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Logistics
Ø Attendance to the Lab sessions is highly encouraged. Most of the 

practical aspects of the programming models are covered in the Labs.
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Simultaneous Multi-Threading (SMT or 
Hyperthreading) and 
Single-Instruction Multiple Data (SIMD)
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Reference Material
Ø Introduction to High Performance Computing for Scientists and Engineers, Hager and 

Wellein

Ø Using OpenMP – The Next Step, R. van der Pas, E. Stotzer, and C. Terboven, Chapter 4

Ø Intel Intrinsics Guide, 
https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html

Ø Chapter 4 from Computer Systems A Programmer’s Perspective, Third Edition, Randal E. 
Bryant and David R. O’Hallaron, Pearson Education Heg USA, ISBN 9781292101767.
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https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
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ØMultiple fetch/decode units
ØMultiple ALUs, in general multiple Functional Units (FUs)
ØOne Execution Context (EC)
Ø Exploits Instruction Level Parallelism (ILP) through 

superscalarity and pipelining

Ø ILP requires sophisticated, additional logic to yield good 
performance

ØOut-of-Order (OoO) execution
Ø Pre-fetching
Ø Branch prediction
Ø Big caches

Ø This extra logic is tightly coupled to the FUs and to the EC
Ø Thus, this view of the CPU architecture is too simplistic

Fetch/Decode

ALU1

Cache (large…)

Branch Prediction

Prefetch

Out-Of-Order Logic

Execution
Context

ALU2

Simple Single Core Superscalar CPU Architecture
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A real single core architecture

Intel Skylake

The execution unit is the 
part of the CPU that 
actually carries out the 
instructions

The front end retrieves the 
instructions from memory
and translates instructions 
into a format that can be 
understood by other 
components of the CPU.
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More schematic single 
core architecture
Ø In the real core architecture Functional Units, 

Out-of-Order Execution Logic, Execution Context 
are tightly coupled at the hardware level

Ø Map Front End to Fetch/Decode
Ø Map Execution Engine to Functional Units plus 

Out-of-Order Execution Logic plus Execution 
Context

Ø Leave the rest of the logic, Branch Predictor, 
Caches, Prefetching out of our representation
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Under utilisation of ILP

What are the main causes of 
under utilisation of ILP on 
this single-core architecture?
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Under utilisation of ILP
Ø The main causes of under utilisation of 

ILP on this single-core architecture: -
Ø Branch misprediction
Ø Bad instruction mix → cannot feed all 

replicates of the functional units
Ø Thread stalls due to dependencies → 

thread cannot execute as it is waiting for 
operands to be fetched or dependencies 
to be resolved
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Under utilisation of ILP
Ø Pipeline Hazards: The next stage in the 

pipeline cannot execute in the following clock 
cycle

Ø Typically caused by dependencies between 
successive instructions

Ø Data dependencies: the results computed by 
one instruction are used as the input data for a 
following instruction

Ø Control dependencies: one instruction 
determines the location of the following 
instruction (e.g, jump, return)

Ø This can require the hardware to insert no-ops 
called bubbles in the pipeline, causing it to 
stall while the dependencies are resolved
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Hyperthreading (Simultaneous Multi-Threading)

Ø Idea: Interleave processing of multiple 
threads on the same core to hide 
stalls

Ø This can hide the latency of one 
thread’s stalls with another thread’s 
execution

Ø What is a potential problem with 
this strategy?
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Hyperthreading (Simultaneous Multi-Threading)

Ø Idea: Interleave processing of multiple 
threads on the same core to hide 
stalls

Ø This can hide the latency of one 
thread’s stalls with another thread’s 
execution

Ø What is a potential problem with 
this strategy? … Context switch
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Hyperthreading: A More Detailed View

Ø What is a potential problem with this 
strategy? Context switch -->

Ø Add dedicated separated execution 
contexts for these threads

Ø Since the contexts of these threads are in 
dedicated register space, context switch 
is either lightweight or for free

Ø → simultaneous multi-threading

Single-threaded

Hyper-threaded
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Single Instruction Multiple Data (SIMD)

Ø Idea “2”: Amortize cost/complexity of 
managing an instruction stream across 
many ALUs

Ø Single Instruction Multiple Data 
(SIMD) processing

Ø Fetch and decode one instruction
Ø Same instruction broadcast and executed 

in parallel on ALUs operating on 
different data elements

Ø Execution context must be larger, for 
example make registers larger (in bits)

Ø This requires different instructions
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Introduction to SIMD

