OpenMP:
Part I1

=

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Reference Material

>

Using OpenMP — The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,
Chapter 1

http://www.openmp.org/

Introduction to High Performance Computing for Scientists and Engineers,
Hager and Wellein, Chapter 6 & 7
High Performance Computing, Dowd and Severance, Chapter 11

Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.
Kumar

Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.
J.McDonald, R.Menon

http://www.openmp.org/

The for Work-Sharing Directives

> The order in which threads execute is not
predictable (OS scheduled).

» The way to map iterations to threads can
be specified by the programmer (see later
scheduleclause).

» If the programmer does not specify the
mapping between threads and iterations,

the compiler decides which strategy to use.

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

P, NN W W o O o

executes
executes
executes
executes
executes
executes
executes
executes
executes

loop
loop
loop
loop
loop
loop
loop
loop
loop

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

= W o 01 00 N N — O

The schedule clause

» The schedule clause of the for directive specifies how iterations are
mapped to threads

schedule (scheduling clause[, chunk size])

#pragma omp parallel for schedule (scheduling clause [, chunk size])

» The granularity of the workload distribution is a chunk, a continuous
non-empty subset of the iteration space.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause

The most straightforward schedule is

schedule (static[,chunk size])) :
R
» Splits the iteration space into chunks of size 1 — static
chunk size and allocates to threads 0
statically in a round-robin fashion ‘ ‘ ‘ ‘ [
» No specification implies the number of chunks (S T I TR I
equals the number of threads Iterations are ,
lteration number

assigned in the order of the thread number
and the last chunk may have a smaller number
of iterations.

» It has the lowest overhead and is the default
setting for many OpenMP compilers.

> Potential load imbalance - if iterations have
different workloads, consider dynamic
scheduling (schedule(dynamic)).

The schedule clause

The schedule (dynamic[,chunk size]) enables basic B — B — 8B B R B
dynamic load balancing — 0 2 —
v i— & 0 I
£om o | i | e e
> iteration space split into chunk size blocks that B 27 dynamic,7
are scheduled dynamically as they complete the -
1 static
work on the current chunk, threads request 0
addltlonal Chunks 0 2‘5 5‘0 7‘5 1(10 1;5 1;0 175 2(‘)0
» if not specified chunk size is set by default to 1 ,
— lteration number

» Do you think there is any disadvantage in this
schedule?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause

. | W R W oW m
schedule (runtime) - quided7 W
{ - 2 mE ER
0 WER W
: @ ® E B B EE ®E
» The choice of the optimal o 2@ &= EE N
R e O i
schedule may depend on the o8 — B — 8B BB
problem size " S dynamic
» The schedule and (optional) | — statc
chunk size are set through the — T

o

25 50 75 100 125 150 175 200

OMP_S CHE DULE enViron ment [teration number
variable

Loop Schedules

Iteration
;
3
Example of loop schedules in OpenMP :
7
8
» 20 iterations by three threads .
» Default chunksize for dynamic and J _—
guidedisone 13 e
\ 14 !
» Note that only the static s %
schedule guarantee that the 17 -
. . . 18 f"':&‘
distribution of chunks stays the 5

same between runs

STATIC STATIC,3 DYNAMIC[,1] DYNAMIC, 3 GUIDED[,1]

Figure 6.2: Loop schedules in OpenMP. The example loop has 20 iterations and is executed
by three threads (TO, T1, T2). The default chunksize for DYNAMIC and GUIDED is one_If a
chunksize is specified, the last chunk may be shorter. Note that only the STATIC schedules
guarantee that the distribution of chunks among threads stays the same from run to run.

Introduction to High Performance Computing for

Scientists and Engineers, Hager and Wellein, Figure 6.2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The reduction clause

sum = 0;
partial sum [NTHREADS] = {0};
fpragma omp parallel for default (none)
for (1 = 0; 1 < n; ++1i) {
partial sum [omp get thread num ()]
} /* End of parallel region */
for (i = 0; i < NTHREADS ; ++1i) {
sum += partial sum [i];

+= a i]

shared (n, a, partial sum)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

o
¢

N

=

The reduction clause

sum = 0;
partial sum [NTHREADS] = {0};
#pragma omp parallel for default (none) shared (n, a, partial sum)
for (1 = 0; 1 < n; ++1) {
partial sum [omp get thread num ()] += al 1]
} /* End of parallel region */
for (i = 0; i < NTHREADS ; ++1i) {
sum += partial sum [i];

Values(sharedmemory)|1o|1|8|-1|o|.2|3|5l-2|-3|2|7|0|11|0|2|

}
Step 1 Thread T ——————
Stride 8 IDs ©) 0’9 3@ 66 @
Values [8 |-2[10]6 [0 [o|3|[7]|2|-8[2]7]0[1]0]2]
Step 2 Thread é/l;
Stride 4 IDs Q 2
: p) Values [8 | 7 [13[13] 0 |9 |3 [7]2|a]2]7][0][1]0]2]
Is there a better algorithm?= O
Stride 2 IDs é‘

