
TE
QS

A
PR

OV
ID

ER
 ID

:P
RV

12
00

2
(A

US
TR

AL
IA

N
UN

IV
ER

SI
TY

)
CR

IC
OS

PR

OV
ID

ER
 C

OD
E:

 0
01

20
C

SHARED MEMORY
PARALLEL COMPUTING
COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

APRIL 2024

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Logistics
Ø Attendance to the Lab sessions is highly encouraged. Most of the

practical aspects of the programming models are covered in the Labs.

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

3

Simultaneous Multi-Threading (SMT or
Hyperthreading) and
Single-Instruction Multiple Data (SIMD)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Reference Material
Ø Introduction to High Performance Computing for Scientists and Engineers, Hager and

Wellein

Ø Using OpenMP – The Next Step, R. van der Pas, E. Stotzer, and C. Terboven, Chapter 4

Ø Intel Intrinsics Guide,
https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html

Ø Chapter 4 from Computer Systems A Programmer’s Perspective, Third Edition, Randal E.
Bryant and David R. O’Hallaron, Pearson Education Heg USA, ISBN 9781292101767.

4

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

5

ØMultiple fetch/decode units
ØMultiple ALUs, in general multiple Functional Units (FUs)
ØOne Execution Context (EC)
Ø Exploits Instruction Level Parallelism (ILP) through

superscalarity and pipelining

Ø ILP requires sophisticated, additional logic to yield good
performance

ØOut-of-Order (OoO) execution
Ø Pre-fetching
Ø Branch prediction
Ø Big caches

Ø This extra logic is tightly coupled to the FUs and to the EC
Ø Thus, this view of the CPU architecture is too simplistic

Fetch/Decode

ALU1

Cache (large…)

Branch Prediction

Prefetch

Out-Of-Order Logic

Execution
Context

ALU2

Simple Single Core Superscalar CPU Architecture

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

6

A real single core architecture

Intel Skylake

The execution unit is the
part of the CPU that
actually carries out the
instructions

The front end retrieves the
instructions from memory
and translates instructions
into a format that can be
understood by other
components of the CPU.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

7

More schematic single
core architecture
Ø In the real core architecture Functional Units,

Out-of-Order Execution Logic, Execution Context
are tightly coupled at the hardware level

Ø Map Front End to Fetch/Decode
Ø Map Execution Engine to Functional Units plus

Out-of-Order Execution Logic plus Execution
Context

Ø Leave the rest of the logic, Branch Predictor,
Caches, Prefetching out of our representation

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

8

Under utilisation of ILP

What are the main causes of
under utilisation of ILP on
this single-core architecture?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

9

Under utilisation of ILP
Ø The main causes of under utilisation of

ILP on this single-core architecture: -
Ø Branch misprediction
Ø Bad instruction mix → cannot feed all

replicates of the functional units
Ø Thread stalls due to dependencies →

thread cannot execute as it is waiting for
operands to be fetched or dependencies
to be resolved

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

10

Under utilisation of ILP
Ø Pipeline Hazards: The next stage in the

pipeline cannot execute in the following clock
cycle

Ø Typically caused by dependencies between
successive instructions

Ø Data dependencies: the results computed by
one instruction are used as the input data for a
following instruction

Ø Control dependencies: one instruction
determines the location of the following
instruction (e.g, jump, return)

Ø This can require the hardware to insert no-ops
called bubbles in the pipeline, causing it to
stall while the dependencies are resolved

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

11

Hyperthreading (Simultaneous Multi-Threading)

Ø Idea: Interleave processing of multiple
threads on the same core to hide
stalls

Ø This can hide the latency of one
thread’s stalls with another thread’s
execution

Ø What is a potential problem with
this strategy?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

12

Hyperthreading (Simultaneous Multi-Threading)

Ø Idea: Interleave processing of multiple
threads on the same core to hide
stalls

Ø This can hide the latency of one
thread’s stalls with another thread’s
execution

Ø What is a potential problem with
this strategy? … Context switch

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

13

Hyperthreading: A More Detailed View

Ø What is a potential problem with this
strategy? Context switch -->

Ø Add dedicated separated execution
contexts for these threads

Ø Since the contexts of these threads are in
dedicated register space, context switch
is either lightweight or for free

Ø → simultaneous multi-threading

Single-threaded

Hyper-threaded

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

14

Single Instruction Multiple Data (SIMD)

Ø Idea “2”: Amortize cost/complexity of
managing an instruction stream across
many ALUs

