
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

COMP4300 - Course Update
Ø Assignment 1

Ø Marks have been released

Ø Assignment 2
Ø Released on 24 April
Ø Due 26/05/2025, 11:55PM
Ø Start early

1

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Introduction to the key
concepts of the CUDA
Programming Model

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Programming for the GPU is not an extension of CPU programming
Ø GPU hardware is changing rapidly, ever more massive parallelism
Ø You need to understand the scale of a problem that a GPU can address
Nvidia slides: Stephen Jones, How To Write A CUDA Program: The Ninja Edition [S62401]3

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU and the CUDA Programming Model

Grid Device

Software GPU

Threads are executed by a CUDA core.
A warp is 32 threads that are executed simultaneously.

Thread CUDA Core

Thread Block SM

Multiple warps can make up a thread block.
Thread blocks are executed on a Streaming Multiprocessor.

Several concurrent thread blocks can reside on one
multiprocessor - limited by multiprocessor resources

... A kernel is launched as a grid of thread blocks

Modified from original source: Maggie Zhang, Nvidia4

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø There are lots of different types of parallelism that are referred to in the literature

5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø The reality for the GPU is that there are two fundamental types of parallelism
Ø Also referred too as fine- and coarse-grained parallelism

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø To achieve high performance on the GPU you need to address both types of parallelism
Ø If you address only one you will see only a fraction of the possible performance

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Task A à Task B à Task C (Task B can only start after Task A completes)
Ø We must understand how the hardware implements parallelism
Ø Future lectures will delve in to this in more detail

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø What happens when we double the size or number of GPUs?
Ø Task A and the last step of B fit in half the expanded GPU
Ø For a fixed problem size that fits in one GPU we do not get a 2x gain

9

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø A Wave is the ideal number of blocks that fills a GPU
Ø Wave quantization is a key challenge

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Here is an extreme example of the problem of wave quantization
Ø The problem size is just a little larger than a wave
Ø Lots of resources will be wasted

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Here is an extreme example of the problem of wave quantization
Ø The problem is just a little larger than a wave (2 blocks)
Ø Most of the GPU will be idle when running A’ , Task B cannot start

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Wave quantization Statistics: on average you will lose 50% of the performance
Ø Without planning, you may lose much more performance

13

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø More waves can reduce the impact of wave quantization –
Ø original design assumption was for 100 waves
Ø The dramatic increase in the size of GPUs (the number of SMs) has reduced

the number of waves for a fixed workload and increased the overhead
14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Natural assumption is to map threads to data
Ø Correct mapping is the reverse - data to threads
Ø Divide your tasks across 132 SMs

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø The consequence of poor mapping is that we have an imbalanced workload

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø The optimal programming approach is to produce single-wave kernels
Ø This will not always be possible, watch out for load imbalance
Ø Bulk data parallelism will not typically achieve 100% efficiency

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Data parallelism alone will rarely be sufficient to achieve top performance
Ø Task parallelism will help, but it is harder to implement

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Task A does not fill the GPU and Task B cannot run until A finishes
Ø Task X is independent of Task A, so Task X can now fill the GPU

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø CUDA streams – concurrent execution
Ø Stream = A sequence of operations that execute in issue-order on the GPU
Ø CUDA operations from different streams may be interleaved

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Throughput is faster with task parallelism

21

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Complex task parallelism can be represented in a CUDA graph
Ø A CUDA graph enables multiple GPU operations to be launched through

a single CPU operation
Ø Build and launch CUDA graphs

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Not all problems you may encounter can be divided
into multiple independent tasks …

23

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Pipeline parallelism allows you to create and take advantage of parallel tasks

24

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Always take advantage of elementwise kernels if they are greater than one wave

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Elementwise operations are a rare opportunity
Ø Convolutions are an example where surrounding data is required

26

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Pipeline parallelism by splitting tasks can lead to chained dependencies
 and undermine any performance gains

27

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Avoid the dependencies by reducing the size of dependent tasks (B&C)
Ø Reducing the size of tasks increases the number of tasks