Values [21[20[1313] 0 9|3 [7]|2|a]2]7][0][1]0]2]
Step 4 Thread
Stride 1 IDs

Values [41|20[13]13] 0 o3 |7]|2|-3[2|7]0[11]0]2]

10
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The reduction clause

#fpragma omp parallel for default (none) shared (n, a) reduction (+: sum)
for (1 = 0; i < n; ++1) {
sum += al i]
} /* End of parallel reduction */

» reduction (+:sum)
» Implements a reduction operation - The clause ensures that each thread maintains a

private copy of the reduction variable, and at the end of the parallel region, the private
copies are combined into a single result.

» Itis not necessary to specify the reduction variable as shared

» The order in which thread-specific values are combined is unspecified

» The operators supportedare+, ;, *, &, , =, && and

» Some constraints
» Aggregate types, pointer types and references types are not supported

» A reduction variable must not be const
» No overloaded operators with respect to the variable that appears in the clause

11
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Nested Parallelism

#pragma omp parallel for num threads (2)
for (1 = 0; i < Ni; i ++}
fpragma omp parallel for num threads (2)
for (3 = 0; § < Nj; 3 +4) {

» By default, the inner loop is serialized and run by one thread
» To enable multiple threads in nested parallel loops requires environment variable
OMP NESTED to be TRUE

VY VY

Each thread from the first parallel for will spawn a new team.

A\

You can also control the maximum level of nesting through OMP MAX ACTIVE LEVELS

Note - the use of synchronization constructions in nested parallel sections requires care (see

OpenMP specs, e.g. there is no restriction on synchronizing threads across different teams!).

12

)

)

).

a
A\

Nested Parallelism

#fpragma omp parallel for collapse (2)
for (i = 0; i < Ni; 1 ++) {
for (3 = 0; 3 < Nj; jJ ++) { ..

A disadvantage of nested parallelism is parallel overhead

» Collapse isusually better way of parallelizing nested loops

» The collapse clause turns the two loops into a combined single loop.

» Threads work on a larger chunk of work, which can improve parallel efficiency.

» By collapsing loops, you reduce the overhead of managing multiple parallel

loops.

13

The barrier directive

fpragma omp barrier
/* structured block */

> barrier: Each thread waits at the barrier until all threads arrive

Restrictions:
» Each barrier must be encountered by all threads in a team, or by none at all.

» The sequence of work-sharing regions and barrier regions encountered must be
the same for each thread in the team.

15

The ordered directive

#fpragma omp ordered
/* structured block */

» ordered: threads execute the structured block in sequential order.

cumul sum [0] = list [0];
#pragaa omp parallel for ordered shared (cumul sum, list
;1)
for (i=1; i<n; 1i++) {
/* other processing on list [1] 1if required */
#pragma omp ordered
{
cumul sum [i] = cumul sum [1-1] + list [1i];
}
}

The first thread that encounters this directive enters the structured block without waiting.

Any subsequenRestrictions: An orderedclause must be added to the parallel region in
which this construct appears.

» threads wait until previous threads have completed the block execution.

Y VYV

16
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The atomic directive

#pragma omp atomic [seq cst [,]] atomic -clause [[,] seqg cst]
/* single expression statement */

#pragma omp atomic [seq cst [,1]]

/* single expression statement */

#pragma omp atomic [seq cst [,]] capture [[,] seg cst]

/* structured block *

» atomic: This is a hint for the compiler to use low-level atomic instructions if
available.
» Atomic clauses
» read: performs an atomic read of the input variable and stores it into the
output. This is guaranteed regardless of the size of the variable.
» write:the output variable is written atomically. This is guaranteed
regardless of the size of the variable.

X = expr ; // x 1s written atomically

. =

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The atomic directive

Atomic clauses

» update: causes an atomic update of the location designated by x using the
designated operator or intrinsic.

X binop = expr ;

X = X binop expr ; x = expr binop x;

18

The following rules also apply

» The evaluation of expr need not be atomic with respect to the read or write of the location
designated by x.

» No task scheduling points occur between the read and the write of the location designated by x.
» Binop (binary operators) is one of the following operators +, * , -, & T, >>.

’ ’

The atomic directive

19

Atomic clauses

» capture: causes an atomic update of the Z - i;
location designated by x using the designated voET T
operator or intrinsic while also capturing the Z _ ;_bi;op _ expr;
original or final value of the location (v) designated v = % = x binop expr;
by x with respect to the atomic update. Lo e

The following rules also apply
» Only the read and write of the location designated by x are performed mutually atomically.

» The evaluation of expr, and the write to the location designated by v do not need to be atomic
with respect to the read or write of the location designated by x.