SIMD provides data-parallelism at the 
instruction level

Ø A single instruction operates on multiple 
data elements in parallel SIMD 
instructions use special registers a larger 
width (vector length)

Ø SIMD instructions are as fast as their scalar 
counterpart, leading to potential speedup of 
up to the vector length

Ø In practice, the speedup achieved may depend 
heavily on memory operations needed to move 
the data
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Using SIMD Capabilities
Ø Vector Extensions or Intrinsics

Ø Vendor provided code extensions close to assembly level 
Ø Advantages: Provide performance and control
Ø Disadvantages: Extremely verbose, generally not portable

Ø Compiler Flags
Ø Advantages: No additional coding effort
Ø Disadvantages: Vendor specific, performance and success compiler-dependent, 

problematic for complex code, almost no control on implementation

Ø OpenMP SIMD
Ø Pragmas in OpenMP for implementing SIMD parallelism 
Ø Advantages: Portable, concise and easy to use
Ø Disadvantages: Performance compiler-dependent, correctness left to 

programmer, no low-level control on implementation
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Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations: 
4x32 bits or 2x64 bits (4-wide float 
vectors) 

AVX instructions: 256-bit operations: 
8x32 bits or 4x64 bits (8-wide float 
vectors) 

AVX512: 512-bit operations: 16x32 bits 
or 8x64 bits (16-wide float vectors)
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Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors) 
AVX instructions: 256-bit operations: 8x32 bits or 4x64 bits (8-wide float vectors) 
AVX512: 512-bit operations: 16x32 bits or 8x64 bits (16-wide float vectors)

Document Number: 356368-001US, Revision 1.0 1-3

CONVERGED VECTOR ISA: INTEL® ADVANCED VECTOR EXTENSIONS 10

vector lengths, Intel AVX10/512 will be supported on Intel P-cores, continuing to deliver the best-in-class perfor-
mance for AI, scientific, and other high-performance codes. New Intel® AVX10 libraries, compilers, and tool 
support will also be provided to help application developers realize the best achievable performance for all vector 
lengths and processor targets.

1.5 AVAILABILITY
Intel AVX10 Version 1 will be introduced for early software enablement and supports the subset of all the Intel AVX-
512 instruction set available as of future Intel Xeon processors with P-cores, codenamed Granite Rapids, that is 
forward compatible to Intel AVX10. This version will not include the new 256-bit vector instructions supporting 
embedded rounding or any of the new instructions and will serve as the transition base version from Intel AVX-512 
to Intel AVX10.

Intel AVX10 Version 2 will include the 256-bit instruction forms supporting embedded rounding as well as a suite of 
new Intel AVX10 instructions covering new AI data types and conversions, data movement optimizations, and 
standards support. All new instructions will be supported at 128-, 256-, and 512-bit vector lengths with limited 
variances. All Intel AVX10 versions will implement the new versioning enumeration scheme.

1.6 CONCLUSION
Intel AVX10 represents a major shift to supporting a high-performance vector ISA across future Intel processors. 
It allows the developer to maintain a single code-path that achieves high performance across all Intel platforms 
with the minimum of overhead checking for feature support. Future development of the Intel AVX10 ISA will 
continue to provide a rich, flexible, and consistent environment that optimally supports both Server and Client 
products.

Figure 1-2.  Intel® ISA Families and Features

 

The Converged 
Vector ISA: 
Intel® Advanced 
Vector 
Extensions 10 
Technical Paper 
July 2023 Revision 1.0 
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Scalar program

void sinx ( int N, int terms , float * x, float * result )
{

for ( int i =0; i<N; i ++)
{
float value = x[ i];
float numer = x[ i] * x[ i] * x[ i]; 
int denom = 6; // 3!
int sign = -1;
for ( int j =1; j <= terms ; j ++)
{

value += sign * numer / denom ; 
numer *= x[ i] * x[ i];
denom *= (2* j +2) * (2* j +3) ;
sign *= -1;

}
result [ i] = value ;

}
}
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Vector Program Using AVX2 Intrinsics

