
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

1

OpenMP:
Part II

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Reference Material
Ø Using OpenMP – The Next Step, R. van der Pas, E. Stotzer, and C. Terboven,

Chapter 1
Ø http://www.openmp.org/
Ø Introduction to High Performance Computing for Scientists and Engineers,

Hager and Wellein, Chapter 6 & 7
Ø High Performance Computing, Dowd and Severance, Chapter 11
Ø Introduction to Parallel Computing, 2nd Ed, A. Grama, A. Gupta, G. Karypis, V.

Kumar
Ø Parallel Programming in OpenMP, R. Chandra, L.Dagum, D.Kohr, D.Maydan.

J.McDonald, R.Menon

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The for Work-Sharing Directives

Ø The order in which threads execute is not
predictable (OS scheduled).

Ø The way to map iterations to threads can
be specified by the programmer (see later
schedule clause).

Ø If the programmer does not specify the
mapping between threads and iterations,
the compiler decides which strategy to use.

3
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause

Ø The schedule clause of the for directive specifies how iterations are
mapped to threads

schedule(scheduling_clause[,chunk_size])

Ø The granularity of the workload distribution is a chunk, a continuous
non-empty subset of the iteration space.

#pragma omp parallel for schedule (scheduling_clause [, chunk_size])

4

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause
The most straightforward schedule is
schedule(static[,chunk_size])

Ø Splits the iteration space into chunks of size
chunk_size and allocates to threads
statically in a round-robin fashion

Ø No specification implies the number of chunks
equals the number of threads Iterations are
assigned in the order of the thread number
and the last chunk may have a smaller number
of iterations.

Ø It has the lowest overhead and is the default
setting for many OpenMP compilers.

Ø Potential load imbalance - if iterations have
different workloads, consider dynamic
scheduling (schedule(dynamic)).

5
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause

The schedule (dynamic[,chunk_size]) enables basic
dynamic load balancing

Ø iteration space split into chunk_size blocks that
are scheduled dynamically as they complete the
work on the current chunk, threads request
additional chunks

Ø if not specified chunk_size is set by default to 1
Ø Do you think there is any disadvantage in this

schedule?

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The schedule clause
schedule(runtime)

Ø The choice of the optimal
schedule may depend on the
problem size

Ø The schedule and (optional)
chunk size are set through the
OMP_SCHEDULE environment
variable

7
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Loop Schedules

Introduction to High Performance Computing for
Scientists and Engineers, Hager and Wellein, Figure 6.2

Example of loop schedules in OpenMP

Ø 20 iterations by three threads
Ø Default chunksize for dynamic and

guided is one
Ø Note that only the static

schedule guarantee that the
distribution of chunks stays the
same between runs

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The reduction clause
sum = 0;
partial_sum [NTHREADS] = {0};
#pragma omp parallel for default (none) shared (n, a, partial_sum)
 for (i = 0; i < n; ++i) {

partial_sum [omp_get_thread_num ()] += a[i]
} /* End of parallel region */
for (i = 0; i < NTHREADS ; ++i){
 sum += partial_sum [i];

}

9
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The reduction clause
sum = 0;
partial_sum [NTHREADS] = {0};
#pragma omp parallel for default (none) shared (n, a, partial_sum)
 for (i = 0; i < n; ++i) {

partial_sum [omp_get_thread_num ()] += a[i]
} /* End of parallel region */
for (i = 0; i < NTHREADS ; ++i){
 sum += partial_sum [i];

}

Is there a better algorithm?

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The reduction clause

Ø reduction(+:sum)
Ø Implements a reduction operation - The clause ensures that each thread maintains a

private copy of the reduction variable, and at the end of the parallel region, the private
copies are combined into a single result.