Ø Single Instruction Multiple Data
(SIMD) processing

Ø Fetch and decode one instruction
Ø Same instruction broadcast and executed

in parallel on ALUs operating on
different data elements

Ø Execution context must be larger, for
example make registers larger (in bits)

Ø This requires different instructions

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

15

Introduction to SIMD

SIMD provides data-parallelism at the
instruction level

Ø A single instruction operates on multiple
data elements in parallel SIMD
instructions use special registers a larger
width (vector length)

Ø SIMD instructions are as fast as their scalar
counterpart, leading to potential speedup of
up to the vector length

Ø In practice, the speedup achieved may depend
heavily on memory operations needed to move
the data

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

16

Using SIMD Capabilities
Ø Vector Extensions or Intrinsics

Ø Vendor provided code extensions close to assembly level
Ø Advantages: Provide performance and control
Ø Disadvantages: Extremely verbose, generally not portable

Ø Compiler Flags
Ø Advantages: No additional coding effort
Ø Disadvantages: Vendor specific, performance and success compiler-dependent,

problematic for complex code, almost no control on implementation

Ø OpenMP SIMD
Ø Pragmas in OpenMP for implementing SIMD parallelism
Ø Advantages: Portable, concise and easy to use
Ø Disadvantages: Performance compiler-dependent, correctness left to

programmer, no low-level control on implementation

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

17

Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations:
4x32 bits or 2x64 bits (4-wide float
vectors)

AVX instructions: 256-bit operations:
8x32 bits or 4x64 bits (8-wide float
vectors)

AVX512: 512-bit operations: 16x32 bits
or 8x64 bits (16-wide float vectors)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

18

Vector Extensions (Intrinsics)

SSE instructions: 128-bit operations: 4x32 bits or 2x64 bits (4-wide float vectors)
AVX instructions: 256-bit operations: 8x32 bits or 4x64 bits (8-wide float vectors)
AVX512: 512-bit operations: 16x32 bits or 8x64 bits (16-wide float vectors)

Document Number: 356368-001US, Revision 1.0 1-3

CONVERGED VECTOR ISA: INTEL® ADVANCED VECTOR EXTENSIONS 10

vector lengths, Intel AVX10/512 will be supported on Intel P-cores, continuing to deliver the best-in-class perfor-
mance for AI, scientific, and other high-performance codes. New Intel® AVX10 libraries, compilers, and tool
support will also be provided to help application developers realize the best achievable performance for all vector
lengths and processor targets.

1.5 AVAILABILITY
Intel AVX10 Version 1 will be introduced for early software enablement and supports the subset of all the Intel AVX-
512 instruction set available as of future Intel Xeon processors with P-cores, codenamed Granite Rapids, that is
forward compatible to Intel AVX10. This version will not include the new 256-bit vector instructions supporting
embedded rounding or any of the new instructions and will serve as the transition base version from Intel AVX-512
to Intel AVX10.

Intel AVX10 Version 2 will include the 256-bit instruction forms supporting embedded rounding as well as a suite of
new Intel AVX10 instructions covering new AI data types and conversions, data movement optimizations, and
standards support. All new instructions will be supported at 128-, 256-, and 512-bit vector lengths with limited
variances. All Intel AVX10 versions will implement the new versioning enumeration scheme.

1.6 CONCLUSION
Intel AVX10 represents a major shift to supporting a high-performance vector ISA across future Intel processors.
It allows the developer to maintain a single code-path that achieves high performance across all Intel platforms
with the minimum of overhead checking for feature support. Future development of the Intel AVX10 ISA will
continue to provide a rich, flexible, and consistent environment that optimally supports both Server and Client
products.

Figure 1-2. Intel® ISA Families and Features

The Converged
Vector ISA:
Intel® Advanced
Vector
Extensions 10
Technical Paper
July 2023 Revision 1.0

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

19

Scalar program

void sinx (int N, int terms , float * x, float * result)
{

for (int i =0; i<N; i ++)
{
float value = x[i];
float numer = x[i] * x[i] * x[i];
int denom = 6; // 3!
int sign = -1;
for (int j =1; j <= terms ; j ++)
{

value += sign * numer / denom ;
numer *= x[i] * x[i];
denom *= (2* j +2) * (2* j +3) ;
sign *= -1;

}
result [i] = value ;