» No task scheduling points occur between the read and the write of the location designated by x.

I { v=x; X += n; } // atomically update x, but capture original value in v I

@

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP:

Library Functions
and Environment
Variables

Internal Control Variables

21

The OpenMP standard defines some internal control variables (ICVs) controlled by the
implementations that govern the behaviour of a program at run time. Here are some of them:

» nthreads-var — stores the number of threads requested for the execution of future parallel
regions.

» dyn-var — control whether dynamic adjustment of the number of threads to be used in future
parallel regions is enabled.

» nest-var —controls whether nested parallelism is enabled for future parallel regions.

» run-sched-var — stores scheduling information to be used for loop regions using the runtime
schedule.

» def-sched-var — stores implementation-dependent scheduling information to be used for
loop regions.

These variables cannot be accessed directly, but via either library functions or environment variables.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Library Functions

Defined in header file

#include <omp . h>
Controlling threads and processors

void omp set num threads (int num threads)
int omp get num threads ()

int omp get max threads () // Number of threads used in the next parallel region
int omp get thread num ()

int omp get num procs () // Returns the number of processor cores available

int omp in parallel () // Check if within a parallel region

Controlling thread creation

void omp set dynamic (int dynamic threads) // Enable / disable dynamic thread adjustment
int omp get dynamic () // Check whether dynamic thread adjustment is enabled

vold omp set nested (int nested) int omp get nested ()

void omp set dynamic (int dynamic threads) // Enable / disable dynamic thread adjustment
int omp_get_aynamic () // Check whether dynamic thread adjustment is enabled

volid omp set nested (int nested) int omp get nested ()

22
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Environment Variables

OMP NUM THREADS: default number of threads entering parallel region

OMP DYNAMIC: if TRUE it permits the number of threads to change during execution,

in order to optimize system resources

OMP NESTED: if TRUE it permits nested parallel regions

OMP SCHEDULE: determines scheduling for loops that are defined to have runtime

scheduling

export OMP SCHEDULE =" static ,4 "
export OMP SCHEDULE =" dynamic "
export OMP SCHEDULE =" guided "

23

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Environment Variables

OMP DISPLAY ENV:this is a very useful variable to verify all the settings. If set to true or verbose
all the relevant environment variables are printed at the beginning of the program.

OMP STACKSIZE: this variable allows to increase the default stack size allocated to each thread.

» The syntax supports a case-insensitive unit qualifier that is appended to the number: B for
bytes, K for 1024 bytes, M for 1024 Kbytes, and G for 1024 Mbytes.

24
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP and Pthreads

Definition

Parallelism Model

Communication

Ease of Use

Scalability

Use Cases

25

OpenMP

Specification for compiler directives, library
routines, and environment variables.

Shared Memory: Utilizes multiple threads
within a single process.

Implicit (compiler handles thread
synchronization).

Easier to program and debug due to directives.

Limited scalability within a single node.

Best for parallelizing loops and simple tasks
within a single program.

Pthreads

POSIX standard for libraries, providing low-level
thread management.

Shared Memory: Also operates within a single
process, but with more manual control over
threads.

Requires explicit handling of thread
communication using functions
like pthread_create and pthread_join.

Requires more manual management of threads
and synchronization.

Scalable to multiple cores within a single machine.

Suitable for applications that need fine-grained
control over threads and synchronization.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP and Pthreads

» OpenMP removes the need for a programmer to initialize task attributes, set up arguments to
threads, partition iteration spaces, etc.

» OpenMP code can closely resemble serial code — (verification)

» OpenMP users require availability of an OpenMP compiler
» performance dependent on quality of compiler — hardly a problem today

» Well-engineered OpenMP code causes no loss of performance with respect to lower-
level APls.

» Pthreads has a lower-level API that is slightly more flexible and rich, (e.g. condition waits, locks
of different types etc) but also more error prone

» Pthreads is library based and not compiler-based

» OpenMP is now the de facto standard in High-Performance Computing

26 5

OpenMP and MPI

Definition

Parallelism Model

Communication

Architecture

Ease of Use

Scalability

Use Cases

27

OpenMP

Specification for compiler directives, library
routines, and environment variables.

Shared Memory: Utilizes multiple threads
within a single process.

Implicit (compiler handles thread
synchronization).

Suitable for multi-core processors.

Easier to program and debug due to directives.

Limited to scalability within a single node.

Best for parallelizing loops and simple tasks
within a single program.

MPI

Library specification for message-passing,
proposed as a standard by a committee of
vendors, implementors, and users.

Distributed Memory: Operates across a network
of distributed nodes.

Explicit (programmer manages message passing
using API calls like MPI_Send and MPI_Recv).

Works on both shared-memory and distributed-
memory architectures.

Requires more explicit handling of communication
and synchronization.

Scalable to large clusters and supercomputers.