Ø It is not necessary to specify the reduction variable as shared
Ø The order in which thread-specific values are combined is unspecified
Ø The operators supported are +, ¡, *, &, , ˆ, && and

Ø Some constraints
Ø Aggregate types, pointer types and references types are not supported
Ø A reduction variable must not be const
Ø No overloaded operators with respect to the variable that appears in the clause

#pragma omp parallel for default (none) shared (n, a) reduction (+: sum)
 for (i = 0; i < n; ++i) {

 sum += a[i]
 } /* End of parallel reduction */

11
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Nested Parallelism
#pragma omp parallel for num_threads (2)
 for (i = 0; i < Ni; i ++}
 #pragma omp parallel for num_threads (2)
 for (j = 0; j < Nj; j ++) {

Ø By default, the inner loop is serialized and run by one thread
Ø To enable multiple threads in nested parallel loops requires environment variable

OMP_NESTED to be TRUE
Ø You can also control the maximum level of nesting through OMP_MAX_ACTIVE_LEVELS
Ø Each thread from the first parallel for will spawn a new team.
Ø Note - the use of synchronization constructions in nested parallel sections requires care (see

OpenMP specs, e.g. there is no restriction on synchronizing threads across different teams!).

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Nested Parallelism
#pragma omp parallel for collapse (2) for (i = 0; i < Ni; i ++) {
 for (j = 0; j < Nj; j ++) { …

A disadvantage of nested parallelism is parallel overhead

Ø Collapse is usually better way of parallelizing nested loops

Ø The collapse clause turns the two loops into a combined single loop.

Ø Threads work on a larger chunk of work, which can improve parallel efficiency.

Ø By collapsing loops, you reduce the overhead of managing multiple parallel
loops.

13
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The barrier directive
#pragma omp barrier
/* structured block */

Ø barrier: Each thread waits at the barrier until all threads arrive

Restrictions:
Ø Each barrier must be encountered by all threads in a team, or by none at all.
Ø The sequence of work-sharing regions and barrier regions encountered must be

the same for each thread in the team.

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The ordered directive
#pragma omp ordered
/* structured block */

Ø ordered: threads execute the structured block in sequential order.

Ø The first thread that encounters this directive enters the structured block without waiting.
Ø Any subsequenRestrictions: An ordered clause must be added to the parallel region in

which this construct appears.
Ø threads wait until previous threads have completed the block execution.

cumul_sum [0] = list [0];
#pragma omp parallel for ordered shared (cumul_sum , list
, n)
for (i =1; i<n; i ++) {
/* other processing on list [i] if required */
#pragma omp ordered
{
cumul_sum [i] = cumul_sum [i -1] + list [i];

}
}

16
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The atomic directive
#pragma omp atomic [seq_cst [,]] atomic - clause [[,] seq_cst]
/* single expression statement */
#pragma omp atomic [seq_cst [,]]
/* single expression statement */
#pragma omp atomic [seq_cst [,]] capture [[,] seq_cst]
/* structured block *

Ø atomic: This is a hint for the compiler to use low-level atomic instructions if
available.

Ø Atomic clauses
Ø read: performs an atomic read of the input variable and stores it into the

output. This is guaranteed regardless of the size of the variable.
Ø write: the output variable is written atomically. This is guaranteed

regardless of the size of the variable.

x = expr ; // x is written atomically

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The atomic directive

x++;
++x; x- -;
-- x;
x binop = expr ;
x = x binop expr ; x = expr binop x;

Atomic clauses
Ø update: causes an atomic update of the location designated by x using the

designated operator or intrinsic.

The following rules also apply
Ø The evaluation of expr need not be atomic with respect to the read or write of the location

designated by x.
Ø No task scheduling points occur between the read and the write of the location designated by x.
Ø Binop (binary operators) is one of the following operators +,* ,-, & , ˆ, <<, >>.

18
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The atomic directive
v = x ++;
v = ++x;
v = x - -;
v = -- x;
v = x binop = expr;
v = x = x binop expr;
v = x = expr binop x;

Atomic clauses
Ø capture: causes an atomic update of the

location designated by x using the designated
operator or intrinsic while also capturing the
original or final value of the location (v) designated
by x with respect to the atomic update.

The following rules also apply
Ø Only the read and write of the location designated by x are performed mutually atomically.
Ø The evaluation of expr, and the write to the location designated by v do not need to be atomic

with respect to the read or write of the location designated by x.
Ø No task scheduling points occur between the read and the write of the location designated by x.

{ v = x; x += n; } // atomically update x, but capture original value in v

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

20

OpenMP:
Library Functions
and Environment
Variables

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Internal Control Variables
The OpenMP standard defines some internal control variables (ICVs) controlled by the
implementations that govern the behaviour of a program at run time. Here are some of them:

Ø nthreads-var – stores the number of threads requested for the execution of future parallel
regions.

Ø dyn-var – control whether dynamic adjustment of the number of threads to be used in future
parallel regions is enabled.

