SHARED MEMORY
PARALLEL COMPUTING

COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

APRIL 2024

OpenMP:
Part 1]

'
=
=

Australian
National
University

Logistics

> Attendance to the Lab sessions is highly encouraged. Most of the

practical aspects of the programming models are covered in the Labs.

OpenMP:
Quick Demo

(X

[P —

=

..

OpenMP Reference Material

>

>
>

>
>

>

Using OpenMP — The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,
Chapter 1

http://www.openmp.org/

Introduction to High Performance Computing for Scientists and Engineers,

Hager and Wellein, Chapter 6 & 7

High Performance Computing, Dowd and Severance, Chapter 11

Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.
Kumar

Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.
J.McDonald, R.Menon

The schedule clause

The schedule clause of the for directive specifies how iterations are
mapped to threads

schedule (scheduling clause[,chunk size])

#pragma omp parallel for schedule (scheduling clause [, chunk size])

The granularity of the workload distribution is a chunk, a continuous
non-empty subset of the iteration space.

=

The for Work-Sharing Directives

» The order in which threads execute is not Thread 0 executes loop iteration 0

predictable (OS scheduled). Thread 0 executes loop iteration 1

> The way to map iterations to threads can Thread O executes loop iteration 2

be specified by the programmer (see later Thread 3 executes loop iteration 7

schedule clause). Thread 3 executes loop iteration 8

> If the programmer does not specify the Thread 2 executes loop iteration 5

mapping between threads and iterations, Th 42 1 K . 6
the compiler decides which strategy to use. rea executes loop iteration

Thread 1 executes loop iteration 3

Thread 1 executes loop iteration 4

The schedule clause

The most straightforward schedule is

schedule (static[,chunk size]) ————

» Splits the iteration space into chunks of size
chunk size and allocates to threads
statically in a round-robin fashion

» No specification implies the number of chunks
equals the number of threads Iterations are
assigned in the order of the thread number
and the last chunk may have a smaller number
of iterations.

» It has the lowest overhead and is the default
setting for many OpenMP compilers.

» Potential load imbalance - if iterations have
different workloads, consider dynamic
scheduling (schedule(dynamic)).

‘ ~ slafic

0 % 50 I 100 1 150 15 2

Iteration number

=

-
|

The schedule clause

The schedule (dynamic[,chunk size]) enables basic

3

dynamic load balancing —_— 02— | B]]
Ti—E—&—R & —= 1
o B BB BB
£
> iteration space split into chunk size blocks that F Z dynamic,7
are scheduled dynamically as they complete the . —
(
work on the current chunk, threads request ol sete
additional chunks
0 25 50 5 100 15 150 1w 2
if not specified chunk size is set by defaultto 1)
- Iteration number

Do you think there is any disadvantage in this
schedule?

Loop Schedules

lteration

Example of loop schedules in OpenMP g
» 20 iterations by three threads :
> Default chunksize for dynamic and b
guidedis one s
» Note that only the static s
schedule guarantee that the "
distribution of chunks stays the o

same between runs

STATIC STATIC,3

p¥Nauzc[, 1]

DYNAMIC,3 GUIDED[,1]

Figure 6.2: Loop schedules in OpenMP. The example loop has 20 iterations and is executed
by three threads (TO, T1, T2). The default chunksize for DYNAMIC and GUIDED is one. If a
chunksize is specified, the last chunk may be shorter. Note that only the STATIC schedules
guarantee that the distribution of chunks among threads stays the same from run to run.

Introduction to High Performance Computing for
Scientists and Engineers, Hager and Wellein, Figure 6.2

The schedule clause

schedule (runtime)

» The choice of the optimal
schedule may depend on the
problem size

» The schedule and (optional)
chunk size are set through the
OMP_SCHEDULE environment
variable

Thread ID

3
2
1
0
3
-
1

ol

3
2

L] L]
dynamic,7

m EEE "

guided,?
R

1

~ static

of

Iteration number

150

The reduction clause

sum = 0;

partial_sum [NTHREADS] = {0};

#pragma omp parallel for default (none)
for (i = 0; i < n; ++i) {
partial_sum [omp_get_ thread num ()]
} /* End of parallel region */
for (1 = 0; i < NTHREADS ; ++i){

sum += partial sum [i];

+= al i]

shared (n, a, partial_sum)

0.

