OpenMP Reference Material

» Using OpenMP — The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,

Chapter 1
O p e n IVI P ° > http://www.openmp.org/
° » Introduction to High Performance Computing for Scientists and Engineers,
Hager and Wellein, Chapter 6 & 7
» High Performance Computing, Dowd and Severance, Chapter 11
P a r t I I » Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.
Kumar

» Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.
J.McDonald, R.Menon

[P
' = .
The for Work-Sharing Directives The schedule clause
» The order in which threads execute is not Thread 0 executes loop iteration 0 » The schedule clause of the for directive specifies how iterations are
predictable (OS scheduled). Thread 0 executes loop iteration 1 mapped to threads
> The way to map iterations to threads can Thread O executes loop iteration 2 schedule (scheduling clause[,chunk size])
be specified by the programmer (see later Thread 3 executes loop iteration 7
schedule dause)' . Thread 3 executes 100P iteration 8 #pragma omp parallel for schedule (scheduling clause [, chunk_size])
» If the programmer does not specify the Thread 2 executes loop iteration 5
mapping between threads and iterations, Thread 2 executes loop iteration 6
the compiler decides which strategy to use. P . . » The granularity of the workload distribution is a chunk, a continuous
Thread 1 executes loop iteration 3 non-empty subset of the iteration space.
Thread 1 executes loop iteration 4

The schedule clause The schedule clause

The most straightforward schedule is
schedule (static[,chunk size]) e

The schedule (dynamic[,chunk size]) enables basic
dynamic load balancing —

- oo
|
|
|
|
-
|
-

» Splits the iteration space into chunks of size
chunk size and allocates to threads
statically in a round-robin fashion

» No specification implies the number of chunks

Thread ID
=
L |
|

> iteration space split into chunk size blocks that
are scheduled dynamically as they complete the

dynamic,7

o ow

equals the number of threads Iterations are work on the current chunk, threads request [siale
assigned in the order of the thread number additional chunks T a w e a
and the last chunk may have a smaller number > if not specified chunk size is set by default to 1 eraton nuber

of iterations. » Do you think there is any disadvantage in this

» It has the lowest overhead and is the default schedule?
setting for many OpenMP compilers.

» Potential load imbalance - if iterations have
different workloads, consider dynamic
scheduling (schedule(dynamic)).

The schedule clause Loop Schedules

Iteration

. m mEE u)
schedule (runtime) e— qideg7 | I] Example of loop schedules in OpenMP
1 L] ' mEE BN
0 [[I |
> . . I T B S » 20 iterations by three threads
The choice of the optimal g im - = .' '. - " .. " ' » Default chunksize for dynamic and
schedule may depend on the g " ® ® ® ® =B guided is one
problem size 5 Gamic? > Note that only the static
» The schedule and (optional) i stafc schedule guarantee that the
chunk size are set through the distribution of chunks stays the
OMP_SCHEDULE environment Hteration number same between runs emmic s, powwIcr1] DYMMGC,3 GUIDED[1]
Var‘iab|e Figure 6.2: Loop schedules in OpenMP. The example loop has 20 iterations and is executed

by three threads (TO, T1, T2). The default chunksize for DYNAMIC and GUIDED is one. If a
chunksize is specified, the last chunk may be shorter. Note that only the STATIC schedules
guarantee that the distribution of chunks among threads stays the same from run to run.

Introduction to High Performance Computing for
Scientists and Engineers, Hager and Wellein, Figure 6.2

The reduction clause The reduction clause

sum = 0;

partial sum [NTHREADS] = {0};
sum = 0; #pragma omp parallel for default (none) shared (n, a, partial sum)
partial_ sum [NTHREADS] = {0}; for (1 = 0; 1 < n; ++1i) {
#pragma omp parallel for default (none) shared (n, a, partial sum) partial sum [omp_get thread num ()] += a[i]

