
TE
QS

A
PR

OV
ID

ER
 ID

:P
RV

12
00

2
(A

US
TR

AL
IA

N
UN

IV
ER

SI
TY

)
CR

IC
OS

PR

OV
ID

ER
 C

OD
E:

 0
01

20
C

SHARED MEMORY
PARALLEL COMPUTING
COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

APRIL 2024

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Logistics
Ø Attendance to the Lab sessions is highly encouraged. Most of the

practical aspects of the programming models are covered in the Labs.

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

3

OpenMP:
Part II

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

4

OpenMP:
Quick Demo

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Reference Material
Ø Using OpenMP – The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,

Chapter 1
Ø http://www.openmp.org/
Ø Introduction to High Performance Computing for Scientists and Engineers,

Hager and Wellein, Chapter 6 & 7
Ø High Performance Computing, Dowd and Severance, Chapter 11
Ø Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.

Kumar
Ø Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.

J.McDonald, R.Menon

5

http://www.openmp.org/

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The for Work-Sharing Directives

Ø The order in which threads execute is not
predictable (OS scheduled).

Ø The way to map iterations to threads can
be specified by the programmer (see later
schedule clause).

Ø If the programmer does not specify the
mapping between threads and iterations,
the compiler decides which strategy to use.

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause

Ø The schedule clause of the for directive specifies how iterations are
mapped to threads

schedule(scheduling_clause[,chunk_size])

Ø The granularity of the workload distribution is a chunk, a continuous
non-empty subset of the iteration space.

#pragma omp parallel for schedule (scheduling_clause [, chunk_size])

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause
The most straightforward schedule is
schedule(static[,chunk_size])

Ø Splits the iteration space into chunks of size
chunk_size and allocates to threads
statically in a round-robin fashion

Ø No specification implies the number of chunks
equals the number of threads Iterations are
assigned in the order of the thread number
and the last chunk may have a smaller number
of iterations.

Ø It has the lowest overhead and is the default
setting for many OpenMP compilers.

Ø Potential load imbalance - if iterations have
different workloads, consider dynamic
scheduling (schedule(dynamic)).

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause

The schedule (dynamic[,chunk_size]) enables basic
dynamic load balancing

Ø iteration space split into chunk_size blocks that
are scheduled dynamically as they complete the
work on the current chunk, threads request
additional chunks

Ø if not specified chunk_size is set by default to 1
Ø Do you think there is any disadvantage in this

schedule?

9

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause

schedule(runtime)

Ø The choice of the optimal
schedule may depend on the
problem size

Ø The schedule and (optional)
chunk size are set through the
OMP_SCHEDULE environment
variable

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Loop Schedules

Introduction to High Performance Computing for
Scientists and Engineers, Hager and Wellein, Figure 6.2

Example of loop schedules in OpenMP

Ø 20 iterations by three threads
Ø Default chunksize for dynamic and

guided is one
Ø Note that only the static

schedule guarantee that the
distribution of chunks stays the
same between runs

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The reduction clause

sum = 0;
partial_sum [NTHREADS] = {0};
#pragma omp parallel for default (none) shared (n, a, partial_sum)
 for (i = 0; i < n; ++i) {

partial_sum [omp_get_thread_num ()] += a[i]
} /* End of parallel region */
for (i = 0; i < NTHREADS ; ++i){
 sum += partial_sum [i];

}

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The reduction clause
sum = 0;
partial_sum [NTHREADS] = {0};
#pragma omp parallel for default (none) shared (n, a, partial_sum)
 for (i = 0; i < n; ++i) {

partial_sum [omp_get_thread_num ()] += a[i]
} /* End of parallel region */
for (i = 0; i < NTHREADS ; ++i){
 sum += partial_sum [i];

}

Is there a better algorithm?

13

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The reduction clause

Ø reduction(+:sum)
Ø Implements a reduction operation - The clause ensures that each thread maintains a

private copy of the reduction variable, and at the end of the parallel region, the private
copies are combined into a single result.