# include < immintrin . h>
void sinx ( int N, int terms , float * x, float * result )
{

float three_fact = 6; // 3! 
for ( int i =0; i<N; i +=8)
{

m 256 origx = _mm 256 _load_ps (& x[ i]);
m 256 value = origx ;
m 256 numer = _mm 256 _mul_ps ( origx , _mm 256 _mul_ps ( origx , origx ));
m 256 denom = _mm 256 _set 1 ps ( three_fact ); float sign = -1;

for ( int j =1; j <= terms ; j ++)
{
// value += sign * numer / denom

m 256 tmp = _mm 256 _div_ps ( _mm 256 _mul_ps ( _mm 256 _set 1 ps ( sign ), numer ), denom ); 
value = _mm 256 _add_ps ( value , tmp );
numer = _mm 256 _mul_ps ( numer , _mm 256 _mul_ps ( origx , origx ));
denom = _mm 256 _mul_ps ( denom , _mm 256 _set 1 ps ((2* j +2) * (2* j +3) )); 
sign *= -1;
}

_mm 256 _store_ps (& result [ i], value );
}

}
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Alignment
To get full benefit from SIMD the starting address 
of the vectors (arrays) needs to be aligned on a 
correct memory address boundary

Ø Starting array address in memory must 
be a multiple of the SIMD length 

Ø No optimal alignment → compiler has 
to use loop peeling

Ø Loop peeling generates a loop peel and 
(usually) a loop tail that is treated 
separately

Ø The peel and tail section are typically not 
executed using SIMD instructions
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Demo

Vector Program Using AVX2 
Intrinsics
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Challenges for compiler vectorization
The compiler can identify operations suitable for vectorization (or you 
can give it a hint using OpenMP directives), but it must prove that it is a 
legal operation.

The following issues tend to prevent the compiler from vectorizing your 
code:

Ø Imprecise dependence information (potential pointer aliasing) 
Ø Bad data layout and alignment
Ø Branching
Ø Calls to functions
Ø Loop bounds that are not multiples of the SIMD length
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The simd  construct
Ø The OMP compiler may transform a loop marked with the simd 

construct into a SIMD loop.
Ø A SIMD chunk of iterations (equal to the SIMD length) is executed by 

a single thread
Ø Within a chunk each iteration is executed by a SIMD lane
Ø The following clauses are supported on the simd  construct
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The simd  construct
Ø The OMP compiler may transform a loop marked with the simd 

construct into a SIMD loop.
Ø A SIMD chunk of iterations (equal to the SIMD length) is executed by 

a single thread
Ø Within a chunk each iteration is executed by a SIMD lane
Ø The following clauses are supported on the simd  construct

# pragma omp simd [ clause_list ] 
   for - loop
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The simd  construct
Ø If you use the simd construct, you are instructing the compiler to use SIMD 

instructions
Ø Where there is pointer aliasing your code will give incorrect results
Ø Where you do not provide the SIMD length through the simdlen clause, the 

compiler will select an appropriate vector length
Ø Similarly to the for construct the compiler will create a new instance of the 

loop variable i for each SIMD lane.

# pragma omp simd [ clause_list ] 
   for - loop
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The simd  construct
Ø The reduction and collapse  clauses works for SIMD loop as well!
Ø For each variable in the reduction  list, a private instance is used 

during the execution of the SIMD loop, with all private instances 
being combined using the reduction operator

Ø When using collapse  use the compiler commentary to check that 
vectorization was able to be performed

# pragma omp simd [ clause_list ] 
   for - loop
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Gather/scatter data in/out of vectors
Ø Scalar data elements are packed into vectors, operated on 

collectively as a vector by SIMD instructions, and then unpacked.
Ø When accessing the scalar data with stride 1 (assuming optimal 

alignment) a single SIMD load/store instruction can be used for 
packing/unpacking.

Ø When accessing the scalar data with stride >  1, the compiler will 
need to write code to perform gather and scatter operations for 
vector packing/unpacking
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Gather/scatter data in/out of vectors
Ø A gather operation reads scalar data elements from memory 

linearly but with a stride greater than one.
Ø A scatter operation writes the scalar data elements in a vector back 

to memory linearly with a stride greater than one.
Ø Some architectures support SIMD gather and scatter instruction.
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Gather/scatter data in/out of vectors
Ø In general gather/scatter operations are much more expensive 

than single vector load/store instruction (best scenario)
Ø The next best scenario is when the access pattern is linear but 

with a stride that is greater than one and gather and scatter 
instructions may be used.

Ø The worst-case scenario is when no linear access pattern can be 
determined, and the scalar data elements must be individually 
packed into and unpacked from vectors.
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The aligned clause

Ø For compiler optimizations if your arrays have been allocated at 
optimal alignment boundaries (e.g. aligned alloc, 
memalign, posix memalign)

Ø In C, a variable that appears in the clause must have an array or 
pointer type. 