Ø nest-var – controls whether nested parallelism is enabled for future parallel regions.
Ø run-sched-var – stores scheduling information to be used for loop regions using the runtime

schedule.
Ø def-sched-var – stores implementation-dependent scheduling information to be used for

loop regions.

These variables cannot be accessed directly, but via either library functions or environment variables.

21

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Library Functions

#include <omp . h>

Defined in header file

Controlling threads and processors
void omp_set_num_threads (int num_threads)
int omp_get_num_threads ()
int omp_get_max_threads () // Number of threads used in the next parallel region
int omp_get_thread_num ()
int omp_get_num_procs () // Returns the number of processor cores available
int omp_in_parallel () // Check if within a parallel region

Controlling thread creation
void omp_set_dynamic (int dynamic_threads) // Enable / disable dynamic thread adjustment
int omp_get_dynamic () // Check whether dynamic thread adjustment is enabled
void omp_set_nested (int nested) int omp_get_nested ()
void omp_set_dynamic (int dynamic_threads) // Enable / disable dynamic thread adjustment
int omp_get_dynamic () // Check whether dynamic thread adjustment is enabled
void omp_set_nested (int nested) int omp_get_nested ()

22
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Environment Variables
OMP_NUM_THREADS: default number of threads entering parallel region

OMP_DYNAMIC: if TRUE it permits the number of threads to change during execution,
in order to optimize system resources

OMP_NESTED: if TRUE it permits nested parallel regions

OMP_SCHEDULE: determines scheduling for loops that are defined to have runtime
scheduling

export OMP_SCHEDULE =" static ,4 "
export OMP_SCHEDULE =" dynamic "
export OMP_SCHEDULE =" guided "

23

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP Environment Variables
OMP_DISPLAY_ENV: this is a very useful variable to verify all the settings. If set to true or verbose
all the relevant environment variables are printed at the beginning of the program.

OMP_STACKSIZE: this variable allows to increase the default stack size allocated to each thread.
Ø The syntax supports a case-insensitive unit qualifier that is appended to the number: B for

bytes, K for 1024 bytes, M for 1024 Kbytes, and G for 1024 Mbytes.

24
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP and Pthreads
OpenMP Pthreads

Definition Specification for compiler directives, library
routines, and environment variables.

POSIX standard for libraries, providing low-level
thread management.

Parallelism Model Shared Memory: Utilizes multiple threads
within a single process.

Shared Memory: Also operates within a single
process, but with more manual control over
threads.

Communication Implicit (compiler handles thread
synchronization).

Requires explicit handling of thread
communication using functions
like pthread_create and pthread_join.

Ease of Use Easier to program and debug due to directives. Requires more manual management of threads
and synchronization.

Scalability Limited scalability within a single node. Scalable to multiple cores within a single machine.

Use Cases Best for parallelizing loops and simple tasks
within a single program.

Suitable for applications that need fine-grained
control over threads and synchronization.

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP and Pthreads
Ø OpenMP removes the need for a programmer to initialize task attributes, set up arguments to

threads, partition iteration spaces, etc.
Ø OpenMP code can closely resemble serial code – (verification)
Ø OpenMP users require availability of an OpenMP compiler

Ø performance dependent on quality of compiler — hardly a problem today

Ø Well-engineered OpenMP code causes no loss of performance with respect to lower-
level APIs.

Ø Pthreads has a lower-level API that is slightly more flexible and rich, (e.g. condition waits, locks
of different types etc) but also more error prone

Ø Pthreads is library based and not compiler-based

Ø OpenMP is now the de facto standard in High-Performance Computing

26
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP and MPI
OpenMP MPI

Definition Specification for compiler directives, library
routines, and environment variables.

Library specification for message-passing,
proposed as a standard by a committee of
vendors, implementors, and users.

Parallelism Model Shared Memory: Utilizes multiple threads
within a single process.

Distributed Memory: Operates across a network
of distributed nodes.

Communication Implicit (compiler handles thread
synchronization).

Explicit (programmer manages message passing
using API calls like MPI_Send and MPI_Recv).

Architecture Suitable for multi-core processors. Works on both shared-memory and distributed-
memory architectures.

Ease of Use Easier to program and debug due to directives. Requires more explicit handling of communication
and synchronization.

