COMP4300 - Course Update

» Assignment 1
» Marks have been released

» Assignment 2
> Released on 24 April
» Due 26/05/2025, 11:55PM
» Start early

Introduction to the key
concepts of the CUDA
Programming Model

The H100 Architecture

It's very, very parallel

Hopper H100 GPU

SMO SM 1 SM 2 SM 3 SM 131)
Hopper architecture

regs regs regs regs ' regs

(256k) || (256k) || (256k) || (256k) (256k) 132 SMs

E L1$ L$ L$ L1$ L$

(256k) || (256k) || (256k) || (256K) || (256Kk) || (256k) 64 warps/SM = 8,448 warps tot

32 threads/warp = 270,336 threads tota

4-way superscalar
4-way * 132 SMs = 528 active warps
4 warps * 132 SMs = 33,79:

L2 Cache (SO0MB)

For typical-size block of 256 threads
256 threads = 8 warps = max 8 blocks / SM
8 blocks * 132 SMs = 1,056

HBM Memory (80GB)

» Programming for the GPU is not an extension of CPU programming
» GPU hardware is changing rapidly, ever more massive parallelism
» You need to understand the scale of a problem that a GPU can address

Nvidia slides: Stephen Jones, How To Write A CUDA Program: The Ninja Edition [S62401]

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU and the CUDA Programming Model

Software GPU
L] Threads are executed by a CUDA core.
A warp is 32 threads that are executed simultaneously.
Thread CUDA Core
= = Multiple warps can make up a thread block.
—— Thread blocks are executed on a Streaming Multiprocessor.
I—
Several concurrent thread blocks can reside on one
multiprocessor - limited by multiprocessor resources
Thread Block SM
22222 22222 22222 %% % %% % A kernel is launched as a grid of thread blocks
Grid Device

Modified from original source: Maggie Zhang, Nvidia

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

There Are Many Types of Parallelism Patterns

-

Tensor Parallelism Data Parallelism Task Parallelism Model Parallelism

Divide data along Divide individual Divide independent Divide sequences of
dimensions across elements across workflows across operations across
processors processors processors processors

» There are lots of different types of parallelism that are referred to in the literature

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

But Really There Are Only Two Types of Parallelism Patterns

0 {884

Data Parallelism Task Parallelism

Divide individual Divide independent
elements across workflows across
processors processors

» The reality for the GPU is that there are two fundamental types of parallelism
» Also referred too as fine- and coarse-grained parallelism

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA is Both: Data Parallelism Inside Task Parallelism

Overall
workflow

‘ (5)6 | | Task Parallelism Independent Blocks

< of Threads

i

Task Parallelism Data Parallelism 7 5 —TY ‘ c Thread

Divide independent Divide individual) ’f on.current floeailic

workflows across elements across LA, in each Block
processors processors i

» To achieve high performance on the GPU you need to address both types of parallelism
» |If you address only one you will see only a fraction of the possible performance

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

How Bulk Data Parallelism Runs on the GPU

Relative work to do

P
{.:.Bt,‘,

This is what you think is happening:

» Task A 2 Task B = Task C (Task B can only start after Task A completes)
» We must understand how the hardware implements parallelism
» Future lectures will delve in to this in more detail

Bulk Per-Kernel Data Parallelism

Relative work to do

1x

his is what you think should be happening:

But this is what is actually happening:

» What happens when we double the size or number of GPUs?
» Task A and the last step of B fit in half the expanded GPU
» For a fixed problem size that fits in one GPU we do not get a 2x gain

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

10

The Scourge of the Ninja: Wave Quantization

One “wave” is the number of blocks
that exactly fills the GPU

» A Wave is the ideal number of blocks that fills a GPU
» Wave quantization is a key challenge

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Scourge of the Ninja: Wave Quantization

Tiny little part of A that
didn’t fit in the first wave

But what if A
were two blocks
bigger?

Extra wave of A can waste a lot of resources

There are no partial waves, hence “wave quantization”

» Here is an extreme example of the problem of wave quantization
» The problem size is just a little larger than a wave
» Lots of resources will be wasted

11
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

12

The Scourge of the Ninja: Wave Quantization

Tiny little part of A that
didn'’t fit in the first wave

Mostly idle GPU
because B cannot start
until the last thread
But what if A of A has finished
were two blocks | P 133 _]
bigger? e

Extra wave of A can waste a lot of resources

There are no partial waves, hence “wave quantization”

» Here is an extreme example of the problem of wave quantization
» The problem is just a little larger than a wave (2 blocks)
» Most of the GPU will be idle when running A’ , Task B cannot start

