = 30 // firstprivate var may be modified
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Default Rules

Ø Variables declared outside the parallel
region are shared by default.

Ø Global and static variables are also
shared by default.

Ø Variables declared inside the parallel
region are private by default.

14

Data Sharing
Attributes

int g = 0; // g is shared
int main (){
int i = 0; // i is shared
static int a = 7; // a is shared
pragma omp parallel
{
int b = a + i + g; // b is private
...

}
return 0;
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP:The Work-Sharing Directives
Ø Used to distribute work among threads in a team.
Ø They specify the way the work has to be distributed among threads.
Ø Work-sharing directive must bind to a parallel region, otherwise is simply ignored.

Ø Work-sharing constructs do not have a barrier at entry.
Ø By default, a barrier is implemented at the end of the work-sharing region. The

programmer can suppress the barrier with use of the nowait clause.

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The for Work-Sharing Directives
Used in conjunction with parallel directive to partition the for loop
immediately afterwards
Ø The loop index (i) is made private by default
Ø Only two directives plus the sequential code (code is easy to read/maintain)
Ø Limited to loops where number of iterations can be counted

There is implicit synchronization at the end of the loop
Ø Can add a nowait clause to prevent synchronization

pragma omp parallel shared (n)
{
pragma omp for
for (i = 0; i < n; i ++) {
 printf (" Thread % d , iteration % d\ n",
 omp_get_thread_num , i);
 }
} /* End of parallel region */

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The for Work-Sharing Directives

Ø The order in which threads execute is not
predictable (OS scheduled).

Ø The way to map iterations to threads can
be specified by the programmer (see later
schedule clause).

Ø If the programmer does not specify the
mapping between threads and iterations,
the compiler decides which strategy to use.

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The sections Work-Sharing Directives
Ø Consider partitioning of fixed number of

tasks across threads
Ø Each section must be a structured block that

is independent from the other sections.
Ø Separate threads will run taskA and taskB
Ø Illegal to branch in or out of section blocks

Note:
Ø Much less common than for loop

partitioning
Ø Explicit programming naturally limits

number of threads (scalability)
Ø Potential load imbalance

pragma omp parallel
{
 # pragma omp sections
 {
 # pragma omp section
 task A ()

 # pragma omp section
 task B ()

 } /* End of sections block */

} /* End of parallel region */

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The single Work-Sharing Directives
Ø This directive specifies that only one thread must execute the

code in the structured block following it.
Ø It does not state which thread should execute the code.

pragma omp parallel shared (a, b, n)
{
 # pragma omp single
 {
 a = 10;
 } /* A barrier is automatically inserted here */
 # pragma omp for
 for (i = 0; i < n; ++i)
 {
 b[i] = a;
 }/* Another barrier is automatically inserted here */
}

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Combined parallel Work-Sharing Directives
Ø When there is only one work-

sharing directive it can be
combined with the parallel
one to improve readability.

Ø Only clauses that are allowed by
both the parallel and the
specific work-share directive are
allowed, otherwise the code is
illegal.

Ø The compiler may optimize code
further (e.g. remove redundant
barriers).

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Demo
OpenMP – Pi calculation

21

Ø Monte Carlo Pi calculation code
Ø Get the number of threads from the environment variable OMP_NUM_THREADS
Ø Detailed performance information:

Ø Total Execution Time
Ø Initialization Time
Ø Computation Time
Ø Finalization Time

Ø Each timing section uses omp_get_wtime() which is thread-safe and provides
high-resolution timing information appropriate for OpenMP applications

Ø At the end, the code calculates and displays:
Ø Speedup = Sequential Time / Parallel Time
Ø Parallel Efficiency = Speedup / Number of Threads

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Demo
OpenMP – Pi calculation

22

Ø Monte Carlo Pi calculation code scales well using OpenMP

Ø Adding more threads than processors delivers better performance for this
problem.
Ø Thread switching overhead is low.

Ø Code changes are minimal: -

#pragma omp parallel for firstprivate(x, y, z) reduction(+:count)