}
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

20

Vector Program Using AVX2 Intrinsics

include < immintrin . h>
void sinx (int N, int terms , float * x, float * result)
{

float three_fact = 6; // 3!
for (int i =0; i<N; i +=8)
{

m 256 origx = _mm 256 _load_ps (& x[i]);
m 256 value = origx ;
m 256 numer = _mm 256 _mul_ps (origx , _mm 256 _mul_ps (origx , origx));
m 256 denom = _mm 256 _set 1 ps (three_fact); float sign = -1;

for (int j =1; j <= terms ; j ++)
{
// value += sign * numer / denom

m 256 tmp = _mm 256 _div_ps (_mm 256 _mul_ps (_mm 256 _set 1 ps (sign), numer), denom);
value = _mm 256 _add_ps (value , tmp);
numer = _mm 256 _mul_ps (numer , _mm 256 _mul_ps (origx , origx));
denom = _mm 256 _mul_ps (denom , _mm 256 _set 1 ps ((2* j +2) * (2* j +3)));
sign *= -1;
}

_mm 256 _store_ps (& result [i], value);
}

}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

21

Alignment
To get full benefit from SIMD the starting address
of the vectors (arrays) needs to be aligned on a
correct memory address boundary

Ø Starting array address in memory must
be a multiple of the SIMD length

Ø No optimal alignment → compiler has
to use loop peeling

Ø Loop peeling generates a loop peel and
(usually) a loop tail that is treated
separately

Ø The peel and tail section are typically not
executed using SIMD instructions

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

22

Demo

Vector Program Using AVX2
Intrinsics

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

23

Challenges for compiler vectorization
The compiler can identify operations suitable for vectorization (or you
can give it a hint using OpenMP directives), but it must prove that it is a
legal operation.

The following issues tend to prevent the compiler from vectorizing your
code:

Ø Imprecise dependence information (potential pointer aliasing)
Ø Bad data layout and alignment
Ø Branching
Ø Calls to functions
Ø Loop bounds that are not multiples of the SIMD length

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

24

The simd construct
Ø The OMP compiler may transform a loop marked with the simd

construct into a SIMD loop.
Ø A SIMD chunk of iterations (equal to the SIMD length) is executed by

a single thread
Ø Within a chunk each iteration is executed by a SIMD lane
Ø The following clauses are supported on the simd construct

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

25

The simd construct
Ø The OMP compiler may transform a loop marked with the simd

construct into a SIMD loop.
Ø A SIMD chunk of iterations (equal to the SIMD length) is executed by

a single thread
Ø Within a chunk each iteration is executed by a SIMD lane
Ø The following clauses are supported on the simd construct

pragma omp simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

26

The simd construct
Ø If you use the simd construct, you are instructing the compiler to use SIMD

instructions
Ø Where there is pointer aliasing your code will give incorrect results
Ø Where you do not provide the SIMD length through the simdlen clause, the

compiler will select an appropriate vector length
Ø Similarly to the for construct the compiler will create a new instance of the

loop variable i for each SIMD lane.

pragma omp simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

27

The simd construct
Ø The reduction and collapse clauses works for SIMD loop as well!
Ø For each variable in the reduction list, a private instance is used

during the execution of the SIMD loop, with all private instances
being combined using the reduction operator

Ø When using collapse use the compiler commentary to check that
vectorization was able to be performed

pragma omp simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

28

Gather/scatter data in/out of vectors
Ø Scalar data elements are packed into vectors, operated on

collectively as a vector by SIMD instructions, and then unpacked.
Ø When accessing the scalar data with stride 1 (assuming optimal

alignment) a single SIMD load/store instruction can be used for
packing/unpacking.

Ø When accessing the scalar data with stride > 1, the compiler will
need to write code to perform gather and scatter operations for
vector packing/unpacking

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

29

Gather/scatter data in/out of vectors
Ø A gather operation reads scalar data elements from memory

linearly but with a stride greater than one.
Ø A scatter operation writes the scalar data elements in a vector back

to memory linearly with a stride greater than one.
Ø Some architectures support SIMD gather and scatter instruction.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

30

Gather/scatter data in/out of vectors
Ø In general gather/scatter operations are much more expensive

than single vector load/store instruction (best scenario)
Ø The next best scenario is when the access pattern is linear but

with a stride that is greater than one and gather and scatter
instructions may be used.

Ø The worst-case scenario is when no linear access pattern can be
determined, and the scalar data elements must be individually
packed into and unpacked from vectors.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

31

The aligned clause

Ø For compiler optimizations if your arrays have been allocated at
optimal alignment boundaries (e.g. aligned alloc,
memalign, posix memalign)

Ø In C, a variable that appears in the clause must have an array or
pointer type.

