COMP4300 - Course Update

» Assignment 1
» Marking nearly complete

» Assignment 2
> Released on 24 April
» Due 26/05/2025, 11:55PM
» Start early

OpenMP:
Part |

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Reference Material

>

Using OpenMP — The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,
Chapter 1

http://www.openmp.org/

Introduction to High Performance Computing for Scientists and Engineers,
Hager and Wellein, Chapter 6 & 7
High Performance Computing, Dowd and Severance, Chapter 11

Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.
Kumar

Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.
J.McDonald, R.Menon

http://www.openmp.org/

History of Concurrent Programming

Fork

» The concept of "fork" originated in Unix operating systems.

» Forking was a fundamental mechanism for multitasking in Unix.

» The fork() system call is used to create a new process by duplicating the existing process.

Threads

» As computing needs grew, the limitations of process-based concurrency became apparent,

particularly the overhead associated with creating and managing processes.

» Threads enabled finer-grained parallelism and improved performance for applications
requiring concurrent execution of tasks.

OpenMP

» OpenMP (Open Multi-Processing) is an APl that supports multi-platform shared memory
multiprocessing programming in C, C++, and Fortran.

» OpenMP uses compiler directives, library routines, and environment variables to control
parallelism.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012

Shared Memory Parallel Programming

» Explicit thread programming is messy
» low-level primitives
» complex data scoping and initialization not easy to port
» significant amount of boiler-plate code
» used by system programmers, but application programmers have OpenMP!
» Many application codes can be supported by higher level constructs with the same
performance
» led to proprietary directive based approaches of Cray, SGI, Sun, etc.
» OpenMP is an API for shared memory parallel programming targeting Fortran, C and
C++
» standardizes the form of the proprietary directives
» avoids the need for explicitly setting up mutexes, condition variables, data scope,
and a good part of explicit initialization
» When you compile an OpenMP program, the compiler often translates OpenMP
directives into pthreads calls to manage parallel execution =

OpenMIP

» Specifications maintained by OpenMP Architecture Review Board (ARB)
» members include AMD, Intel, Fujitsu, IBM, NVIDIA
» Versions 1.0 (Fortran '97, C’98), 1.1 and 2.0 (Fortran ‘00, C/C++ ’02), 2.5 (unified
Fortran and C, 2005), 3.0 (2008), 3.1 (2011), 4.0 (2013), 4.5 (2015), 5.0 (2018), 6.0
(2024)
» Comprises compiler directives, library routines and environment variables
» Cdirectives (case sensitive)
#pragma omp directive name [clause-list]
» library calls begin with omp_
vold omp set num threads (nthreads)
» environment variables begin with OMP_
export OMP NUM THREADS=4
» OpenMP requires compiler support
» set —fopenmp (gcc) or —qopenmp (icc) compiler flags

The Parallel Directive

» OpenMP uses a fork/join model, i.e. programs execute serially until
they encounter a parallel directive:
* this creates a group of threads
 the number of threads is dependent on an environment variable
or is set via function call
* the main thread becomes master with thread id 0

#pragma omp parallel [clause - list]
/* structured block */

» Each thread executes the structured block
» In C/C++ this is a brace-enclosed ({ code })sequence of statements and
declarations.

)

D)

master thread

The OpenMP
Execution Model

» An OpenMP starts in serial mode with one thread

fork

arallel
executing the serial code (master thread) - Pars
region
> At the beginning of the parallel region additional join -~
threads are created (forking from the master) by the _ serial
runtime system forming a thread team ~ region
» All threads are active in the parallel regions,
executing the program in parallel. e
=, _team of
threads

» At the end of the parallel region threads are
joined, with only the master continuing through
the serial portion.

» This is called the fork-join model.

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The OpenMP

> Because of the join operation, the end of the
parallel region is an implicit synchronization point
(barrier).

master thread
Execution Model |
fork 7)
o ~ parallel
» The number of threads execution in the parallel region
region can be set through the OMP NUM THREADS
environment variable. . Y,
join -
> If the number of threads need to be more dynamic, _ serial
the omp set num threads may be used prior to a region
parallel region.
> An alternative is to use the num threads<nt> T —
clause on the parallel directive. =, _team of
threads

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The OpenMP
Memory Model

» Underlying the OpenMP standard is the
pthreads memory model, but the distinction
between private and shared is clearer.

» Whether a variable is private or shared as well as
their initialization can be defined by default rules

» These can also be explicitly controlled through
appropriate clauses on a construct.

» It is recommended to not rely on the default
rules and explicitly label or “scope" variables.

10

A PROVIDER ID: PRV12002 (AUSTRALIAN UNIVEI

RSITY) CRICOS PROVIDER CODE: 0012(

The OpenMP
Memory Model

Private and Shared Variables

» Private variables can be accessed only by the owning
thread, no other thread may interfere.

» Threads may even use the same name for a private
variable without the risk of any conflict.

> Each thread has read and write access to the same
shared variable, that is only one instance of a given
shared variable exists.

» Global or static variables are shared by default.

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The OpenMP
Memory Model

Default Rules

» \Variables declared outside the parallel region are
shared by default.

» Global and static variables are also shared by default.

» \Variables declared inside the parallel region are
private by default.

il

-

ETr

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

o

¢
N
=

Data Sharing Clauses

» Theprivate (shared) clause may be used
to make a variable thread private (shared).

> One needs to be careful with initialization.