Ø It is not necessary to specify the reduction variable as shared
Ø The order in which thread-specific values are combined is unspecified
Ø The operators supported are +, ¡, *, &, , ˆ, && and

Ø Some constraints
Ø Aggregate types, pointer types and references types are not supported
Ø A reduction variable must not be const
Ø No overloaded operators with respect to the variable that appears in the clause

#pragma omp parallel for default (none) shared (n, a) reduction (+: sum)
 for (i = 0; i < n; ++i) {

 sum += a[i]
 } /* End of parallel reduction */

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Nested Parallelism
#pragma omp parallel for num_threads (2)
 for (i = 0; i < Ni; i ++}
 #pragma omp parallel for num_threads (2)
 for (j = 0; j < Nj; j ++) {

Ø By default, the inner loop is serialized and run by one thread
Ø To enable multiple threads in nested parallel loops requires environment variable

OMP_NESTED to be TRUE
Ø You can also control the maximum level of nesting through OMP_MAX_ACTIVE_LEVELS
Ø Each thread from the first parallel for will spawn a new team.
Ø Note - the use of synchronization constructions in nested parallel sections requires care (see

OpenMP specs, e.g. there is no restriction on synchronizing threads across different teams!).

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Nested Parallelism
#pragma omp parallel for collapse (2) for (i = 0; i < Ni; i ++) {
 for (j = 0; j < Nj; j ++) { …

A disadvantage of nested parallelism is parallel overhead

Ø Collapse is usually better way of parallelizing nested loops

Ø The collapse clause turns the two loops into a combined single loop.

Ø Threads work on a larger chunk of work, which can improve parallel efficiency.

Ø By collapsing loops, you reduce the overhead of managing multiple parallel

loops.

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

17

OpenMP:
Synchronization
Directives

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The barrier directive

#pragma omp barrier
/* structured block */

Ø barrier: Each thread waits at the barrier until all threads arrive

Restrictions:
Ø Each barrier must be encountered by all threads in a team, or by none at all.
Ø The sequence of work-sharing regions and barrier regions encountered must be

the same for each thread in the team.

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The ordered directive
#pragma omp ordered
/* structured block */

Ø ordered: threads execute the structured block in sequential order.

Ø The first thread that encounters this directive enters the structured block without waiting.
Ø Any subsequent threads wait until previous threads have completed the block execution.
Ø Restrictions: An ordered clause must be added to the parallel region in which this

construct appears.

cumul_sum [0] = list [0];
#pragma omp parallel for ordered shared (cumul_sum , list
, n)
for (i =1; i<n; i ++) {
/* other processing on list [i] if required */
#pragma omp ordered
{
cumul_sum [i] = cumul_sum [i -1] + list [i];

}
}

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The atomic directive
#pragma omp atomic [seq_cst [,]] atomic - clause [[,] seq_cst]
/* single expression statement */
#pragma omp atomic [seq_cst [,]]
/* single expression statement */
#pragma omp atomic [seq_cst [,]] capture [[,] seq_cst]
/* structured block *

Ø atomic: This is a hint for the compiler to use low-level atomic instructions if
available.

Ø Atomic clauses
Ø read: performs an atomic read of the input variable and stores it into the

output. This is guaranteed regardless of the size of the variable.
Ø write: the output variable is written atomically. This is guaranteed

regardless of the size of the variable.

x = expr ; // x is written atomically

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The atomic directive

x++;
++x; x- -;
-- x;
x binop = expr ;
x = x binop expr ; x = expr binop x;

Atomic clauses
Ø update: causes an atomic update of the location designated by x using the

designated operator or intrinsic.

The following rules also apply
Ø The evaluation of expr need not be atomic with respect to the read or write of the location

designated by x.
Ø No task scheduling points occur between the read and the write of the location designated by x.
Ø Binop (binary operators) is one of the following operators +,* ,-, & , ˆ, <<, >>.

21

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The atomic directive
v = x ++;
v = ++x;
v = x - -;
v = -- x;
v = x binop = expr;
v = x = x binop expr;
v = x = expr binop x;

Atomic clauses
Ø capture: causes an atomic update of the

location designated by x using the designated
operator or intrinsic while also capturing the
original or final value of the location (v) designated
by x with respect to the atomic update.

The following rules also apply
Ø Only the read and write of the location designated by x are performed mutually atomically.
Ø The evaluation of expr, and the write to the location designated by v do not need to be atomic

with respect to the read or write of the location designated by x.
Ø No task scheduling points occur between the read and the write of the location designated by x.

{ v = x; x += n; } // atomically update x, but capture original value in v

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

23

OpenMP:
Library Functions
and Environment
Variables

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Internal Control Variables
The OpenMP standard defines some internal control variables (ICVs) controlled by the
implementations that govern the behaviour of a program at run time. Here are some of them:

Ø nthreads-var – stores the number of threads requested for the execution of future parallel
regions.

Ø dyn-var – control whether dynamic adjustment of the number of threads to be used in future
parallel regions is enabled.