} /* End of parallel region */
for (i = 0; i < NTHREADS ; ++i){
sum += partial sum [i];

for (1 = 0; 1 < n; ++1i) {
partial sum [omp_get thread num ()] += a[i]
} /* End of parallel region */

for (i = 0; i < NTHREADS ; ++i) {) vates shrsa memory [T+ [e [z 3 ¢ 231z [o Tn o 2]
sum += partial_sum [i]; - Thread
} Stride8 IDs
Values [8 [-2[10[6 [0 [o]3[7]2][3]2]7 0 [n]o]2]
L=
Step2 Thread
Stride 4 IDs
Is there a better‘a|g0r‘ithm? Values [8 [7 [13]13[0 [o]3[7]2[3]2][7 0 [n]o]2]
Step3 Thread
Stride 2 IDs
Values [21[20[18[13[0 [e[3[7[2[3]2][7 0 [n]o]2]
Step4 Thread
Stride 1 IDs
Values [41]20[13[13[0 [o[3[7]2[3]2][7 0 [n]o]2]
g —
= 0

The reduction clause Nested Parallelism

#pragma omp parallel for default (none) shared (n, a) reduction (+: sum) #pragma omp parallel for num threads (2)
for (1 =0; i <mnj ++i) | for (1 = 0; i < Ni; 1 ++}
sum += al i]
} /* End of parallel reduction */ #pragma omp parallel for num_threads (2)
for (3 = 0; J < Nj; J++) {

» reduction (+:sum)

» Implements a reduction operation - The clause ensures that each thread maintains a » By default, the inner loop is serialized and run by one thread

prlv?te copy of the re_ductlorf variable, and at the end of the parallel region, the private > To enable muttiple threads in nested parallel loops requires environment variable

copies are combined into a single result.
» Itis not necessary to specify the reduction variable as shared OMP_NESTED to be TRUE
» The order in which thread-specific values are combined is unspecified » You can also control the maximum level of nesting through OMP_MAX ACTIVE LEVELS
» The operators supported are +, i, *, & , ", && and > Each thread from the first parallel for will spawn a new team.

) » Note - the use of synchronization constructions in nested parallel sections requires care (see
» Some constraints) o - '
OpenMP specs, e.g. there is no restriction on synchronizing threads across different teams!).

> Aggregate types, pointer types and references types are not supported
» A reduction variable must not be const
» No overloaded operators with respect to the variable that appears in the clause

Nested Parallelism

#pragma omp parallel for collapse (2)
for (i = 0; i < Ni; i ++4) {
for (j = 0; j < Nj; J++) { ..

A disadvantage of nested parallelism is parallel overhead
» Collapse is usually better way of parallelizing nested loops

» The collapse clause turns the two loops into a combined single loop.

» Threads work on a larger chunk of work, which can improve parallel efficiency.

» By collapsing loops, you reduce the overhead of managing multiple parallel

loops.

The ordered directive

#pragma omp ordered
/* structured block */

» ordered: threads execute the structured block in sequential order.

cumul_sum [0] = list [0];
#pragma omp parallel for ordered shared (cumul_sum , list
, n)
for (i=1; i<n; 1i++) {
/* other processing on list [i] if required */
#pragma omp ordered
{
cumul_sum [i] = cumul_sum [i-1] + list [i];
}
}

» The first thread that encounters this directive enters the structured block without waiting.

» Any subsequenRestrictions: An orderedclause must be added to the parallel region in
which this construct appears.

» threads wait until previous threads have completed the block execution.

The barrier directive

#pragma omp barrier
/* structured block */

» barrier: Each thread waits at the barrier until all threads arrive

Restrictions:

» Each barrier must be encountered by all threads in a team, or by none at all.
» The sequence of work-sharing regions and barrier regions encountered must be

the same for each thread in the team.

The atomic directive

#pragma omp atomic [seq_cst [,]] atomic -clause [[,] seq_cst]
/* single expression statement */

#pragma omp atomic [seq cst [,]]

/* single expression statement */

#pragma omp atomic [seqg cst [,]] capture [[,] seq cst]

/* structured block *

» atomic: This is a hint for the compiler to use low-level atomic instructions if

available.
» Atomic clauses

» read: performs an atomic read of the input variable and stores it into the

output. This is guaranteed regardless of the size of the variable.

» write: the output variable is written atomically. This is guaranteed

regardless of the size of the variable.

x = expr ; // x 1s written atomically

The atomic directive

Atomic clauses
» update: causes an atomic update of the location designated by x using the
designated operator or intrinsic.

X++;

++x; x- —;

—— x;

x binop = expr ;

x = x binop expr ; x = expr binop x;

The following rules also apply

» The evaluation of expr need not be atomic with respect to the read or write of the location
designated by x.