A

The reduction clause The reduction clause

= 0;
zg?:tial_sum [NTHREADS] = {0}; #pragma‘ omp pa.rallel fo?r default (none) shared (n, a) reduction (+: sum)
#pragma omp parallel for default (none) shared (n, a, partial sum) for (i =0; i <nj ++i) {
for (1 = 0; 1 < n; ++1i) { sfm = a[l], , ; *
partial_sum [omp_get_ thread num ()] += al[i] } /* BEnd of parallel reduction */
} /* End of parallel region */
for (1 = 0; i < NTHREADS ; ++1) { » reduction (+:sum)
} sum += partial sum [i]; Vaes ahaesa mamoep [T TS T P R ST S e oo] > Implements a reduction operation - The clause ensures that each thread maintains a
St T private copy of the reduction variable, and at the end of the parallel region, the private
Stides 10s qf G copies are combined into a single result.
vawes [e]2Jto[s [o o To 7 [s]e7[on o]e] > It is not necessary to specify the reduction variable as shared
P » The order in which thread-specific values are combined is unspecified
|Sthereabettera|g0rithm? values [8 [7 [13[13[0o [a[7[2[s[2[7 0 [n]o]2] > Theoperatorssupportedare+, iy %, &, , 7, && and
sz e
Values [2120[13[13[0 [o[a 7227 0 [n]0]2] » Some constraints
Step4 Thread)
Swide1 IDs » Aggregate types, pointer types and references types are not supported
vawes [[m[w]wo]o s [r]a e[[r]o[n]o]z] » A reduction variable must not be const
» No overloaded operators with respect to the variable that appears in the clause
#pragma omp parallel for num threads (2) fpragma omp parallel for collapse (2)
for (i = 0; 1 < Ni; i ++} for (i = 0; 1 < Ni; 1 ++) {
#pragma omp parallel for num threads (2) for (3 = 0; J < Nj; J++) {
for (j = 0; j < Nj; j++) {
> By default, the inner loop is serialized and run by one thread A disadvantage of nested parallelism is parallel overhead

> To enable multiple threads in nested parallel loops requires environment variable
OMP_NESTED to be TRUE

> You can also control the maximum level of nesting through OMP_MAX ACTIVE LEVELS » The collapse clause turns the two loops into a combined single loop.

> Each thread from the first parallel for will spawn a new team. » Threads work on a larger chunk of work, which can improve parallel efficiency.

> Note - the use of synchronization constructions in nested parallel sections requires care (see
OpenMP specs, e.g. there is no restriction on synchronizing threads across different teams!).

» Collapse is usually better way of parallelizing nested loops

» By collapsing loops, you reduce the overhead of managing multiple parallel

loops.

OpenMP:

ynchronization

Directives

The barrier directive

#pragma omp barrier

/* structured block */

The ordered directive

#pragma omp ordered
/* structured block */

» barrier: Each thread waits at the barrier until all threads arrive

Restrictions:

» Each barrier must be encountered by all threads in a team, or by none at all.
» The sequence of work-sharing regions and barrier regions encountered must be

the same for each thread in the team.

@

» ordered: threads execute the structured block in sequential order.

cumul_sum [0] = list [0];
#pragma omp parallel for ordered shared (cumul_sum , list
, n)
for (i=1; i<n; i++) {
/* other processing on list [i] if required */
#pragma omp ordered
{
cumul_sum [i] = cumul_sum [1-1] + list [i];
}
}

» The first thread that encounters this directive enters the structured block without waiting.
» Any subsequent threads wait until previous threads have completed the block execution.
» Restrictions: An orderedclause must be added to the parallel region in which this

construct appears.

The atomic directive

#pragma omp atomic [seq cst [,]] atomic -clause [[,] seq cst]
/* single expression statement */

#pragma omp atomic [seq_cst [,]]

/* single expression statement */

#pragma omp atomic [seq cst [,]] capture [[,] seq cst]

/* structured block *

» atomic: This is a hint for the compiler to use low-level atomic instructions if

available.
» Atomic clauses

(X

» read: performs an atomic read of the input variable and stores it into the

output. This is guaranteed regardless of the size of the variable.
» write:the output variable is written atomically. This is guaranteed

regardless of the size of the variable.

x = expr ; // x 1s written atomically

Q-

y

The atomic directive

Atomic clauses
» update: causes an atomic update of the location designated by x using the
designated operator or intrinsic.

R++;

++x; x- —;

- X;

X binop = expr ;

X = x binop expr ; x = expr binop x;

The following rules also apply

» The evaluation of expr need not be atomic with respect to the read or write of the location
designated by x.

» No task scheduling points occur between the read and the write of the location designated by x.

» Binop (binary operators) is one of the following operators +, * , -, & , ~, <<, >>.

aEM

OpenMP:
Library Functions
and Environment
Variables

The atomic directive

Atomic clauses

» capture: causes an atomic update of the
location designated by x using the designated
operator or intrinsic while also capturing the
original or final value of the location (v) designated
by x with respect to the atomic update.

X ++;
+Hx;

- x;
x binop = expr;

X = x binop expr;
x = expr binop x;

4 < < <9< <<
LI]

The following rules also apply

» Only the read and write of the location designated by x are performed mutually atomically.

» The evaluation of expr, and the write to the location designated by v do not need to be atomic
with respect to the read or write of the location designated by x.

» No task scheduling points occur between the read and the write of the location designated by x.