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø This approach also introduces redundant computation at the edges
Ø The impact of redundant computation can be small as a few % over large arrays

29

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø All to all algorithms require extensive communication and synchronization
Ø Memory usage and bandwidth can limit performance

30

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø The pipelining solution delivers no benefits in this case
Ø You will often be working with all-to-all algorithms

31

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø You may be able to break chunks of your problem into pipelines
Ø All-to-all will act as a synchronization point

32

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Model parallelism divides a model into separate tasks
Ø The example is a multi-layer deep learning model

Parallel tasks

33

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø We can divide the model into seperate parts
Ø This is a form of task parallelism for complex workflows

Parallel tasks

34

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø A simple split may not work well if you ignore dependencies between tasks
Ø In this example Task 3 will act as a bottleneck

Parallel Tasks

35

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Reducing synchronization can be more efficient that attempting
 to balance the task workload

36

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Once you have identified a split that minimizes synchronization you can
then further split based on that hierarchy

Parallel tasks

37

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø A key goal when implementing model parallelism is to
minimize inter-task synchronization ie Reduce waiting time
and keep the GPU busy

Ø This applies to task parallelism in general
38

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø As with many compute architectures, GPU memory is a critical resource
Ø The more tasks the less cache available, the more cache misses that undermine efficiency
39

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø A high cache hit rate produces the highest performing code
Ø L2 cache has higher bandwidth and lower latency than HBM memory

40

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Row-major finishes at the bottom
Ø Task B will start again at the top left ….

41

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø When switching to Task B you will always generate
 a cache-miss with row-major kernels

42

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Running with B in reverse order will produce a cache hit (~10x faster)
Ø Managing cache effectively can deliver significant benefits

43

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Identifying whether your program is bandwidth limited is essential to
 producing high performing code
Ø For most problems that you encounter this will be the case
Ø Can we run our problem in L2 cache?

44

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Previous examples demonstrated how to split problems into smaller tasks
Ø Split the tasks into L2 cache-sized chunks
Ø Run each Task in series on the cache size chunk!

45

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Running tasks in series is known as tiling e.g tile-based graphics rendering
Ø Choosing the optimal tiling size is crucial for achieving good performance

46

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Can take advantage of both task and data parallelism, all running in cache
Ø Programming complexity increases
Ø Design from the start, refactoring to achieve this most likely will be hard

47

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

48

__global__ void saxpy(int n, float a, float *x, float *y) {

 for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; i += blockDim.x * gridDim.x) {

 y[i] = a * x[i] + y[i];

 }

}

Ø The grid stride loop pattern is a technique used in CUDA programming to ensure that a kernel can
efficiently process data arrays of any size

The grid stride loop pattern in CUDA

Ø In this example, each thread calculates its unique index in the array (`i = blockIdx.x * blockDim.x +
threadIdx.x`), and then processes the element at that index.

Ø The thread then increments its index by the total number of threads in the grid (`blockDim.x *
gridDim.x`), and processes the next element, repeating this process until all elements have been
processed

Ø This pattern allows the kernel to handle data arrays of any size, even when the number of threads
launched is less than the number of data elements.

Ø It also makes your CUDA kernels more flexible and scalable

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Optimization Workflow in CUDA

<<

Find Limiter

Compare to
peak GB/s

Memory
optimization

Compare to
peak inst/s

Instruction
optimization

Configuration
optimization

Memory
bound

Instruction
bound

Latency
bound

Done!

~ ~ <<

Wrong View of
Optimization!

Ø Try all the
optimization
methods in the
book

Ø …optimization is
endless…

49

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Summary

Ø Programming a streaming multiprocessor is not an extension of CPU programming!
Ø Is a GPU required based on the scale of the task and the ability to expose parallelism?
Ø Data and task parallelism concepts are the GPU fundamentals that you should master
Ø Seek to achieve wave quantization on the target GPU
Ø Task parallelism
Ø All-to-all algorithms break task parallelism, use higher level model parallelism
Ø Create a CUDA graph of complex model parallelism tasks, reduce dependencies
Ø Avoid bandwidth limitations, tile execution in cache

50