» No task scheduling points occur between the read and the write of the location designated by x.

» Binop (binary operators) is one of the following operators +, * , -, & , =, <<, >>.

OpenMP:

Library Functions
and Environment
Variables

The atomic directive

Atomic clauses

» capture: causes an atomic update of the . :f
location designated by x using the designated vort
operator or intrinsic while also capturing the Z - b}i{rllop = expr;
original or final value of the location (v) designated v = % = x binop expr;
v = x = expr binop x;

by x with respect to the atomic update.

The following rules also apply

» Only the read and write of the location designated by x are performed mutually atomically.

» The evaluation of expr, and the write to the location designated by v do not need to be atomic
with respect to the read or write of the location designated by x.

» No task scheduling points occur between the read and the write of the location designated by x.

I { v=2x; x += n; } // atomically update x, but capture original value in v I

Internal Control Variables

The OpenMP standard defines some internal control variables (ICVs) controlled by the
implementations that govern the behaviour of a program at run time. Here are some of them:

» nthreads-var — stores the number of threads requested for the execution of future parallel
regions.

» dyn-var — control whether dynamic adjustment of the number of threads to be used in future
parallel regions is enabled.

» nest-var — controls whether nested parallelism is enabled for future parallel regions.

» run-sched-var — stores scheduling information to be used for loop regions using the runtime
schedule.

» def-sched-var — stores implementation-dependent scheduling information to be used for
loop regions.

These variables cannot be accessed directly, but via either library functions or environment variables.

Library Functions

Defined in header file
#include <omp . h>

Controlling threads and processors

void omp_set_num_threads (int num_threads)
int omp_get_num_threads ()

int omp_get_max_threads () // Number of threads used in the next parallel region
int omp_get_thread_num ()

int omp_get_num_procs () // Returns the number of processor cores available

int omp_in_parallel () // Check if within a parallel region

Controlling thread creation

void omp_set_dynamic (int dynamic_threads) // Enable / disable dynamic thread adjustment
int omp_get_dynamic () // Check whether dynamic thread adjustment is enabled

void omp_set_nested (int nested) int omp_get_nested ()

void omp_set dynamic (int dynamic_ threads) // Enable / disable dynamic thread adjustment
int omp_get dynamic () // Check whether dynamic thread adjustment is enabled

void omp_set_nested (int nested) int omp_get_nested ()

OpenMP Environment Variables

OMP DISPLAY ENV:thisis a very useful variable to verify all the settings. If set to true or verbose
all the relevant environment variables are printed at the beginning of the program.

OMP_STACKSIZE: this variable allows to increase the default stack size allocated to each thread.

» The syntax supports a case-insensitive unit qualifier that is appended to the number: B for
bytes, K for 1024 bytes, M for 1024 Kbytes, and G for 1024 Mbytes.

OpenMP Environment Variables

OMP NUM THREADS: default number of threads entering parallel region

OMP_DYNAMIC: if TRUE it permits the number of threads to change during execution,
in order to optimize system resources

OMP_ NESTED: if TRUE it permits nested parallel regions

OMP_SCHEDULE: determines scheduling for loops that are defined to have runtime
scheduling

export OMP SCHEDULE =" static ,4 "
export OMP SCHEDULE =" dynamic "
export OMP_SCHEDULE =" guided "

OpenMP and Pthreads

OpenMP Pthreads

Specification for compiler directives, library POSIX standard for libraries, providing low-level

Definition . R X
routines, and environment variables. thread management.

Shared Memory: Also operates within a single
process, but with more manual control over
threads.

parallelism Model Shargd M_emory: Utilizes multiple threads
within a single process.

Requires explicit handling of thread

communication using functions

like pthread_create and pthread_join.

Implicit (compiler handles thread

Communication -
synchronization).

Requires more manual management of threads

Ease of Use Easier to program and debug due to directives. -
and synchronization.

Scalability Limited scalability within a single node. Scalable to multiple cores within a single machine.

Best for parallelizing loops and simple tasks Suitable for applications that need fine-grained

Use Cases within a single program. control over threads and synchronization.