Ø In C++, a variable that appears in the clause must have array,
pointer, reference to array, or reference to pointer type.

pragma omp simd aligned (list [: alignment])
 for – loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

32

Conditional Execution

< unconditional code >

float x = A[i];
if (x > 0) {

float tmp = exp (x ,5. f);
tmp *= k My Const 1 ;
x = tmp + k My Const 2 ;

} else {
 float tmp = k My Const 1 ;
 x = 2. f * tmp ; }

< resume unconditional code >
result [i] = x;

In SIMD, all processing elements execute the same instruction
at the same time.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

33

Conditional Execution

< unconditional code >

float x = A[i];
if (x > 0) {

float tmp = exp (x ,5. f);
tmp *= k My Const 1 ;
x = tmp + k My Const 2 ;

} else {
 float tmp = k My Const 1 ;
 x = 2. f * tmp ; }

< resume unconditional code >
result [i] = x;

When a conditional statement, e.g. an if statement, causes
the control flow to diverge (i.e., some processing elements
need to execute one instruction while others need to execute
a different instruction), this can lead to inefficiencies

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

34

Conditional Execution

< unconditional code >

float x = A[i];
if (x > 0) {

float tmp = exp (x ,5. f);
tmp *= kMy Const 1 ;
x = tmp + kMy Const 2 ;

} else {
 float tmp = k My Const 1 ;
 x = 2. f * tmp ; }

< resume unconditional code >
result [i] = x;

Many processing elements might have to remain idle, which
can reduce the overall performance (throughput)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

35

Terminology
Instruction stream coherence (“coheren”t
execution)

Ø Same instruction sequence applies to all
elements operated upon simultaneously

Ø Coherent execution is necessary for efficient
use of SIMD processing resources

Ø Coherent execution IS NOT necessary for
efficient parallelization across cores, since
each core has the capability to fetch/decode
a different instruction stream

“Divergent” execution
Ø A lack of instruction stream coherence

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

36

SIMD Execution on CPU and GPU
Execution on CPU

Ø Explicit SIMD execution: SIMD
parallelization is performed at compile
time. Instructions are generated by the
compiler (e.g., AVX512 instructions)
Ø Parallelism explicitly requested by

programmer using intrinsics
Ø Parallelism conveyed using parallel

language semantics (e.g., pragma
omp simd)

Ø Parallelism inferred by dependency
analysis of loops (hard problem, even
best compilers are not great on
arbitrary C/C++ code)

Execution on GPU

Ø Implicit SIMD execution: Hardware (not
compiler) is responsible for simultaneously
executing the same instruction from
multiple instances on different data on
SIMD ALUs

Ø Compiler generates a scalar binary (scalar
instructions) but N instances of the program
are always run together on the processor

Ø SIMD width of most modern GPUs is 32
Ø Divergence is a very big issue (divergent

code might execute at 1/32 the peak
capability of the machine!)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

37

SIMD Multi-Core

Ø 4 cores
Ø Each core has 8 SIMD ALUs
Ø = 32 operations

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

38

SIMD Multi-Core
Cascade Lake CPUs on Gadi, Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz

Ø 24 cores, each core 2 × AVX512 units, equivalent to 16 × 64-bit ALUs

Ø Hyperthreading level 2 (enabled by default)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

39

The composite for simd construct

Ø Chunks of loop iterations are first distributed across the threads in a team
according to the clauses on the for directive (e.g. schedule)

Ø Each chunk of loop iterations may be converted into SIMD loops in a way
that is determined by any clauses that apply to the simd construct

pragma omp for simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

40

The composite for simd construct

Ø There may be a significantly increased memory pressure due to the fact
that at runtime a new copy of each private variable will be allocated per
SIMD lane.

Ø Typically, the chunks performed with SIMD need to be large enough to make
the loop peel/tail overhead negligible.

pragma omp for simd [clause_list]
 for - loop

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

41

The composite for simd construct

Ø Remember that you can use the simd schedule modifier.
Ø The modifier will adjust the chunk size according to the formula ([chunk

size/SIMD_ length] × SIMD_w id th)
Ø eg on AVX2 for SIMD_ length = 32bits, SIMD_width = 256 bits, the chunk size will be 8
Ø This ensures that the size of chunk is at least as long as the SIMD length.

pragma omp for simd [clause_list]
 for - loop

