COMPA4300 - Course Update

» Assignment 1
» Marking nearly complete

» Assignment 2
» Released on 24 April
» Due 26/05/2025, 11:55PM
» Start early

OpenMP Reference Material

>

Using OpenMP - The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,
Chapter 1

http://www.openmp.org/

Introduction to High Performance Computing for Scientists and Engineers,
Hager and Wellein, Chapter 6 & 7

High Performance Computing, Dowd and Severance, Chapter 11

Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.
Kumar

Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.
J.McDonald, R.Menon

).

OpenMP:
Part |

History of Concurrent Programming

Fork

» The concept of "fork" originated in Unix operating systems.

» Forking was a fundamental mechanism for multitasking in Unix.

» The fork() system call is used to create a new process by duplicating the existing process.

Threads

» As computing needs grew, the limitations of process-based concurrency became apparent,
particularly the overhead associated with creating and managing processes.

» Threads enabled finer-grained parallelism and improved performance for applications
requiring concurrent execution of tasks.

OpenMP

» OpenMP (Open Multi-Processing) is an API that supports multi-platform shared memory
multiprocessing programming in C, C++, and Fortran.

» OpenMP uses compiler directives, library routines, and environment variables to control
parallelism.

Shared Memory Parallel Programming

» Explicit thread programming is messy
» low-level primitives
» complex data scoping and initialization not easy to port
» significant amount of boiler-plate code
» used by system programmers, but application programmers have OpenMP!
» Many application codes can be supported by higher level constructs with the same
performance
» led to proprietary directive based approaches of Cray, SGI, Sun, etc.
» OpenMP is an API for shared memory parallel programming targeting Fortran, C and
C++
» standardizes the form of the proprietary directives
» avoids the need for explicitly setting up mutexes, condition variables, data scope,
and a good part of explicit initialization
» When you compile an OpenMP program, the compiler often translates OpenMP

directives into pthreads calls to manage parallel execution =
= —

The Parallel Directive

» OpenMP uses a fork/join model, i.e. programs execute serially until
they encounter a parallel directive:
e this creates a group of threads
* the number of threads is dependent on an environment variable
or is set via function call
e the main thread becomes master with thread id 0

#pragma omp parallel [clause - list]
/* structured block */

» Each thread executes the structured block
» In C/C++ this is a brace-enclosed ({ code })sequence of statements and
declarations.

OpenMP

» Specifications maintained by OpenMP Architecture Review Board (ARB)
» members include AMD, Intel, Fujitsu, IBM, NVIDIA
» Versions 1.0 (Fortran ’97, C’98), 1.1 and 2.0 (Fortran '00, C/C++’02), 2.5 (unified
Fortran and C, 2005), 3.0 (2008), 3.1 (2011), 4.0 (2013), 4.5 (2015), 5.0 (2018), 6.0

(2024)

» Comprises compiler directives, library routines and environment variables

» Cdirectives (case sensitive)
#pragma omp directive name
» library calls begin with omp_

[clause-1list]

vold omp set num_ threads (nthreads)

» environment variables begin with OMP_
export OMP NUM THREADS=4
» OpenMP requires compiler support

» set -fopenmp (gcc) or —gopenmp (icc) compiler flags

The OpenMP
Execution Model

» An OpenMP starts in serial mode with one thread
executing the serial code (master thread)

» At the beginning of the parallel region additional
threads are created (forking from the master) by the
runtime system forming a thread team

» All threads are active in the parallel regions,
executing the program in parallel.

» At the end of the parallel region threads are
Jjoined, with only the master continuing through
the serial portion.

» This is called the fork-join model.

=

L

|

master thread
1)) Sad
_ parallel
" region
join -~ T
_ serial
region

=, team of
threads

The OpenMP
Execution Model

» The number of threads execution in the parallel
region can be set through the OMP_NUM THREADS
environment variable.

» If the number of threads need to be more dynamic,
the omp_set num_threads may be used prior to a
parallel region.

> An alternative is to use the num_threads<nt>
clause on the parallel directive.

» Because of the join operation, the end of the
parallel region is an implicit synchronization point
(barrier).

l master thread

fork -~

l

join -~

l
1
1

~

——————
.
——

-~

parallel
region

serial
region

team of]
threads

The OpenMP
Memory Model

Private and Shared Variables

» Private variables can be accessed only by the owning
thread, no other thread may interfere.

» Threads may even use the same name for a private
variable without the risk of any conflict.

» Each thread has read and write access to the same
shared variable, that is only one instance of a given
shared variable exists.

» Global or static variables are shared by default.

The OpenMP
Memory Model

» Underlying the OpenMP standard is the
pthreads memory model, but the distinction
between private and shared is clearer.

» Whether a variable is private or shared as well as
their initialization can be defined by default rules

» These can also be explicitly controlled through
appropriate clauses on a construct.

» It is recommended to not rely on the default
rules and explicitly label or “scope" variables.

The OpenMP
Memory Model

Default Rules

» Variables declared outside the parallel region are
shared by default.

» Global and static variables are also shared by default.

» Variables declared inside the parallel region are
private by default.

>

Data Sharing Clauses

Theprivate (shared) clause may be used
to make a variable thread private (shared).

One needs to be careful with initialization.