OpenMP and Pthreads OpenMP and MPI

OpenMP MPI

» OpenMP removes the need for a programmer to initialize task attributes, set up arguments to Library specification for message-passing,

Specification for compiler directives, library

threads, partition iteration spaces, etc. Definition routines, and environment variables. proposeq as a standard by a committee of
) . vendors, implementors, and users.
» OpenMP code can closely resemble serial code — (verification)
. L . . Shared Memory: Utilizes multiple threads Distributed Memory: Operates across a network
> OpenMP users require availability of an OpenMP compiler Parallelism Model ithin a single process. of distributed nodes.
» performance dependent on quality of compiler — hardly a problem today - : -)
. . Communication Implicit (compiler handles thread Explicit (programmer manages message passing
» Well-engineered OpenMP code causes no loss of performance with respect to lower- synchronization). using API calls like MPI_Send and MPI_Recv).
level APIs. - istributed-
. Architecture Suitable for multi-core processors. \r,nvzrrnkz onat::;;eschti::(: memory and distributed
» Pthreads has a lower-level API that is slightly more flexible and rich, (e.g. condition waits, locks i :
of different types etc) but also more error prone Ease of Use Easier to program and debug due to directives. ::gl;t:zr::;:iez:éz:m handiing of communication
» Pthreads is library based and not compiler-based - o S
Scalability Limited to scalability within a single node. Scalable to large clusters and supercomputers.
> OpenMP is now the defacto standard in ngh-Performance compUtmg Use Cases Best for parallelizing loops and simple tasks Ideal for distributed computing, large-scale
within a single program. simulations, and complex parallel applications.

TEQSA ROVIOE . RVIZE0 AUSTAALANUNIVERSTY) GRS PAOVIOER CO0E COL2C

Reference Material

» Introduction to High Performance Computing for Scientists and Engineers, Hager and

Simultaneous Multi-Threading (SMT or Welein

H ype rt h rea d |] g) » Using OpenMP — The Next Step, R. van der Pas, E. Stotzer, and C. Terboven, Chapter 4

an d » Intel Intrinsics Guide,

https://www.intel.com/content/www/us/en/docs/intrinsics-—

Single-Instruction Multiple Data (SIMD) quide/index.htnl

» Chapter 4 from Computer Systems A Programmer’s Perspective, Third Edition, Randal E.
Bryant and David R. O’Hallaron, Pearson Education Heg USA, ISBN 9781292101767

Simple Single Core Superscalar CPU Architecture

» Multiple fetch/decode units

» Multiple ALUs, in general multiple Functional Units (FUs)

» One Execution Context (EC)

» Exploits Instruction Level Parallelism (ILP) through
superscalarity and pipelining

» ILP requires sophisticated, additional logic to yield good
performance

» Out-of-Order (0O00) execution

» Pre-fetching

» Branch prediction

» Big caches
» This extra logic is tightly coupled to the FUs and to the EC
» Thus, this view of the CPU architecture is too simplistic

Fetch/Decode

Execution
Context

Cache (large ...)

Out-Of-Order Logic

Branch Prediction

More schematic single
core architecture

» In the real core architecture Functional Units,
Out-of-Order Execution Logic, Execution Context
are tightly coupled at the hardware level

» Map Front End to Fetch/Decode

» Map Execution Engine to Functional Units plus
Out-of-Order Execution Logic plus Execution
Context

» We can leave the rest of the logic, Branch
Predictor, Caches, Prefetching out of our
representation

A real single core architecture

Front End

The front end retrieves the
instructions from memory
and translates instructions
into a format that can be
understood by other
components of the CPU.

Intel Skylake

The execution unit is the
part of the CPU that ==
actually carries out the
instructions

Execution Engine

Memory Subsystem

Under utilisation of ILP

What are the main causes of
under utilisation of ILP on
this single-core architecture?

Under utilisation of ILP

» The main causes of under utilisation of
ILP on this single-core architecture: -
» Branch misprediction

» Bad instruction mix - cannot feed all
replicates of the functional units

» Thread stalls due to dependencies >
thread cannot execute as it is waiting for
operands to be fetched or dependencies
to be resolved

Dompute cycle E memory stall cycle

Lo [0 < [[- [

thread
—_—

time

Execution Unit

Hyperthreading (Simultaneous Multi-Threading)

> ldea: Interleave processing of multiple
threads on the same core to hide
stalls

> This can hide the latency of one
thread’s stalls with another thread’s
execution

» What is a potential problem with
this strategy?