Scalability Limited to scalability within a single node. Scalable to large clusters and supercomputers.

Use Cases Best for parallelizing loops and simple tasks
within a single program.

Ideal for distributed computing, large-scale
simulations, and complex parallel applications.

27

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

28

Simultaneous Multi-Threading (SMT or
Hyperthreading)
and
Single-Instruction Multiple Data (SIMD)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Reference Material
Ø Introduction to High Performance Computing for Scientists and Engineers, Hager and

Wellein

Ø Using OpenMP – The Next Step, R. van der Pas, E. Stotzer, and C. Terboven, Chapter 4

Ø Intel Intrinsics Guide,
https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html

Ø Chapter 4 from Computer Systems A Programmer’s Perspective, Third Edition, Randal E.
Bryant and David R. O’Hallaron, Pearson Education Heg USA, ISBN 9781292101767.

29

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

30

ØMultiple fetch/decode units
ØMultiple ALUs, in general multiple Functional Units (FUs)
ØOne Execution Context (EC)
Ø Exploits Instruction Level Parallelism (ILP) through

superscalarity and pipelining

Ø ILP requires sophisticated, additional logic to yield good
performance

ØOut-of-Order (OoO) execution
Ø Pre-fetching
ØBranch prediction
ØBig caches

Ø This extra logic is tightly coupled to the FUs and to the EC
Ø Thus, this view of the CPU architecture is too simplistic

Fetch/Decode

ALU1

Cache (large …)

Branch Prediction

Prefetch

Out-Of-Order Logic

Execution
Context

ALU2

Simple Single Core Superscalar CPU Architecture

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

31

A real single core architecture

Intel Skylake

The execution unit is the
part of the CPU that
actually carries out the
instructions

The front end retrieves the
instructions from memory
and translates instructions
into a format that can be
understood by other
components of the CPU.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

32

More schematic single
core architecture
Ø In the real core architecture Functional Units,

Out-of-Order Execution Logic, Execution Context
are tightly coupled at the hardware level

Ø Map Front End to Fetch/Decode
Ø Map Execution Engine to Functional Units plus

Out-of-Order Execution Logic plus Execution
Context

Ø We can leave the rest of the logic, Branch
Predictor, Caches, Prefetching out of our
representation

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

33

Under utilisation of ILP

What are the main causes of
under utilisation of ILP on
this single-core architecture?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

34

Under utilisation of ILP
Ø The main causes of under utilisation of

ILP on this single-core architecture: -
Ø Branch misprediction
Ø Bad instruction mix → cannot feed all

replicates of the functional units
Ø Thread stalls due to dependencies →

thread cannot execute as it is waiting for
operands to be fetched or dependencies
to be resolved

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

35

Under utilisation of ILP
Ø Pipeline Hazards: The next stage in the

pipeline cannot execute in the following clock
cycle

Ø Typically caused by dependencies between
successive instructions

Ø Data dependencies: the results computed by
one instruction are used as the input data for a
following instruction

Ø Control dependencies: one instruction
determines the location of the following
instruction (e.g, jump, return)

Ø This can require the hardware to insert no-ops
called bubbles in the pipeline, causing it to
stall while the dependencies are resolved

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

36

Hyperthreading (Simultaneous Multi-Threading)

Ø Idea: Interleave processing of multiple
threads on the same core to hide
stalls

Ø This can hide the latency of one
thread’s stalls with another thread’s
execution

Ø What is a potential problem with
this strategy?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

37

Hyperthreading (Simultaneous Multi-Threading)

Ø Idea: Interleave processing of multiple
threads on the same core to hide
stalls

Ø This can hide the latency of one
thread’s stalls with another thread’s
execution

Ø What is a potential problem with
this strategy? … Context switch

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

38

Hyperthreading: A More Detailed View

Ø What is a potential problem with this
strategy? Context switch -->

Ø Add dedicated separated execution
contexts for these threads

Ø Since the contexts of these threads are in
dedicated register space, context switch
is either lightweight or for free

Ø → simultaneous multi-threading

Single-threaded

Hyper-threaded

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

39

Single Instruction Multiple Data (SIMD)

Ø Idea “2”: Amortize cost/complexity of
managing an instruction stream across
many ALUs

Ø Single Instruction Multiple Data
(SIMD) processing

Ø Fetch and decode one instruction
Ø Same instruction broadcast and executed

in parallel on ALUs operating on
different data elements

Ø Execution context must be larger, for
example make registers larger (in bits)