I { v=x; x += n; } // atomically update x, but capture original value in v I

Internal Control Variables

The OpenMP standard defines some internal control variables (ICVs) controlled by the
implementations that govern the behaviour of a program at run time. Here are some of them:

» nthreads-var — stores the number of threads requested for the execution of future parallel
regions.

» dyn-var — control whether dynamic adjustment of the number of threads to be used in future
parallel regions is enabled.

» nest-var —controls whether nested parallelism is enabled for future parallel regions.

» run-sched-var — stores scheduling information to be used for loop regions using the runtime
schedule.

» def-sched-var — stores implementation-dependent scheduling information to be used for
loop regions.

These variables cannot be accessed directly, but via either library functions or environment variables.

Library Functions OpenMP Environment Variables

Defined in header file OMP_NUM THREADS: default number of threads entering parallel region

#include <omp . h>
Controlling threads and processors OMP_DYNAMIC: if TRUE it permits the number of threads to change during execution,

in order to optimize system resources
void omp_set num threads (int num_ threads)

int omp get num_threads ()

int omp_get max_ threads () // Number of threads used in the next parallel region . f . . d ” | .

int omp get thread num () OMP_NESTED: if TRUE it permits nested parallel regions

int omp_get_num procs () // Returns the number of processor cores available

int omp_in_parallel () // Check if within a parallel region

OMP_SCHEDULE: determines scheduling for loops that are defined to have runtime

Controlling thread creation scheduling

void omp_set_dynamic (int dynamic_threads) // Enable / disable dynamic thread adjustment

int omp_get_dynamic () // Check whether dynamic thread adjustment is enabled export OMP SCHEDULE =" static ,4 "

void omp_set nested (int nested) int omp get nested () export OMPisCHEDULE =" dynamic "

void omp_set_dynamic (int dynamic_threads) // Enable / disable dynamic thread adjustment
int omp get_dynamic () // Check whether dynamic thread adjustment is enabled
void omp_set nested (int nested) int omp_get_ nested ()

export OMP_SCHEDULE =" guided "

OpenMP Environment Variables OpenMP and Pthreads

L . . . OpenMP Pthreads
OMP_DISPLAY ENV:thisis a very useful variable to verify all the settings. If set to true or verbose
all the relevant environment variables are printed at the beginning of the program. Definition Specification for compiler directives, library POSIX standard for libraries, providing low-level
routines, and environment variables. thread management.

Shared Memory: Also operates within a single
process, but with more manual control over
threads.

OMP_STACKSIZE: this variable allows to increase the default stack size allocated to each thread.

» The syntax supports a case-insensitive unit qualifier that is appended to the number: B for
bytes, K for 1024 bytes, M for 1024 bytes Kbytes, and G for 1024 Mbytes.

parallelism Model Shar'ed M_emury: Utilizes multiple threads
within a single process.

Requires explicit handling of thread

communication using functions

like pthread_create and pthread_join.

Implicit (compiler handles thread

Communication R
synchronization).

Requires more manual management of threads

Ease of Use Easier to program and debug due to directives. o

and synchronization.
Scalability Limited scalability within a single node. Scalable to multiple cores within a single machine.
Use Cases Best for parallelizing loops and simple tasks Suitable for applications that need fine-grained

within a single program. control over threads and synchronization.

OpenMP and Pthreads

» OpenMP removes the need for a programmer to initialize task attributes, set up
arguments to threads, partition iteration spaces, etc.
» OpenMP code can closely resemble serial code — (verification)
» OpenMP users require availability of an OpenMP compiler
» performance dependent on quality of compiler — hardly a problem today

» Well-engineered OpenMP code causes no loss of performance with respect to
lower-level APIs.

» Pthreads has a lower-level API that is slightly more flexible and rich, (e.g. condition
waits, locks of different types etc) but also more error prone

» Pthreads is library based and not compiler-based
» OpenMP is now the de facto standard in High-Performance Computing

OpenMP and MPI

OpenMP

N Specification for compiler directives, library
Definition X - X

routines, and environment variables.
Shared Memory: Utilizes multiple threads

Parallelism Model o .
within a single process.

Implicit (compiler handles thread

Communication R
synchronization).

Architecture Suitable for multi-core processors.

Ease of Use Easier to program and debug due to directives.

Scalability Limited to scalability within a single node.

Best for parallelizing loops and simple tasks

Use Cases o N
within a single program.

MPI

Library specification for message-passing,
proposed as a standard by a committee of
vendors, implementors, and users.

Distributed Memory: Operates across a network
of distributed nodes.

Explicit (programmer manages message passing
using API calls like MPI_Send and MPI_Recv).

Works on both shared-memory and distributed-
memory architectures.

Requires more explicit handling of communication
and synchronization.

Scalable to large clusters and supercomputers.

Ideal for distributed computing, large-scale
simulations, and complex parallel applications.