» The firstprivate clause guarantees that all
threads have a pre-initialized copy of a variable

» The default clause is used to give a default
data sharing attribute (none, shared,
private)to all variables.

» Whendefault (none)is used, the
programmer is forced to specify data-sharing
attributes for all variables in the construct.

int x = 5;
int z[NUM THREADS] =
pragma omp parallel default (none)
private (x)

{

}

x = 10;

z[omp get thread num ()] =
int w = x + y+ z[omp get thread num ()];

y

int y = 20;

{0}

shared (z)
firstprivate (vy)

// x is undefined on entry , but now set
to 10

omp get thread num ();

// y pre
- initialized to a wvalue of 20

30 // firstprivate var may be modified

13

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Data Sharing
Attributes

Default Rules /I’ int g = 0; // g is shared
int main () {
’//// int 1 = 0; // 1 is shared
static int a = 7; // a is shared

» Variables declared outside the parallel
pragma omp parallel

region are shared by default. {
int b =a + 1+ g; // b is private
» Global and static variables are also }t .
recturn ’
shared by default.)

» Variables declared inside the parallel
region are private by default.

14
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP:The Work-Sharing Directives

» Used to distribute work among threads in a team.

» They specify the way the work has to be distributed among threads.

» Work-sharing directive must bind to a parallel region, otherwise is simply ignored.

» Work-sharing constructs do not have a barrier at entry.

» By default, a barrier is implemented at the end of the work-sharing region. The
programmer can suppress the barrier with use of the nowaitclause.

| Functionality

| Syntax in C/C++

Syntax in Fortran |

Distribute iterations
over the threads

#pragma omp for

ISomp do

Distribute independent
work units

#pragma omp sections

ISomp sections

Only one thread executes
the code block

#pragma omp single

I$omp single

Parallelize array-syntax

I3omp workshare

15

)

@

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The for Work-Sharing Directives

Used in conjunction with parallel directive to partition the for loop

immediately afterwards
» The loop index (i) is made private by default

» Only two directives plus the sequential code (code is easy to read/maintain)

» Limited to loops where number of iterations can be counted

pragma omp parallel shared (n)
{
pragma omp for
for (1 =0; 1 < n; 1 ++) {
printf (" Thread % d , iteration % d\ n",
omp get thread num , 1);
}
} /* End of parallel region */

There is implicit synchronization at the end of the loop
» Canadd a nowait clause to prevent synchronization

16

A PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012

The for Work-Sharing Directives

17

The order in which threads execute is not
predictable (OS scheduled).

The way to map iterations to threads can
be specified by the programmer (see later
scheduleclause).

If the programmer does not specify the
mapping between threads and iterations,

the compiler decides which strategy to use.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

P, NN W W o O o

executes
executes
executes
executes
executes
executes
executes
executes
executes

loop
loop
loop
loop
loop
loop
loop
loop
loop

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

= W o 01 00 N N — O

The sections Work-Sharing Directives

» Consider partitioning of fixed number of
tasks across threads

» Each section must be a structured block that
is independent from the other sections.
» Separate threads will run taskA and taskB

» lllegal to branch in or out of section blocks

Note:

» Much less common than for loop
partitioning

» Explicit programming naturally limits
number of threads (scalability)

> Potential load imbalance

pragma omp parallel
{

pragma omp sections

{

pragma omp section

task A ()

pragma omp section

task B ()

} /* End of sections block */

} /* End of parallel region */

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVE

RSITY) CRICOS

PROVIDER CODE

E: 00120C

_— ———
—
=

The single Work-Sharing Directives

» This directive specifies that only one thread must execute the
code in the structured block following it.

> It does not state which thread should execute the code.

pragma omp parallel shared (a, b, n)
{
pragma omp single
{
a = 10;
} /* A barrier is automatically inserted here */
pragma omp for
for (1 = 0; 1 < n; ++1i)
{
bl 1] = a;
}/* Another barrier is automatically inserted here */

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Combined parallel Work-Sharing Directives

» When there is only one work-
sharing directive it can be
combined with the parallel
one to improve readability.

» Only clauses that are allowed by
both the parallel and the
specific work-share directive are
allowed, otherwise the code is
illegal.

» The compiler may optimize code
further (e.g. remove redundant
barriers).

20

 ——

’ Full version

| Combined construct

F#pragma omp parallel

#pragma omp parallel for

{ for-loop
F#pragma omp for
for-loop
}
#pragma omp parallel #pragma omp parallel sections
{ {
F#pragma omp sections [#pragma omp section]
{
[#pragma omp section] structured block
structured block [#pragma omp section
[#pragma omp section structured block]
structured block])
. }
}
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

@

Demo
OpenMP - Pi calculation

» Monte Carlo Pi calculation code
» Get the number of threads from the environment variable OMP NUM THREADS

» Detailed performance information:

» Total Execution Time
» Initialization Time

» Computation Time
» Finalization Time
» Each timing section uses omp_get_wtime() which is thread-safe and provides
high-resolution timing information appropriate for OpenMP applications

» At the end, the code calculates and displays:
» Speedup = Sequential Time / Parallel Time
» Parallel Efficiency = Speedup / Number of Threads

21

Demo
OpenMP - Pi calculation

» Monte Carlo Pi calculation code scales well using OpenMP

» Adding more threads than processors delivers better performance for this
problem.
» Thread switching overhead is low.

» Code changes are minimal: -

fpragma omp parallel for firstprivate(x, y, z) reduction (+:count)

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012