000
Execution Unit

==

).

Under utilisation of ILP

» Pipeline Hazards: The next stage in the
pipeline cannot execute in the following clock
cycle

» Typically caused by dependencies between
successive instructions

» Data dependencies: the results computed by
one instruction are used as the input data for a
following instruction

» Control dependencies: one instruction
determines the location of the following
instruction (e.g, jump, return)

» This can require the hardware to insert no-ops
called bubbles in the pipeline, causing it to
stall while the dependencies are resolved

prog3

0x000:
0x006:
0x00¢:
0x004:
oxo0t:

proga
0x000
0x006

0x00¢

0x000: halt Flrlr

irmovl $3,%eax

[
[
sop I

2
irmovl $10,%edx [FTo
LF

LICILIEE

addl Yedx, %eax

halt

m|o(m|z[=|

o|lm(z|s

Cyces
w

Rlledx]+— 10

M
M_val

E=3
M_GSIE = %eax

1 2 3 4 5 & 7 8 9 0 m

ot s000c [F D[E M W]
trmovt 89, fanx [Flolelm|w
babbe G

| [
bubble E
bubble
add1 Yodx, oax Flolo o

SEEEE

SEEE
==

o

Hyperthreading (Simultaneous Multi-Threading)

> |dea: Interleave processing of multiple
threads on the same core to hide
stalls

» This can hide the latency of one
thread’s stalls with another thread’s
execution

» What is a potential problem with
this strategy? ... Context switch

000
Execution Unit

EEE=

=

Hyperthreading: A More Detailed View

Single-threaded

Single Instruction Multiple Data (SIMD)

> ldea “2”: Amortize cost/complexity of

managing an instruction stream across

What is a potential problem with this an® HH many ALUs

strategy? Context switch --> m® - > Single Instruction Multiple Data |ALUO| |ALU 1| |ALU2| |ALU3|
; : - (SIMD) processing

Add dedicated separated execution Mooy

> Fetch and decode one instruction

|ALU4| |ALUS| |ALU6| |ALU7|

contexts for these threads
Same instruction broadcast and executed
in parallel on ALUs operating on
different data elements

» Since the contexts of these threads are in
dedicated register space, context switch
is either lightweight or for free

» - simultaneous multi-threading

Execution units

» Execution context must be larger, for
example make registers larger (in bits)

» This requires different instructions

Introduction to SIMD Using SIMD Capabilities

» Vector Extensions or Intrinsics

SIMD provides data-parallelism at the
P P » Vendor provided code extensions close to assembly level

instruction level For (int 1=0; i<16; 1) » Advantages: Provide performance and control
ali] = bli] + c[il; Scalarinstructions » Disadvantages: Extremely verbose, generally not portable
» A single instruction operates on multiple ootootbotbotoado
i’ F N N N N N N N 32loads > comp"er F|ags
data elements in parallel SIMD 0000000000000000 1sadds o)
instructions use special registers with a =======s==2=2:2=2323232:2 (6o > Advantages: No additional coding effort
X Ubb000boooooboda » Disadvantages: Vendor specific, performance and success compiler-

larger width (vector length) vecto length o dependent, problematic for complex code, almost no control on
» SIMD instructions are as fast as their scalar ‘ED]]»D:D]D]]]DID Spistuctons implementation

counterpart, leading to potential speedup of EIj]]Dj]]Dj]]Dj:D 8loads P

’ 4adds

up to the vector length = = = = e »> OpenMP SIMD
> In practice, the speedup achieved may depend MO OO » Pragmas in OpenMP for |my:'>lement|ng SIMD parallelism

heavil tions needed to move » Advantages: Portable, concise and easy to use

eavily on memory opera » Disadvantages: Performance compiler-dependent, correctness left to

the data programmer, no low-level control on implementation

Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations:
4x32 bits or 2x64 bits (4-wide float

Intel:SIMD ISA Evolution

‘ SIMD extensions on top of x86/x87
vectors)

64b
AVX instructions: 256-bit operations: SIMD

8x32 bits or 4x64 bits (8-wide float
vectors)

AVX512: 512-bit operations: 16x32 bits
or 8x64 bits (16-wide float vectors)