Ideal for distributed computing, large-scale
simulations, and complex parallel applications.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Simultaneous Multi-Threading (SMT or
Hyperthreading)

and

Single-Instruction Multiple Data (SIMD)

Reference Material

» Introduction to High Performance Computing for Scientists and Engineers, Hager and
Wellein

» Using OpenMP — The Next Step, R. van der Pas, E. Stotzer, and C. Terboven, Chapter 4

» Intel Intrinsics Guide,
https://www.intel.com/content/www/us/en/docs/intrinsics-

guide/index.html

» Chapter 4 from Computer Systems A Programmer’s Perspective, Third Edition, Randal E.
Bryant and David R. O’Hallaron, Pearson Education Heg USA, ISBN 9781292101767.

29

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Simple Single Core Superscalar CPU Architecture

» Multiple fetch/decode units

» Multiple ALUs, in general multiple Functional Units (FUs)

» One Execution Context (EC)

» Exploits Instruction Level Parallelism (ILP) through
superscalarity and pipelining

» ILP requires sophisticated, additional logic to yield good
performance

» Out-of-Order (Oo0) execution

» Pre-fetching

» Branch prediction

» Big caches
» This extra logic is tightly coupled to the FUs and to the EC
» Thus, this view of the CPU architecture is too simplistic

Fetch/Decode

Cache (large ...)

ALU1 | ALU2
Out-Of-Order Logic

Execution Branch Prediction
Context

Prefetch

30

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

7

A real single core architecture

The front end retrieves the
instructions from memory
and translates instructions
into a format that can be
understood by other
components of the CPU.

Intel Skylake

The execution unit is the

part of the CPU that = ==—p
actually carries out the
instructions

Front End i
CacheTag| L1 Instruction Cache
MOP Cache| 32KiB 8-Way Instruction
Tag TLB
1 Ba‘cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
3 P 3 P G
"vlns;‘ucticr':‘auet:!v .' " §~\
(50, 2x25 entries) <
5
¥+t +t P g
MicroCode 4\\Vay Decode
Sequencer
R Complex| [Simple | [Simple | [SimpT
wEPow
4 HOP: Stack
- Engine
(SE)
led Stream Buffer (DSB)]
(0P Cache)
. —— Rename / Allos -
ReOraer B Gk ontram MM|
: "l° 2
i i d fector egi g
isters
&
S| o5
5 AN 32B/cycle
a o
a| @3
ol &3 ToL3
B £°
<
Execution Engine Store B(uffer&For;varding
56 entries!
Tanjeyele N
<

Load Buffer| & | L1 Data Cache
(72 entries) | ¢ 32KiB 8-Way

Data TLB |«

Memory Subsystem

Line Fill Buffers (LFB)
(10 entries)

Execution Engine

o Instruction Cache e
w
é Instruction Fetch & Decode |
4-6 pops
Reord;r Buffer |
==
Scheduler |

Memory

31

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

o
¢

N

=

More schematic single
core architecture

> In the real core architecture Functional Units,
Out-of-Order Execution Logic, Execution Context
are tightly coupled at the hardware level

Map Front End to Fetch/Decode

Map Execution Engine to Functional Units plus
Out-of-Order Execution Logic plus Execution
Context

Y VYV

» We can leave the rest of the logic, Branch
Predictor, Caches, Prefetching out of our
representation

000
Execution Unit

==

32

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVE

RSITY) CRICOS PROVIDER CODE: 0012(

Under utilisation of ILP

What are the main causes of
under utilisation of ILP on
this single-core architecture?

000

Execution Unit

Under utilisation of ILP

> The main causes of under utilisation of
ILP on this single-core architecture: -

» Branch misprediction

» Bad instruction mix = cannot feed all
replicates of the functional units

» Thread stalls due to dependencies >
thread cannot execute as it is waiting for
operands to be fetched or dependencies
to be resolved

C |compute cycle M |memory stall cycle

thread

time

000
Execution Unit

==

34

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

35

Under utilisation of ILP

>

Pipeline Hazards: The next stage in the
pipeline cannot execute in the following clock
cycle

Typically caused by dependencies between
successive instructions

Data dependencies: the results computed by
one instruction are used as the input data for a
following instruction

Control dependencies: one instruction
determines the location of the following
instruction (e.g, jump, return)

This can require the hardware to insert no-ops
called bubbles in the pipeline, causing it to
stall while the dependencies are resolved

prog3

0x000:
0x006:
0x00c:
0x00d:
0x00f:

irmovl $10,%edx
irmovl $3,%eax
nop
addl Y%edx,%eax
halt

progéd

0x000:
0x006:

0x00c:
0x00e:

irmovl $10,%edx
irmovl $3,%eax
bubble

bubble

bubble

addl %edx,%eax
halt

2 3 4 5 6 7 8 9
D E M w
E D E M w
= D E M w
E D E M w
F D E M w
Cycle 5
w
R[%edx]« 10
M
M_valE = 3
M_dstE = %eax
3 4 5 6 7 8 9 10 1
E|M|W
D E M W
E|M|W
E M W
(PLE|M|W
L F p[bp|[bp|[E|[mM][w
F|F|F|F|D|E|M]|wW

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Hyperthreading (Simultaneous Multi-Threading)

» |dea: Interleave processing of multiple
threads on the same core to hide
stalls

» This can hide the latency of one
thread’s stalls with another thread'’s
execution

» What is a potential problem with
this strategy?