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Scourge of the Ninja: Wave Quantization

Unless you'’ve intentionally sized your grid launch to be one wave,
the quantization effect will on average be random

Lose ~50% (+/- 50%) of efficiency on the final wave

» Wave quantization Statistics: on average you will lose 50% of the performance
» Without planning, you may lose much more performance

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

14

Yes, More Waves Mitigates This, But Bigger GPUs = Fewer Waves

2012: Kepler GK110 architecture = 15 SMs
2022: Hopper H100 architecture = 132 SMs

9x SM count increase in 10 years

So a kernel which ran in10 waves on GK110
now runs in 1.1 waves on H100

We went fromm 10% overhead from wave
quantization to 50% overhead

That is: you could be running twice as fast

Hopper H100 Full Chip
Kepler GK110
Full Chip 132 SMs

15 SMs

» More waves can reduce the impact of wave quantization —

» original design assumption was for 100 waves

» The dramatic increase in the size of GPUs (the number of SMs) has reduced
the number of waves for a fixed workload and increased the overhead

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ninjas Use Single-Wave Kernels
Don’'t map threads to data; map data to threads

Image suggests 16x16 tiles = 256 blocks

Hardware suggests v 132 SMs = 11.5 x11.5 tiles

1 | ;

1024x1024 image divided into 16x16 tiles H100 with 132 SMs

» Natural assumption is to map threads to data
» Correct mapping is the reverse - data to threads
» Divide your tasks across 132 SMs

15
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

16

Ninjas Use Single-Wave Kernels

Don’t map threads to data; map data to threads

Image suggests 16x16 tiles = 256 blocks

;"' ‘< Hardware suggests v 132 SMs = 11.5 x11.5 tiles

I.W‘Hllll

i
W /N

[TVIPN | | _

PR s g RN Where possible, always map data to threads
T e = e o o e

1024x1024 image divided into 12x12 tiles

Red edge indicates where naive rounding
leaves imbalanced workload(*)

(*) For thH load balancing alternat Mww es of 11 and 12, although this
increas omplexity and may be |m; ssible depending on application

H100 with 132 SMs

» The consequence of poor mapping is that we have an imbalanced workload

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Not a Silver Bullet

Single-wave kernels are better in almost all cases than non-integer-wave

Similar to “grid-stride loop” pattern frquently taught for CUDA

But there are a number of problems which may prevent use:
1. Some algorithms require specific size of tiling

. Must account for GPUs of different sizes (e.g. RTX-3090/80/70/60)
3. Increase in code complexity by having non-constant tile size

4. Load imbalance remains; may be no better than an extra partial wave

» The optimal programming approach is to produce single-wave kernels
» This will not always be possible, watch out for load imbalance

» Bulk data parallelism will not typically achieve 100% efficiency

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

How about the other
kind of parallelism?

Task Parallelism

Divide independent
workflows across
processors

» Data parallelism alone will rarely be sufficient to achieve top performance
» Task parallelism will help, but it is harder to implement

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

19

So Why Does Task Parallelism Help?

| can’t run B, but X is independent

of A so | can run X immediately
Task :A2>B->C

> Task A does not fill the GPU and Task B cannot run until A finishes
» Task X is independent of Task A, so Task X can now fill the GPU

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

So Why Does Task Parallelism Help?

But ABC runs faster in parallel with XYZ than
ABC+XYZ would run sequentially

Two independent tasks in series: nﬂ ‘7) Y | Z Jﬂ
Are slower than two tasks in parallel: I : Hn. 7 777‘ ‘I Z 1‘ ‘\

» CUDA streams — concurrent execution
» Stream = A sequence of operations that execute in issue-order on the GPU
» CUDA operations from different streams may be interleaved

20
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

So Why Does Task Parallelism Help?

But ABC runs faster in parallel with XYZ than
ABC+XYZ would run sequentially

Lyl AV RIS RIS
:‘,l‘ 2 e A
s il
) i

3

But tasks 1 & 2 complete

oimtrse s IR \ £ s
igher throughpu
Are slower than two tasks in parallel: I X Jn.‘ 7 J l

Task ABC experiences
longer latency

» Throughput is faster with task parallelism

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

/ N\
&,

RN
W

| Can Turn It All Into A CUDA Graph

Stream 1

A

Stream 2

wait 1

Stream 3

wait 1

x

: ~/"‘/\‘,
NG

B X

Execution is identical event 1 Y

N

X VR /
—{ < Jo—

/‘\v/

/

Any stream workflow can be C event 2
represented as a graph

)

/
S
D

»

D z

(

TN
N
N’

/

7
(=
Nl

» Complex task parallelism can be represented in a CUDA graph
» A CUDA graph enables multiple GPU operations to be launched through

a single CPU operation
» Build and launch CUDA graphs

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

23

But What If | DON’T Conveniently Have Independent Work To Do?