Ø In C++, a variable that appears in the clause must have array, 
pointer, reference to array, or reference to pointer type.

# pragma omp simd aligned ( list [: alignment ]) 
   for – loop
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Conditional Execution

< unconditional code > 

float x = A[ i];    
if ( x > 0) {

float tmp = exp ( x ,5. f); 
tmp *= k My Const 1 ;
x = tmp + k My Const 2 ;

} else {
 float tmp = k My Const 1 ; 
 x = 2. f * tmp ; }

< resume unconditional code >
result [ i] = x;

In SIMD, all processing elements execute the same instruction 
at the same time.
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Conditional Execution

< unconditional code > 

float x = A[ i];    
if ( x > 0) {

float tmp = exp ( x ,5. f); 
tmp *= k My Const 1 ;
x = tmp + k My Const 2 ;

} else {
 float tmp = k My Const 1 ; 
 x = 2. f * tmp ; }

< resume unconditional code >
result [ i] = x;

When a conditional statement, e.g. an if statement, causes 
the control flow to diverge (i.e., some processing elements 
need to execute one instruction while others need to execute 
a different instruction), this can lead to inefficiencies
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Conditional Execution

< unconditional code > 

float x = A[ i];    
if ( x > 0) {

float tmp = exp (x ,5. f); 
tmp *= kMy Const 1 ;
x = tmp + kMy Const 2 ;

} else {
 float tmp = k My Const 1 ; 
 x = 2. f * tmp ; }

< resume unconditional code >
result [ i] = x;

Many processing elements might have to remain idle, which 
can reduce the overall performance (throughput)
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Terminology
Instruction stream coherence (“coheren”t 
execution)

Ø Same instruction sequence applies to all 
elements operated upon simultaneously

Ø Coherent execution is necessary for efficient 
use of SIMD processing resources

Ø Coherent execution IS NOT necessary for 
efficient parallelization across cores, since 
each core has the capability to fetch/decode 
a different instruction stream

“Divergent” execution
Ø A lack of instruction stream coherence
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SIMD Execution on CPU and GPU
Execution on CPU

Ø Explicit SIMD execution: SIMD 
parallelization is performed at compile 
time. Instructions are generated by the 
compiler (e.g., AVX512 instructions)
Ø Parallelism explicitly requested by 

programmer using intrinsics
Ø Parallelism conveyed using parallel 

language semantics (e.g., pragma 
omp simd)

Ø Parallelism inferred by dependency 
analysis of loops (hard problem, even 
best compilers are not great on 
arbitrary C/C++ code)

Execution on GPU

Ø Implicit SIMD execution: Hardware (not 
compiler) is responsible for simultaneously 
executing the same instruction from 
multiple instances on different data on 
SIMD ALUs

Ø Compiler generates a scalar binary (scalar 
instructions) but N instances of the program 
are always run together on the processor

Ø SIMD width of most modern GPUs is 32
Ø Divergence is a very big issue (divergent 

code might execute at 1/32 the peak 
capability of the machine!)



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

37

SIMD Multi-Core

Ø 4 cores
Ø Each core has 8 SIMD ALUs
Ø = 32 operations
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SIMD Multi-Core
Cascade Lake CPUs on Gadi, Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz 

Ø 24 cores, each core 2 ×  AVX512 units, equivalent to 16 ×  64-bit ALUs 

Ø Hyperthreading level 2 (enabled by default)
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The composite for simd construct

Ø Chunks of loop iterations are first distributed across the threads in a team 
according to the clauses on the for directive (e.g. schedule)

Ø Each chunk of loop iterations may be converted into SIMD loops in a way 
that is determined by any clauses that apply to the simd construct

# pragma omp for simd [ clause_list ] 
   for - loop
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The composite for simd construct

Ø There may be a significantly increased memory pressure due to the fact 
that at runtime a new copy of each private variable will be allocated per 
SIMD lane.

Ø Typically, the chunks performed with SIMD need to be large enough to make 
the loop peel/tail overhead negligible.

# pragma omp for simd [ clause_list ] 
   for - loop
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The composite for simd construct

Ø Remember that you can use the simd schedule modifier.
Ø The modifier will adjust the chunk size according to the formula ([chunk 

size/SIMD_ length] ×  SIMD_w id th ) 
Ø eg on AVX2 for SIMD_ length = 32bits, SIMD_width = 256 bits, the chunk size will be 8
Ø This ensures that the size of chunk is at least as long as the SIMD length.

# pragma omp for simd [ clause_list ] 
   for - loop