0OoO
Execution Unit

Hyperthreading (Simultaneous Multi-Threading)

» |dea: Interleave processing of multiple
threads on the same core to hide
stalls

» This can hide the latency of one
thread’s stalls with another thread’s
execution

» What is a potential problem with
this strategy? ... Context switch

OoO
Execution Unit

Hyperthreading: A More Detailed View

Single-threaded

]
» What is a potential problem with this LR B 2
cache — —l | |— :
strategy? Context switch --> DE — ‘[e 3
» Add dedicated separated execution Memery i T

contexts for these threads

Hyper-threaded

> Since the contexts of these threads are in

T,

dedicated register space, context switch gu? :
. . . . L 7 5
is either lightweight or for free D% 140 £
: : . 7 A g
» - simultaneous multi-threading Memed

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

)

)

2

@
A\

Single Instruction Multiple Data (SIMD)

>

vV VvV

ldea “2”: Amortize cost/complexity of
managing an instruction stream across
many ALUs

Single Instruction Multiple Data
(SIMD) processing

Fetch and decode one instruction

Same instruction broadcast and executed
in parallel on ALUs operating on
different data elements

Execution context must be larger, for
example make registers larger (in bits)

This requires different instructions

ALUO

ALU1

ALU 2

ALU3

ALU 4

ALU S5

ALU6

ALU7

39

TEQSA PROVIDER

1D: PRV12002 (AUSTRALIAN UNIVE

RSITY) CRICOS PROVIDER CODE: 0012(

40

Introduction to SIMD

SIMD provides data-parallelism at the
instruction level

» A single instruction operates on multiple
data elements in parallel SIMD
instructions use special registers with a
larger width (vector length)

» SIMD instructions are as fast as their scalar
counterpart, leading to potential speedup of
up to the vector length

» In practice, the speedup achieved may depend

heavily on memory operations needed to move
the data

for (int i=0; i<16; i+t)

afi] = b[i] + c[i]; Scalar instructions
GEOPRRENARREMARE o
D000D00000000000 e
]

Vegtorlength 1 SIMD instructions
llllllllllllllllllll 8 loads
HEENENERENENREEN 4adds

4 stores

MO OO0

Using SIMD Capabilities

» Vector Extensions or Intrinsics
» Vendor provided code extensions close to assembly level
» Advantages: Provide performance and control
» Disadvantages: Extremely verbose, generally not portable

» Compiler Flags
» Advantages: No additional coding effort
» Disadvantages: VVendor specific, performance and success compiler-
dependent, problematic for complex code, almost no control on
implementation

» OpenMP SIMD

» Pragmas in OpenMP for implementing SIMD parallelism

» Advantages: Portable, concise and easy to use

» Disadvantages: Performance compiler-dependent, correctness left to
programmer, no low-level control on implementation

0

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations:
4x32 bits or 2x64 bits (4-wide float
vectors)

AVX instructions: 256-bit operations:
8x32 bits or 4x64 bits (8-wide float
vectors)

AVX512: 512-bit operations: 16x32 bits
or 8x64 bits (16-wide float vectors)

Intel SIMD ISA Evolution i e

SIMD extensions on top of x86/x87

| AVXS12F | AVXS12F

128b X2 AXZ | AVX2

64b | SIMD

ey el ol

SSE3

PIl Pl P4 P4 Core Core Core Core Core Xeon Phi™ Core

(Klamath, (Katmai, (Willamette, (Prescott, (Merom, (Penryn, (Nehalem, (Sandy (Haswell, (Knigﬁts (Sky Lake)
1997) 1999) 2000) 2004) 2006) 2007) 2008) Bridge, 2013) Landing)
2011)

V)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

:
:
:
:
AVX512
ER/CD

Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors)
AVX instructions: 256-bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
AVX512: 512-bit operations: 16x32 bits or 8x64 bits (16-wide float vectors)

43

Intel® AVX10.2

Intel® AVX-512

Intel® AVX10.1 (pre-enabling)