Pa Pa core
i (Wilamette, (Prescott, ~ (Merom,
1997) 000 2000 2008)

As12ZF

Scalar program

void sinx (int N, int terms, float * x, float * result)
{
for (int i=0; i<N; i++)
{
float value = x[i];
float numer = x[i] * x[i] * x[il;
int denom = 6; // 3!
int sign = -1
for (int j=1; j<=terms; j++)
{
value += sign * numer / denom ;
numer *= x[i] * x[i];
denom *= (2% +2) * (2% §+3) ;
sign *= -1;
}
result [i] = value;

Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors)

AVX instructions: 256-bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)

AVX512: 512-bit operations: 16x32 bits or 8x64 bits (16-wide float vectors)

Intel® AVX10.1 (pre-enabling)
Intel® AVX-512 ‘Optional 512-bit FP/int
128/256/512-bit FP/int 128/256-bit FP/int
S e 32 vector registers.
B e 8 mask registers
512 512. rounding
® ® Embedded broadcast Embedded broadcast
Intel®AVX | Intel®AVX2 e otons .
128/256-bit FP Float16 Native media additions. Native media additions
16 registers 1281256-it FP FMA || Ho additions HPC additions
NDS (and AVX128) | 256-bitint
Improved blend | PERMD
MASKMOV Gather e e er o) Version-based enumeration
Implicit unaligned Intel® Xeon P-core only Intel® Xeon P-core only

Figure 1-2. Intel® ISA Families and Features

The Converged
Vector ISA:
Intel® Advanced
Vector
Extensions 10

Technical Paper
July 2023 Revision 1.0

Vector Program Using AVX2 Intrinsics

#include <immintrin .h>
void sinx (int N, int terms, float * x, float * result)
{
float three_fact = 6; // 3!
for (int 1=0; i<N; i+=8)
{
m256 origx = _mm256 load_ps (&x[il);
m256 value = origx ;
m256 numer = _mm256_mul ps (origx , _mm256 mul_ps (origx, origx));
m256 denom = _mm256 set lps (three_fact); float sign = -1;
r (int j=1; j<=terms; j++)

- ol

// value += sign * numer / denom

_m256 tmp = mm256 _div_ps (_mm256 mul ps (_mm256 set 1ps (sign), numer), denom);
value = _mm256_add_ps (value, tmp);

numer = mm256 mul ps (numer , _mm256 mul ps (origx, origx));

denom = _mm256 mul_ps (denom, _mm256_set 1ps ((2%3+2) * (2%3+3)));

sign *

}
_mm256 _store_ps (& result [i], value);
}

-1;

Alignment

To get full benefit from SIMD the starting address

of the vectors (arrays) needs to be aligned on a
correct memory address boundary MM for (int i=0; i<ll; i++)
ali] = 1.0;
» Starting array address in memory must o 16 byte array a
be a multiple of the SIMD length a2l boundary [o[\[23[2]5[6[7[e]o1q]
» No optimal alignment - compiler has :3}
to use loop peeling sl 16 byte
> | | and ale] boundary .
Loop peeling generates a loop peel an an ﬂﬂﬂ
(usually) a loop tail that is treated o peel | SWDinstructions ta
separately afio] (vector length of 4)
» The peel and tail section are typically not
executed using SIMD instructions

Challenges for compiler vectorization

The compiler can identify operations suitable for vectorization (or you
can give it a hint using OpenMP directives), but it must prove that it is a
legal operation.

The following issues tend to prevent the compiler from vectorizing your
code:
» Imprecise dependence information (potential pointer aliasing)
» Bad data layout and alignment
» Branching
» Calls to functions
» Loop bounds that are not multiples of the SIMD length

Demo

Vector Program Using AVX2
Intrinsics

The simd construct

» The OpenMP compiler may transform a loop marked with the simd
construct into a SIMD loop.

» A SIMD chunk of iterations (equal to the SIMD length) is executed by
a single thread

» Within a chunk each iteration is executed by a SIMD lane
» The following clauses are supported on the simd construct

private (list)

lastprivate (list)

reduction (reduction-identifier : list)
collapse (n)

simdlen (length)

safelen (length)

linear (list[:linear-step])

aligned (list[:alignment])

The simd construct

» The OpenMP compiler may transform a loop marked with the simd
construct into a SIMD loop.