The firstprivate clause guarantees that all
threads have a pre-initialized copy of a variable

The default clause is used to give a default

int x = 5; int y = 20;

int z[NUM_THREADS] = {0};

pragma omp parallel default (none) shared (z)
private (x) firstprivate (y)

{

x = 10; // % is undefined on entry, but now set
to 10
z[omp_get_thread num ()] = omp_get_thread num ();

int w = x + y+ z[omp_get_thread num () 1; // y pre
- initialized to a wvalue of 20

y = 30 // firstprivate var may be modified

}

data sharing attribute (none, shared,
private)to all variables.

When default (none) is used, the
programmer is forced to specify data-sharing
attributes for all variables in the construct.

OpenMP:The Work-Sharing Directives

>

>
>
>
>

programmer can suppress the barrier with use

Used to distribute work among threads in a team.

They specify the way the work has to be distributed among threads.
Work-sharing directive must bind to a parallel region, otherwise is simply ignored.
Work-sharing constructs do not have a barrier at entry.

By default, a barrier is implemented at the end of the work-sharing region. The

of the nowaitclause.

Functionality Syntax in C/C++

Syntax in Fortran

Distribute iterations
over the threads

##pragma omp for

Somp do

Distribute independent
work units

#£pragma omp sections

1$Somp sections

Only one thread executes
the code block

#pragma omp sin;

gle Somp single

Parallelize array-syntax

!Somp workshare

Data Sharing
Attributes

Default Rules

/

» Variables declared outside the parallel
region are shared by default.

> Global and static variables are also
shared by default.

by int g = 0; // g is shared

int main () {
int i = 0; // i is shared
static int a = 7; // a 1is shared
pragma omp parallel
{
int b =a + 1 + g; // b is private

}
return 0;

}

» Variables declared inside the parallel
region are private by default.

The for Work-Sharing Directives

Used in conjunction with parallel directive to partition the for loop

immediately afterwards
» The loop index (i) is made private by default

» Only two directives plus the sequential code (code is easy to read/maintain)
» Limited to loops where number of iterations can be counted

pragma omp parallel shared (n)
{
pragma omp for
for (1 =0; 1 <n; 1 ++) {
printf (" Thread % d , iteration % d\ n",
omp_get_thread num , i);
}
} /* End of parallel region */

There is implicit synchronization at the end of the loop

» Canadd a nowait clause to prevent synchronization

The for Work-Sharing Directives The sections Work-Sharing Directives

» Consider partitioning of fixed number of #
. . pragma omp parallel
> The order in which threads execute is not Thread 0 executes loop iteration 0 tasks across threads {
predictable (OS scheduled). Thread O executes loop iteration 1 > Each section must be a structured block that # pragma omp sections
> The way to map iterations to threads can Thread 0 executes loop iteration 2 is independent from the other sections. {
befzﬂffd Tyth;:- programmer (see later Thread 3 executes loop iteration 7 > Separate threads will run taskA and taskB # pragzzkoip(?ectlon
schedule clause). . .
> Ifth d ¢ ifv th Thread 3 executes loop iteration 8 » lllegal to branch in or out of section blocks
€ programmer does not specily the Thread 2 executes loop iteration 5 4 oragma om tion
mapping between threads and iterations, Thread 2 tos 1 teration 6 pragma omp Sectio
the compiler decides which strategy to use. rea executes loop 1 era :!.on Note: task B ()
Thread 1 executes loop iteration 3 » Much less common than for loop
Thread 1 executes loop iteration 4 partitioning } /* End of sections block */
> -) -
Explicit programming naturally limits } /* End of parallel region */
number of threads (scalability)
] » Potential load imbalance -
= e

The single Work-Sharing Directives Combined parallel Work-Sharing Directives

» This directive specifies that only one thread must execute the » When there is only one work-
code in the structured block following it. sharing directive it can be
» It does not state which thread should execute the code. combined with the parallel Fullversion Caombined construck
#pragma omp parallel #pragma omp parallel for
pragma omp parallel shared (a, b, n) one to improve readability. e | { 4#pragma omp for forrioop
{] » Only clauses that are allowed by y oo
pragma omp Slngle bOth the paral lel and the #pragma omp parallel #pragma omp parallel sections
{ { {
a = 10; Specific Work-Sha re directive are — ?ﬁpragma omp sections [#pragma omp section]
} /* A barrier is automatically inserted here */ allowed, otherwise the code is [#pragma omp section] structured block
’ structured block [#pragma omp section
pragma omp for |||ega| [#pragma omp section structured block 1
for (1 =0; 1 < n; ++1) . structured block 1
{ » The compiler may optimize code y !
b[i] = a; further (e.g. remove redundant }
}/* Another barrier is automatically inserted here */ .
) barriers).

Demo
OpenMP - Pi calculation

» Monte Carlo Pi calculation code

Get the number of threads from the environment variable OMP_NUM THREADS
Detailed performance information:

» Total Execution Time

» Initialization Time

» Computation Time

» Finalization Time
Each timing section uses omp_get_wtime() which is thread-safe and provides
high-resolution timing information appropriate for OpenMP applications

» At the end, the code calculates and displays:

» Speedup = Sequential Time / Parallel Time
» Parallel Efficiency = Speedup / Number of Threads

Demo

OpenMP - Pi calculation

» Monte Carlo Pi calculation code scales well using OpenMP

» Adding more threads than processors delivers better performance for this

problem.
» Thread switching overhead is low.

» Code changes are minimal: -

#pragma omp parallel for firstprivate(x, y, 2z)

reduction (+:count)