128/256/512-bit FP/Int
32 vector registers
8 mask registers

512-bit embedded rounding

Optional 512-bit FP/Int
128/256-bit FP/Int

32 vector registers

8 mask registers

512-bit embedded rounding

New data movement, transforms
and type instructions

Optional 512-bit FP/Int
128/256-bit FP/Int

32 vector registers

8 mask registers

256/512-bit embedded rounding

Figure 1-2. Intel® ISA Families and Features

The Converged

Embedded broadcast Embedded broadcast Embedded broadcast
Intel® AVX Intel® AVX2 Scalar/SSE/AVX “promotions” || Scalar/SSE/AVX “promotions” Scalar/SSE/AVX “promotions” Ve Ct O r I S A .
128/256-bit FP Float16 Nefive media aekiions Native media additions Native media additions -
16 registers 128/256-bit FP FMA || Lioe additions HPC additions HPC additions Intel® Advanced
NDS (and AVX128) | 256-bit int Transcendental support Transcendental support Transcendental support
Improved blend PERMD Gather/Scatter Gather/Scatter Gather/Scatter Ve Cto r
MASKMOV Gather H i Version-based enumeration Version-based enumeration .
Implicit unaligned :;I:as?@b ?(Se?ie;-lggrzrztr:?; Intel® Xeon P-core only Supported on P-cores, E-cores EXte Nsions 1 O

Technical Paper
July 2023 Revision 1.0

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Scalar program

void sinx (int N,
{
for (int 1i=0;
{
float value
float numer =
int denom =

for (int j=1
{

’
’

6
int sign = -1

int terms,
i<N; 1 ++)
x[1i];

x[1] * x[1i]

// 3!

J <= terms ;

float * x,

* x[i];

§ ++)

value += sign * numer / denom ;

numer *= x|

il * x[1il;

denom *= (2% J42) * (2* J+3) ;

sign *= -1;
}

result [1] =

value ;

float * result)

44

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

o

¢
\ "N
=

Vector Program Using AVX2 Intrinsics

include <immintrin . h>
void sinx (int N,

{

int terms , float * x, float * result)

float three fact = 6; // 3!
for (int 1i=0; 1i<N; i +=8)
{
_m256 origx = mm256 load ps (&x[1]);
_m256 value = origx;
_m256 numer = mm256 mul ps (origx, mm256 mul ps (origx , Origx));
_m256 denom = mm256 setlps (three fact); float sign = -1;
for (int j=1; j<=terms; J++)

{

// value += sign * numer / denom

_m256 tmp = mm256 div ps (_mm256 mul ps (mm256 setlps (sign), numer),
value = mm256 add ps (value, tmp);

numer = mm256 mul ps (numer , mm256 mul ps (origx , origx));

denom = mm256 mul ps (denom, mm256 setlps ((2*J+2) * (2*J+3)));

sign *= -1;

}
~mm 256 store ps (& result [i],

}

value) ;

denom) ;

45

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

o
¢

N

=

46

Alignment

To get full benefit from SIMD the starting address
of the vectors (arrays) needs to be aligned on a
correct memory address boundary

>

>

Starting array address in memory must
be a multiple of the SIMD length

No optimal alighnment - compiler has
to use loop peeling

Loop peeling generates a loop peel and
(usually) a loop tail that is treated
separately

The peel and tail section are typically not
executed using SIMD instructions

al0]
a[1]

16 byte

a[2]
al3]
a(4]
a[s]

boundary

16 byte

al6]
a[7]

a[8]
a[9]

boundary

16byte

a[10]

boundary

for (int 1i=0; i<11l; i++)
a[i] = 1.0;
< array a .
011]12]3]|4]|5]|6]7(8]9]10
o[1]i[2]3]4]5] [6]7]8]o]:[o]
peel i SIMDinstructions tail

(vector length of 4)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

)

Demo

Vector Program Using AVX2
Intrinsics

48

Challenges for compiler vectorization

The compiler can identify operations suitable for vectorization (or you
can give it a hint using OpenMP directives), but it must prove that it is a
legal operation.

The following issues tend to prevent the compiler from vectorizing your
code:
» Imprecise dependence information (potential pointer aliasing)
» Bad data layout and alighment
» Branching
» Calls to functions
» Loop bounds that are not multiples of the SIMD length

49

The simd construct

>

VY VY

The OpenMP compiler may transform a loop marked with the simd
construct into a SIMD loop.

A SIMD chunk of iterations (equal to the SIMD length) is executed by
a single thread

Within a chunk each iteration is executed by a SIMD lane
The following clauses are supported on the simd construct

private (list)

lastprivate (list)

reduction (reduction-identifier : list)
collapse (n)

simdlen (length)

safelen (length)

linear (list[:linear-step))

aligned (list[:alignment))

50

The simd construct

» The OpenMP compiler may transform a loop marked with the simd
construct into a SIMD loop.