Ø This requires different instructions

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

40

Introduction to SIMD

SIMD provides data-parallelism at the
instruction level

Ø A single instruction operates on multiple
data elements in parallel SIMD
instructions use special registers with a
larger width (vector length)

Ø SIMD instructions are as fast as their scalar
counterpart, leading to potential speedup of
up to the vector length

Ø In practice, the speedup achieved may depend
heavily on memory operations needed to move
the data

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

41

Using SIMD Capabilities
Ø Vector Extensions or Intrinsics

Ø Vendor provided code extensions close to assembly level
Ø Advantages: Provide performance and control
Ø Disadvantages: Extremely verbose, generally not portable

Ø Compiler Flags
Ø Advantages: No additional coding effort
Ø Disadvantages: Vendor specific, performance and success compiler-

dependent, problematic for complex code, almost no control on
implementation

Ø OpenMP SIMD
Ø Pragmas in OpenMP for implementing SIMD parallelism
Ø Advantages: Portable, concise and easy to use
Ø Disadvantages: Performance compiler-dependent, correctness left to

programmer, no low-level control on implementation

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

42

Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations:
4x32 bits or 2x64 bits (4-wide float
vectors)

AVX instructions: 256-bit operations:
8x32 bits or 4x64 bits (8-wide float
vectors)

AVX512: 512-bit operations: 16x32 bits
or 8x64 bits (16-wide float vectors)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

43

Vector Extensions (Intrinsics)
SSE instructions: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors)
AVX instructions: 256-bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
AVX512: 512-bit operations: 16x32 bits or 8x64 bits (16-wide float vectors)

Document Number: 356368-001US, Revision 1.0 1-3

CONVERGED VECTOR ISA: INTEL® ADVANCED VECTOR EXTENSIONS 10

vector lengths, Intel AVX10/512 will be supported on Intel P-cores, continuing to deliver the best-in-class perfor-
mance for AI, scientific, and other high-performance codes. New Intel® AVX10 libraries, compilers, and tool
support will also be provided to help application developers realize the best achievable performance for all vector
lengths and processor targets.

1.5 AVAILABILITY
Intel AVX10 Version 1 will be introduced for early software enablement and supports the subset of all the Intel AVX-
512 instruction set available as of future Intel Xeon processors with P-cores, codenamed Granite Rapids, that is
forward compatible to Intel AVX10. This version will not include the new 256-bit vector instructions supporting
embedded rounding or any of the new instructions and will serve as the transition base version from Intel AVX-512
to Intel AVX10.

Intel AVX10 Version 2 will include the 256-bit instruction forms supporting embedded rounding as well as a suite of
new Intel AVX10 instructions covering new AI data types and conversions, data movement optimizations, and
standards support. All new instructions will be supported at 128-, 256-, and 512-bit vector lengths with limited
variances. All Intel AVX10 versions will implement the new versioning enumeration scheme.

1.6 CONCLUSION
Intel AVX10 represents a major shift to supporting a high-performance vector ISA across future Intel processors.
It allows the developer to maintain a single code-path that achieves high performance across all Intel platforms
with the minimum of overhead checking for feature support. Future development of the Intel AVX10 ISA will
continue to provide a rich, flexible, and consistent environment that optimally supports both Server and Client
products.

Figure 1-2. Intel® ISA Families and Features

The Converged
Vector ISA:
Intel® Advanced
Vector
Extensions 10
Technical Paper
July 2023 Revision 1.0

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

44

Scalar program

void sinx (int N, int terms , float * x, float * result)
{

for (int i =0; i<N; i ++)
{
float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!
int sign = -1;
for (int j =1; j <= terms ; j ++)
{

value += sign * numer / denom ;
numer *= x[i] * x[i];
denom *= (2* j +2) * (2* j +3) ;
sign *= -1;

}
result [i] = value ;