How do | create task parallelism when there’s only one task?

» Not all problems you may encounter can be divided
into multiple independent tasks ...

24

The Obvious Approach: Split The Data In Two

Also known as “Pipeline Parallelism” — yet another type of parallelism which is really just task parallelism

T
(32

//*‘\-..
(B2)
N/

=

h 4
P ez

(%)

g /

» Pipeline parallelism allows you to create and take advantage of parallel tasks

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

25

Easy For Elementwise Programs

Programs never are entirely elementwise, but splitting the kernels which are will always win a little

void daxpy(int n, double alpha, double *x, double *y)
{

fion (' =R0 S <Bn - =)
{
y[i] = alpha * x[i] + y[i];

Elementwise “ax plus y” vector scale-and-addition

» Always take advantage of elementwise kernels if they are greater than one wave

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

26

But The Real World Is Almost Never Elementwise

However, it is very often localised, like a stencil, instead of needing random access to all data

Example: 1D Stencil, radix-5

» Elementwise operations are a rare opportunity
» Convolutions are an example where surrounding data is required

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

... Create Dependencies Between Tasks 1 & 2

This makes it very hard to co-schedule sub-portions of A,Band C

‘N-]‘ N

Example: 1D Stencil, radix-5

|| C1 needs access to b;; and a5
cn which belong to task #2

B1 needs to wait until A2 has done its work
C1 has to wait until B2 has done its work
But B2 has to wait until A1 has done its work
... and this is why pipeline parallelism is hard

» Pipeline parallelism by splitting tasks can lead to chained dependencies
and undermine any performance gains

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

So Instead, Reduce the Sizes of B& C

Of course, now you need more than two tasks

Task A1 retains the original Task A2 is now wider because
12-wide task split it extends on both sides And now we have a Task A3

c7 Cg Cis Cis

We do this enough times that every value of C has been computed exactly once

» Avoid the dependencies by reducing the size of dependent tasks (B&C)
» Reducing the size of tasks increases the number of tasks

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

29

Cost Of Redundant Computation Depends On Data Size

because it's common that each sub-task A1, A2, A3 operates over many data elements

Often, recomputing something is faster than writing it out to memory and then reading it back in

Typically arrays are large so overlap is a small fraction,
but redundancy grows with each dependent kernel

» This approach also introduces redundant computation at the edges
» The impact of redundant computation can be small as a few % over large arrays

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

30

The Real Problem: All-to-All Algorithms

For example: sorting, fourier transforms, and unfortunately many other useful things

Elementwise

L‘ [

Tulululslsls
[TTTTTTT Scalar operations, mappings, indexing
oooooon

Convolutions, derivatives, filters, stencil operations

Transitive functions, searching, sorting, reductions... and many others

» All to all algorithms require extensive communication and synchronization
» Memory usage and bandwidth can limit performance

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

31

All-to-All Algorithms Break Pipelining

| always end up with 100% redundant computation, so there’s no point splitting the operation

» The pipelining solution delivers no benefits in this case
» You will often be working with all-to-all algorithms

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

All-to-All Algorithms Break Pipelining

| can run until | hit an all-to-all operation, but then | need to sync across the whole workload

Elementwise A

l

Local B

l

Elementwise C
l All-to-all operations break

: . . pipeline asynchrony
All-to-all D All-to-all D

I ‘ o They are in effect a
= R synchronization point

Elementwise E

l Split into tasks
for pipelining

Local F
All-to-all G All-to-all G

Elementwise H

» You may be able to break chunks of your problem into pipelines
» All-to-all will act as a synchronization point

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Model Parallelism: Task Parallelism For Complex Workflows

‘ Input
Embedding

Positional ‘_‘ Multi-Head
Encoding Attention

_,-—
Add & Norm

‘ Output
Embedding

Masked

Multi-Head
Attention

|
~ Add&Norm |

Feed
Forward

[
[Add & Norm

J Multi-Head |

Attention

Add & Norm

[

‘ Feed
Forward

[
Add & Norm !