» A SIMD chunk of iterations (equal to the SIMD length) is executed by
a single thread

A\

Within a chunk each iteration is executed by a SIMD lane

A\

The following clauses are supported on the simd construct

private (list)
lastprivate (list)
| | reduction (reduction-identifier : list)

pragma omp simd [clause list]

for - loop - collapse (n)
simdlen (length)
safelen (length)
linear (list[:linear-step))
aligned (list/:alignment))

The simd construct

» |If you use the simd construct, you are instructing the compiler to use SIMD
instructions

A\

Where there is pointer aliasing your code it will give incorrect results

Where you do not provide the SIMD length through the simdlen clause, the
compiler will select an appropriate vector length

» Similarly to the for construct the compiler will create a new instance of the
loop variable i for each SIMD lane.

A\

1 void sind_loop(double *a, double ¥b, double *c, int n)
2 {
3 dnt i

pragma omp simd [clause list] 4

for - loop - ;

b #pragna omp sind
6 for (i=0; i<n; it+)
7 ali] = bli] + cfil;
8 }

51
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The simd construct

» The reductionand collapse clauses works for SIMD loop as well!

» For each variable in the reduction list, a private instance is used
during the execution of the SIMD loop, with all private instances
being combined using the reduction operator

» When using collapse use the compiler commentary to check that
vectorization was able to be performed

1 void simd_loop_collapse(double *r, double *b, double *c,
2 int n, int m)

84

4 int i, j;

double t1;

#pﬁigmélggg simd [clause list] # = 0,0;
#pragma omp simd reduction(+:t1) collapse(2)
9 for (i = 0; i<n; i++)

10 for (j = 0; j<m; j++)

11 t1 += func1(b[i], c[j]);

12 *r = t1;

13 }

0 N o o

)

@

52
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

53

Gather/scatter data in/out of vectors

» Scalar data elements are packed into vectors, operated on

collectively as a vector by SIMD instructions, and then unpacked.

» When accessing the scalar data with stride 1 (assuming optimal
alignment) a single SIMD load/store instruction can be used for
packing/unpacking.

» When accessing the scalar data with stride > 1, the compiler will
need to write code to perform gather and scatter operations for
vector packing/unpacking

for (int i=0; i<8; i+=2)
afi] =Db[i] + c[i];

vectora

vector b

.
¥ W

NN Y

vector c

Gather Scatter

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Gather/scatter data in/out of vectors

» A gather operation reads scalar data elements from memory

linearly but with a stride greater than one.

» A scatter operation writes the scalar data elements in a vector back
to memory linearly with a stride greater than one.

» Some architectures support SIMD gather and scatter instruction.

vector b

vector c

for (int i=0; i<8; i+=2)
ali] = b[i] + c[i];

vectora

al
N

NN Y

Gather

Scatter

54

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Gather/scatter data in/out of vectors

» In general gather/scatter operations are much more expensive
than single vector load/store instruction (best scenario)

» The next best scenario is when the access pattern is linear but
with a stride that is greater than one and gather and scatter
instructions may be used.

» The worst-case scenario is when no linear access pattern can be
determined, and the scalar data elements must be individually
packed into and unpacked from vectors.

for (int i=0; i<8; i+=2)
afi] =Db[i] + c[i];

vectora

vector b

.
¥ W

NN Y

vector c

Gather Scatter

55

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The aligned clause

#pragma omp simd aligned (list [: alignment])
for — loop

» For compiler optimizations if your arrays have been allocated at
optimal alignment boundaries (e.g. aligned alloc,
memalign, posix memalign)

» In C, a variable that appears in the clause must have an array or
pointer type.

» In C++, a variable that appears in the clause must have array,
pointer, reference to array, or reference to pointer type.

56

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Conditional Execution

<unconditional code >
float x = A[1i];
if (x > 0) |
float tmp = exp (x,5. f);
tmp *= kMyConstl;
x = tmp + kMyConst2;
} else {
float tmp = kMyConstl;
x =2.f * tmp; }
<resume unconditional code >
result [1] = x;

Time (clocks) II] @ [Z] I:] I:] D [Z] |

In SIMD, all processing elements execute the same instruction

at the same time.

57

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Conditional Execution

Time (clocks) m @ @ D D D I:]

ALUT ALU2 ALUB

<unconditional code >
float x = A[1];
if (x > 0) {
float tmp = exp (x,5.f);
tmp *= kMyConstl;
x = tmp + kMyConst2;
} else {
float tmp = kMyConstl;
x = 2.f * tmp; }
<resume unconditional code >
result [1] = x;

When a conditional statement, e.qg. an i1 f statement, causes
the control flow to diverge (i.e., some processing elements
need to execute one instruction while others need to execute
a different instruction), this can lead to inefficiencies

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Conditional Execution

Time (clocks) [I] [Zl [Z] D [:] D [Z]

ALU1 ALU2 ALUS8

<unconditional code >
float x = A[1i];
if (x > 0) |
float tmp = exp (x,5. f);
tmp *= kMyConstl;
x = tmp + kMyConst2;
} else {
float tmp = kMyConstl;
x =2.f * tmp; }
<resume unconditional code >
result [1] = x;

Not all ALUs do useful work!
v Worst case: 1/8 peak performance

Many processing elements might have to remain idle, which
can reduce the overall performance (throughput)

59

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Terminology

Instruction stream coherence (“coherent”
execution)

» Same instruction sequence applies to all
elements operated upon simultaneously

» Coherent execution is necessary for efficient
use of SIMD processing resources

» Coherent execution IS NOT necessary for
efficient parallelization across cores, since
each core has the capability to fetch/decode
a different instruction stream

“Divergent” execution
> A lack of instruction stream coherence

2] L.