» A SIMD chunk of iterations (equal to the SIMD length) is executed by
a single thread

» Within a chunk each iteration is executed by a SIMD lane
» The following clauses are supported on the simd construct

private (list)

lastprivate (list)

reduction (reduction-identifier : list)
collapse (n)

simdlen (length)

safelen (length)

linear (list[:linear-step|)

aligned (list[:alignment])

pragma omp simd [clause_list]
for - loop -

The simd construct

» The reductionand collapse clauses works for SIMD loop as well!

» For each variable in the reduction list, a private instance is used
during the execution of the SIMD loop, with all private instances
being combined using the reduction operator

» When using collapse use the compiler commentary to check that
vectorization was able to be performed

1 void simd_loop_collapse(double *r, double *b, double *c
2 int n, int m)

34

i~

int i, j;
double t1;
for - t1 =0.0;

#pragma omp simd reduction(+:t1) collapse(2)
9 for (i = 0; i<n; i++)

10 for (= 0; j<m; j+4)

11 t1 += func1 (b[il, <[j]);

12 *r = t1;

5

pragma omp simd [clause list] 6
loop - 7

8

The simd construct

» If you use the simd construct, you are instructing the compiler to use SIMD

instructions

» Where there is pointer aliasing your code it will give incorrect results
» Where you do not provide the SIMD length through the simdlen clause, the

compiler will select an appropriate vector length

» Similarly to the for construct the compiler will create a new instance of the

loop variable i for each SIMD lane.

1 void sind_loop(double *a, double ¥b, double *c, int n)
2 {
3 int i;
p];f%%mé l%rg% simd [clause_list] 4)
5 #pragna omp sind
6 for (i=0; icn; i)
7 ali] = bli] + c[il;
8

Gather/scatter data in/out of vectors

» Scalar data elements are packed into vectors, operated on

collectively as a vector by SIMD instructions, and then unpacked.

» When accessing the scalar data with stride 1 (assuming optimal

alignment) a single SIMD load/store instruction can be used for
packing/unpacking.

» When accessing the scalar data with stride > 1, the compiler will

need to write code to perform gather and scatter operations for
vector packing/unpacking

vectora

Gather Scatter

Gather/scatter data in/out of vectors

» A gather operation reads scalar data elements from memory
linearly but with a stride greater than one.

» A scatter operation writes the scalar data elements in a vector back
to memory linearly with a stride greater than one.

» Some architectures support SIMD gather and scatter instruction.

vectora

vector b

vector ¢

Gather Scatter

The aligned clause

#pragma omp simd aligned (list [:alignment])
for - loop

» For compiler optimizations if your arrays have been allocated at
optimal alignment boundaries (e.g. aligned alloc,
memalign, posix memalign)

» In C, a variable that appears in the clause must have an array or
pointer type.

» In C++, a variable that appears in the clause must have array,
pointer, reference to array, or reference to pointer type.

Gather/scatter data in/out of vectors

» In general gather/scatter operations are much more expensive
than single vector load/store instruction (best scenario)

» The next best scenario is when the access pattern is linear but
with a stride that is greater than one and gather and scatter
instructions may be used.

» The worst-case scenario is when no linear access pattern can be
determined, and the scalar data elements must be individually
packed into and unpacked from vectors.

vectora

vector b

vector ¢

Gather Scatter

Conditional Execution

Time (ocky (2] IO (E]
A w2 . oo Aws

<unconditional code >
float x = A[i];
if (x > 0) |
float tmp = exp (x,5.f);
tmp *= kMyConst1;
x = tmp + kMyConst2;
} else {
float tmp = kMyConst1;
x=2.f % tp;)
<resume unconditional code >
result [i] = x;

In SIMD, all processing elements execute the same instruction
at the same time.