}
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

45

Vector Program Using AVX2 Intrinsics

include < immintrin . h>
void sinx (int N, int terms , float * x, float * result)
{

float three_fact = 6; // 3!
for (int i =0; i<N; i +=8)
{

m 256 origx = _mm 256 _load_ps (& x[i]);
m 256 value = origx ;
m 256 numer = _mm 256 _mul_ps (origx , _mm 256 _mul_ps (origx , origx));
m 256 denom = _mm 256 _set 1 ps (three_fact); float sign = -1;

for (int j =1; j <= terms ; j ++)
{
// value += sign * numer / denom

m 256 tmp = _mm 256 _div_ps (_mm 256 _mul_ps (_mm 256 _set 1 ps (sign), numer), denom);
value = _mm 256 _add_ps (value , tmp);
numer = _mm 256 _mul_ps (numer , _mm 256 _mul_ps (origx , origx));
denom = _mm 256 _mul_ps (denom , _mm 256 _set 1 ps ((2* j +2) * (2* j +3)));
sign *= -1;
}

_mm 256 _store_ps (& result [i], value);
}

}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

46

Alignment
To get full benefit from SIMD the starting address
of the vectors (arrays) needs to be aligned on a
correct memory address boundary

Ø Starting array address in memory must
be a multiple of the SIMD length

Ø No optimal alignment → compiler has
to use loop peeling

Ø Loop peeling generates a loop peel and
(usually) a loop tail that is treated
separately

Ø The peel and tail section are typically not
executed using SIMD instructions

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

47

Demo

Vector Program Using AVX2
Intrinsics

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

48

Challenges for compiler vectorization
The compiler can identify operations suitable for vectorization (or you
can give it a hint using OpenMP directives), but it must prove that it is a
legal operation.

The following issues tend to prevent the compiler from vectorizing your
code:

Ø Imprecise dependence information (potential pointer aliasing)
Ø Bad data layout and alignment
Ø Branching
Ø Calls to functions
Ø Loop bounds that are not multiples of the SIMD length

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

49

The simd construct
Ø The OpenMP compiler may transform a loop marked with the simd

construct into a SIMD loop.
Ø A SIMD chunk of iterations (equal to the SIMD length) is executed by

a single thread
Ø Within a chunk each iteration is executed by a SIMD lane
Ø The following clauses are supported on the simd construct

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

50

The simd construct
Ø The OpenMP compiler may transform a loop marked with the simd

construct into a SIMD loop.
Ø A SIMD chunk of iterations (equal to the SIMD length) is executed by

a single thread
Ø Within a chunk each iteration is executed by a SIMD lane
Ø The following clauses are supported on the simd construct

pragma omp simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

51

The simd construct
Ø If you use the simd construct, you are instructing the compiler to use SIMD

instructions
Ø Where there is pointer aliasing your code it will give incorrect results
Ø Where you do not provide the SIMD length through the simdlen clause, the

compiler will select an appropriate vector length
Ø Similarly to the for construct the compiler will create a new instance of the

loop variable i for each SIMD lane.

pragma omp simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

52

The simd construct
Ø The reduction and collapse clauses works for SIMD loop as well!
Ø For each variable in the reduction list, a private instance is used

during the execution of the SIMD loop, with all private instances
being combined using the reduction operator

Ø When using collapse use the compiler commentary to check that
vectorization was able to be performed

pragma omp simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

53

Gather/scatter data in/out of vectors
Ø Scalar data elements are packed into vectors, operated on

collectively as a vector by SIMD instructions, and then unpacked.
Ø When accessing the scalar data with stride 1 (assuming optimal

alignment) a single SIMD load/store instruction can be used for
packing/unpacking.

Ø When accessing the scalar data with stride > 1, the compiler will
need to write code to perform gather and scatter operations for
vector packing/unpacking

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

54

Gather/scatter data in/out of vectors
Ø A gather operation reads scalar data elements from memory

linearly but with a stride greater than one.
Ø A scatter operation writes the scalar data elements in a vector back

to memory linearly with a stride greater than one.
Ø Some architectures support SIMD gather and scatter instruction.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

55

Gather/scatter data in/out of vectors
Ø In general gather/scatter operations are much more expensive

than single vector load/store instruction (best scenario)
Ø The next best scenario is when the access pattern is linear but

with a stride that is greater than one and gather and scatter
instructions may be used.

Ø The worst-case scenario is when no linear access pattern can be
determined, and the scalar data elements must be individually
packed into and unpacked from vectors.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

56

The aligned clause

Ø For compiler optimizations if your arrays have been allocated at
optimal alignment boundaries (e.g. aligned alloc,
memalign, posix memalign)

Ø In C, a variable that appears in the clause must have an array or
pointer type.