ALU1 ALU2 ...

L)L te]

.. ALUS8

60

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

o

¢
\ "N
=

SIMD Execution on CPU and GPU

Execution on CPU Execution on GPU
» Explicit SIMD execution: SIMD » Implicit SIMD execution: Hardware (not
parallelization is performed at compile compiler) is responsible for simultaneously
time. Instructions are generated by the executing the same instruction from
compiler (e.g., AVX512 instructions) multiple instances on different data on
» Parallelism explicitly requested by SIMD ALUs
programmer using intrinsics » Compiler generates a scalar binary (scalar
» Parallelism conveyed using parallel instructions) but N instances of the program
language semantics (e.g., pragma are always run together on the processor
omp simd) » SIMD width of most modern GPUs is 32
» Parallelism inferred by dependency » Divergence is a very big issue (divergent
analysis of loops (hard problem, even code might execute at 1/32 the peak
best compilers are not great on capability of the machine!)

arbitrary C/C++ code)

61

SIMD Multi-Core

> 4 cores
» Each core has 8 SIMD ALUs
» = 32 operations

62
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012(

]

63

SIMD Multi-Core

Cascade Lake CPUs on Gadi, Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz

» 24 cores, each core 2 x AVX512 units, equivalent to 16 x 64-bit ALUs
» Hyperthreading level 2 (enabled by default)

GADE LAKE CORE BLOCK DIAGRAM

32KBL11$ Pre decode — InstQ —

Decoders

pop Cache

Allocate/Rename/Retire

Branch Prediction Unit

In order
Scheduler 000

Memory Control

1MBL2$ m 32KBL1D$
P—
Up to 2 ports of VNNI added

Up to 2x 512-bit loads and 1x 512-bit stores per cycle along
into CLX Core.c

with large per-core L2 cache to feed the compute.

VNNI built on strong foundations from Intel® Xeon® scalable processors.

© 2019 Intel Corporation

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The composite for simd construct

pragma omp for simd [clause list]
for - loop

» Chunks of loop iterations are first distributed across the threads in a team
according to the clauses on the for directive (e.g. schedule)

» Each chunk of loop iterations may be converted into SIMD loops in a way
that is determined by any clauses that apply to the simd construct

#pragma omp for simd
for (int i1=0; i<32; i++)
ali] += 1;

thread 0 thread 1 thread 2 thread 3
(HENEEEEEEEEENEEEEEEEEEEENEEEEEEE|

£
T ©
o
oY | I D 10 i (0 1 1111
£T
Q
£ 0.3 8. 11 16..19 24..27
e EEEE] RN RN RN
gg 4.7 12..15 20..23 28..31
2 EEEN] a4 RN EEEN]
Q

vector length vector length vector length vector length

64
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The composite for simd construct

pragma omp for simd
for - loop

[clause list]

» There may be a significantly increased memory pressure due to the fact
that at runtime a new copy of each private variable will be allocated per

SIMD lane.

» Typically, the chunks performed with SIMD need to be large enough to make
the loop peel/tail overhead negligible.

Thread
parallelism

SIMD
parallelism
+“—>

for

ali] += 1;

#pragma omp for simd
(int 1=0; 1<32; i++)

thread 0

thread 1

thread 2

thread 3

!

0.3
EEEN
4.7

EEEN

vector length

Lt

E.

8.11

—_

215

:

vector length

16..19 24.27
[EEEN] [EEEN
20..23 28..31
EEEN mEEN
vector length vector length

65

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The composite for simd construct

pragma omp for simd [clause list]
for - loop

» Remember that you can use the simd schedule modifier.
» The modifier will adjust the chunk size according to the formula
SIMD Chunk Size = Size of Data Element (in bits) / SIMD Register Width (in bits)
eg on AVX2 for data element = 32bits, SIMD _width = 256 bits, the chunk size will be 8

» This ensures that the size of chunk is at least as long as the SIMD length.

10 void func_2(float *a, float *b, int n)

11 {

12 #pragma omp for simd schedule(simd:static, 5)
13 for (int k=0; k<n; k++)

14 A

15 // do some work on a and b

16}

17 }

66