Conditional Execution

<unconditional code >
float x = A[i];
if (x > 0) {
float tmp = exp (x,5.f);
tmp *= kMyConst1;
x = tmp + kMyConst2;
} else {
float tmp = kMyConstl;
x = 2.f % tmp;)
<resume unconditional code>
result [i] = x;

Timetdocks LA EIOIOOEIE)

When a conditional statement, e.g. an if statement, causes
the control flow to diverge (i.e., some processing elements
need to execute one instruction while others need to execute
a different instruction), this can lead to inefficiencies

Terminology

Instruction stream coherence (“coherent”
execution)

>

»

Same instruction sequence applies to all
elements operated upon simultaneously
Coherent execution is necessary for efficient
use of SIMD processing resources

Coherent execution IS NOT necessary for
efficient parallelization across cores, since
each core has the capability to fetch/decode
a different instruction stream

“Divergent” execution

»

A lack of instruction stream coherence

RILOO00OEE)

ALUT ALU2 ...

.. ALUB

[—

Conditional Execution

<unconditional code >
float x = A[i];
if (x> 0) {
float tmp = exp (x,5.f);
tmp *= kMyConst1;
x = tmp + kMyConst2;
} else {
float tmp = kMyConstl;
x=2.£ % tnp; }
<resume unconditional code>
result [i] = x;

E]IZ]EIDCIDEI%I

Time (clocks)
AT A2 ...

Not all ALUs do useful work!
v Worst case: 1/8 peak performance

Many processing elements might have to remain idle, which
can reduce the overall performance (throughput)

Execution on CPU

» Explicit SIMD execution: SIMD
parallelization is performed at compile
time. Instructions are generated by the
compiler (e.g., AVX512 instructions)

» Parallelism explicitly requested by
programmer using intrinsics

» Parallelism conveyed using parallel
language semantics (e.g., pragma
omp simd)

» Parallelism inferred by dependency
analysis of loops (hard problem, even
best compilers are not great on
arbitrary C/C++ code)

SIMD Execution on CPU and GPU

Execution on GPU

» Implicit SIMD execution: Hardware (not

compiler) is responsible for simultaneously
executing the same instruction from
multiple instances on different data on
SIMD ALUs

Compiler generates a scalar binary (scalar
instructions) but N instances of the program
are always run together on the processor
SIMD width of most modern GPUs is 32
Divergence is a very big issue (divergent
code might execute at 1/32 the peak
capability of the machine!)

SIMD Multi-Core

» 4 cores
» Each core has 8 SIMD ALUs
» =32 operations

HH
HH
HH
HH

HH
HA
HE
HA

(e () [[(EEEE] [e [
(| [[() (] [EE (R
=

SIMD Multi-Core

Cascade Lake CPUs on Gadi, Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz
» 24 cores, each core 2 x AVX512 units, equivalent to 16 X 64-bit ALUs
» Hyperthreading level 2 (enabled by default)

Memory Control

MBL2s MBI 08

The composite for

simd construct

for - loop

pragma omp for simd [clause list]

» Chunks of loop iterations are first distributed across the threads in a team
according to the clauses on the for directive (e.g. schedule)

» Each chunk of loop iterations may be converted into SIMD loops in a way
that is determined by any clauses that apply to the simd construct

Thread

A2f

SIMD
parallelism parallelism
«

-—

-—

Po0.3 i 8.3

P oveorkngh i vectorlengih

The composite for simd construct

pragma omp for simd [clause list]
for - loop

» There may be a significantly increased memory pressure due to the fact
that at runtime a new copy of each private variable will be allocated per
SIMD lane.

» Typically, the chunks performed with SIMD need to be large enough to make
the loop peel/tail overhead negligible.

treado thvead 1 thead2 | tvead3
OO O

£
o g
@gI [0 | OO | OO0 | OO
£3 i
T l l : l l

a i

£ 0.3 8.1 i 16.19 | 4.2
ad o om0 0o
=2 4.7 12,15 1 20.23 0 28.31
ae H H

g i H

- A— wetorkogh | vecorlengh | vecorkength

The composite for simd construct

pragma omp for simd [clause list]
for - loop

» Remember that you can use the simd schedule modifier.
» The modifier will adjust the chunk size according to the formula
SIMD Chunk Size = Size of Data Element (in bits) / SIMD Register Width (in bits)
eg on AVX2 for data element = 32bits, SIMD_width = 256 bits, the chunk size will be 8
» This ensures that the size of chunk is at least as long as the SIMD length.

10 void func_2(float *a, float *b, int n)

1 {

12 #pragma omp for simd schedule(simd:static, 5)
13 for (int k=0; k<n; kt+)

14 |

15 // do some work on a and b

16}

@