Ø nest-var – controls whether nested parallelism is enabled for future parallel regions.
Ø run-sched-var – stores scheduling information to be used for loop regions using the runtime

schedule.
Ø def-sched-var – stores implementation-dependent scheduling information to be used for

loop regions.

These variables cannot be accessed directly, but via either library functions or environment variables.

24

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Library Functions

#include <omp . h>

Defined in header file

Controlling threads and processors
void omp_set_num_threads (int num_threads)
int omp_get_num_threads ()
int omp_get_max_threads () // Number of threads used in the next parallel region
int omp_get_thread_num ()
int omp_get_num_procs () // Returns the number of processor cores available
int omp_in_parallel () // Check if within a parallel region

Controlling thread creation
void omp_set_dynamic (int dynamic_threads) // Enable / disable dynamic thread adjustment
int omp_get_dynamic () // Check whether dynamic thread adjustment is enabled
void omp_set_nested (int nested) int omp_get_nested ()
void omp_set_dynamic (int dynamic_threads) // Enable / disable dynamic thread adjustment
int omp_get_dynamic () // Check whether dynamic thread adjustment is enabled
void omp_set_nested (int nested) int omp_get_nested ()

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Environment Variables
OMP_NUM_THREADS: default number of threads entering parallel region

OMP_DYNAMIC: if TRUE it permits the number of threads to change during execution,
in order to optimize system resources

OMP_NESTED: if TRUE it permits nested parallel regions

OMP_SCHEDULE: determines scheduling for loops that are defined to have runtime
scheduling

export OMP_SCHEDULE =" static ,4 "
export OMP_SCHEDULE =" dynamic "
export OMP_SCHEDULE =" guided "

26

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Environment Variables
OMP_DISPLAY_ENV: this is a very useful variable to verify all the settings. If set to true or verbose
all the relevant environment variables are printed at the beginning of the program.

OMP_STACKSIZE: this variable allows to increase the default stack size allocated to each thread.
Ø The syntax supports a case-insensitive unit qualifier that is appended to the number: B for

bytes, K for 1024 bytes, M for 1024 bytes Kbytes, and G for 1024 Mbytes.

27

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP and Pthreads
OpenMP Pthreads

Definition Specification for compiler directives, library
routines, and environment variables.

POSIX standard for libraries, providing low-level
thread management.

Parallelism Model Shared Memory: Utilizes multiple threads
within a single process.

Shared Memory: Also operates within a single
process, but with more manual control over
threads.

Communication Implicit (compiler handles thread
synchronization).

Requires explicit handling of thread
communication using functions
like pthread_create and pthread_join.

Ease of Use Easier to program and debug due to directives. Requires more manual management of threads
and synchronization.

Scalability Limited scalability within a single node. Scalable to multiple cores within a single machine.

Use Cases Best for parallelizing loops and simple tasks
within a single program.

Suitable for applications that need fine-grained
control over threads and synchronization.

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP and Pthreads
Ø OpenMP removes the need for a programmer to initialize task attributes, set up

arguments to threads, partition iteration spaces, etc.
Ø OpenMP code can closely resemble serial code – (verification)
Ø OpenMP users require availability of an OpenMP compiler

Ø performance dependent on quality of compiler — hardly a problem today

Ø Well-engineered OpenMP code causes no loss of performance with respect to
lower-level APIs.

Ø Pthreads has a lower-level API that is slightly more flexible and rich, (e.g. condition
waits, locks of different types etc) but also more error prone

Ø Pthreads is library based and not compiler-based

Ø OpenMP is now the de facto standard in High-Performance Computing

29

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP and MPI
OpenMP MPI

Definition Specification for compiler directives, library
routines, and environment variables.

Library specification for message-passing,
proposed as a standard by a committee of
vendors, implementors, and users.

Parallelism Model Shared Memory: Utilizes multiple threads
within a single process.

Distributed Memory: Operates across a network
of distributed nodes.

Communication Implicit (compiler handles thread
synchronization).

Explicit (programmer manages message passing
using API calls like MPI_Send and MPI_Recv).

Architecture Suitable for multi-core processors. Works on both shared-memory and distributed-
memory architectures.

Ease of Use Easier to program and debug due to directives. Requires more explicit handling of communication
and synchronization.

Scalability Limited to scalability within a single node. Scalable to large clusters and supercomputers.

Use Cases Best for parallelizing loops and simple tasks
within a single program.

Ideal for distributed computing, large-scale
simulations, and complex parallel applications.

30