Ø In C++, a variable that appears in the clause must have array,
pointer, reference to array, or reference to pointer type.

pragma omp simd aligned (list [: alignment])
 for – loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

57

Conditional Execution
< unconditional code >
float x = A[i];
if (x > 0) {

float tmp = exp (x ,5. f);
tmp *= k My Const 1 ;
x = tmp + k My Const 2 ;

} else {
 float tmp = k My Const 1 ;
 x = 2. f * tmp ; }

< resume unconditional code >
result [i] = x;

In SIMD, all processing elements execute the same instruction
at the same time.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

58

Conditional Execution

< unconditional code >
float x = A[i];
if (x > 0) {

float tmp = exp (x ,5. f);
tmp *= k My Const 1 ;
x = tmp + k My Const 2 ;

} else {
 float tmp = k My Const 1 ;
 x = 2. f * tmp ; }

< resume unconditional code >
result [i] = x;

When a conditional statement, e.g. an if statement, causes
the control flow to diverge (i.e., some processing elements
need to execute one instruction while others need to execute
a different instruction), this can lead to inefficiencies

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

59

Conditional Execution

< unconditional code >
float x = A[i];
if (x > 0) {

float tmp = exp (x ,5. f);
tmp *= kMyConst 1;
x = tmp + kMyConst 2;

} else {
 float tmp = k My Const 1 ;
 x = 2. f * tmp ; }

< resume unconditional code >
result [i] = x;

Many processing elements might have to remain idle, which
can reduce the overall performance (throughput)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

60

Terminology
Instruction stream coherence (“coherent”
execution)

Ø Same instruction sequence applies to all
elements operated upon simultaneously

Ø Coherent execution is necessary for efficient
use of SIMD processing resources

Ø Coherent execution IS NOT necessary for
efficient parallelization across cores, since
each core has the capability to fetch/decode
a different instruction stream

“Divergent” execution
Ø A lack of instruction stream coherence

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

61

SIMD Execution on CPU and GPU
Execution on CPU

Ø Explicit SIMD execution: SIMD
parallelization is performed at compile
time. Instructions are generated by the
compiler (e.g., AVX512 instructions)
Ø Parallelism explicitly requested by

programmer using intrinsics
Ø Parallelism conveyed using parallel

language semantics (e.g., pragma
omp simd)

Ø Parallelism inferred by dependency
analysis of loops (hard problem, even
best compilers are not great on
arbitrary C/C++ code)

Execution on GPU

Ø Implicit SIMD execution: Hardware (not
compiler) is responsible for simultaneously
executing the same instruction from
multiple instances on different data on
SIMD ALUs

Ø Compiler generates a scalar binary (scalar
instructions) but N instances of the program
are always run together on the processor

Ø SIMD width of most modern GPUs is 32
Ø Divergence is a very big issue (divergent

code might execute at 1/32 the peak
capability of the machine!)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

62

SIMD Multi-Core

Ø 4 cores
Ø Each core has 8 SIMD ALUs
Ø = 32 operations

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

63

SIMD Multi-Core
Cascade Lake CPUs on Gadi, Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz

Ø 24 cores, each core 2 × AVX512 units, equivalent to 16 × 64-bit ALUs

Ø Hyperthreading level 2 (enabled by default)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

64

The composite for simd construct

Ø Chunks of loop iterations are first distributed across the threads in a team
according to the clauses on the for directive (e.g. schedule)

Ø Each chunk of loop iterations may be converted into SIMD loops in a way
that is determined by any clauses that apply to the simd construct

pragma omp for simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

65

The composite for simd construct

Ø There may be a significantly increased memory pressure due to the fact
that at runtime a new copy of each private variable will be allocated per
SIMD lane.

Ø Typically, the chunks performed with SIMD need to be large enough to make
the loop peel/tail overhead negligible.

pragma omp for simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

66

The composite for simd construct

Ø Remember that you can use the simd schedule modifier.
Ø The modifier will adjust the chunk size according to the formula
 SIMD Chunk Size = Size of Data Element (in bits) / SIMD Register Width (in bits)
 eg on AVX2 for data element = 32bits, SIMD_width = 256 bits, the chunk size will be 8
Ø This ensures that the size of chunk is at least as long as the SIMD length.

pragma omp for simd [clause_list]
 for - loop