[
Linear

Softmax

EIEHERENS

Task 3

» Model parallelism divides a model into separate tasks
» The example is a multi-layer deep learning model

33

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Naive split of tasks to span GPUs

EIEHERENS

Emllyep(;‘;ing Task 2 Task 3

Positional /< > __‘ Multi-Head
Encoding Attention

S — |
Add & Norm

Output] Feed Feed
Embedding Forward | Forward

[

Output ‘ Input
Embedding Embedding
e B s fu—
Masked =4 [Add & Norm —| Add & Norm
I [

Multi-Head
Multi-Head H{ ') ‘

Attention

[Masked

Mo Eead Y% Positional . Vi

Linear

Add & Norm
[

S Encoding)
Attention ‘ l 0 Attention Multi-Head
A Attention ——
[Add & Norm 4‘; [Softmax
[

- Add&Norm |
=)
Feed ‘ Add &]Norm

Forward

———
[Add & Norm
L l Multi-Head]

Attention

p——
[Add & Norm
[

Feed
Forward

1
Add & Norm
=
Linear

[Softmax

» We can divide the model into seperate parts
» This is a form of task parallelism for complex workflows

34

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Naive split of tasks to span GPUs

EIEHERENS

‘ Input

(Jj Embedding Task 2 Task 3
Positional [Multi-Head

Encoding Attention

\—,—l

Add & Norm

‘ Output ‘ Input ‘ Output Feed Feed
Embedding T Embedding Embedding Forward | Forward
W%

Add & Norm [Add & Norm

‘ LI <\ Positional % ‘ Multi-Head ‘ Masked :

Multi-Head = < o™

Encoding Attention Multi-Head X

Attention ’ Attention Multi-Head Linear

— 1] —— o)
_ [Add&N ttention ,—l—
| Add & Norm orm V—I;Add R — Softmax

I
Feed , | Add & Norm

Forward

—_—

Add & Norm

= Task 3 has four

[Multi-Head
] Attention inter-task

—— = dependencies
Add & Norm |

Feed
Forward

Add & Norm -
Linear

[
Softmax

» A simple split may not work well if you ignore dependencies between tasks
» In this example Task 3 will act as a bottleneck

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Unbalanced Tasks Are Often Much Cheaper Than Over-Synchronization

Positional <

Encoding

Outputs

Inputs (shifted right)

e |

Input ‘ Output
Embedding Embedding

Masked
Multi-Head
Attention

Attention

‘ »{ Add & Norm
I T

Multi-Head ‘

Multi-Head
Attention

> Add & Norm
¥

Feed
Forward
Add & Norm -

Feed
Forward

Add & Norm

v

Linear

Softmax
I

Output

<\ Positional
MR Encoding

—l Add & Norm - ‘
I T

|

Probabilities

» Reducing synchronization can be more efficient that attempting
to balance the task workload

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

EICHERENS

Task 3

And If You Need To Split More, Do It Hierarchically

Task 2

Output
Embedding

Multi- Head

Outputs
Inputs (shifted right)
‘ Input ‘ Output
Embedding Embedding
Positional ‘ Multi-Head Masked S5 -
Encoding Attention Multi-Head |« 1;05|t|(iqnal ‘ Input [Feed
‘ 3 Attention e | Embedding Forward Attention
L[Add & Norm T 3
Add & Norm « < [— AT - AddaN Add &Norm |— | [Masked
— | Attention Multi-Head "
Multi-Head ‘ Feed Attention
[Add & Norm H Forward
[Add & Norm - & Norm |
L] Add & Norm
[Linear
[
[Softmax

B————
Feed
1 Attention

‘ Forward

["Add & Norm
‘ Feed
Forward

S
[Add & Norm

¥
s/ Add & Norm

<
v

[Linear

‘ Softmax

Output
Probabilities

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

» Once you have identified a split that minimizes synchronization you can

then further split based on that hierarchy

37

In Other Words, Split The Model To Minimise Inter-Task Sync

Outputs
Inputs (shifted right)

Input Output
Embedding Embedding

Positional /< > [Multi-Head Masked

Encoding I~ Attention Multi-Head «—{ - 'E?\ilft:ldoi?\al Input ‘ Output Feed Feed
3 Attention 9 Embedding Embedding Forward Forward
—_—
Add & Norm

[Add &Norm Add & Norm
Attention Multi-Head | { 1 | i
Multi-Head Attention Multi-Head Linear

‘ Feed
Forward

Attention

——T o
\‘ . Add&$Norm « *‘ Multi-Head Masked

e —

[
i I
Add & Norm — 1 Attention
Add & Norm [Add&Norm | Softmax

Add & Norm

E—
»-{ Add & Norm

Feed
Forward

E— —
[Add & Norm |«
Linear

‘ Softmax

!

Output
Probabilities

Naive split: four dependencies in/out of one task

Producer/Consumer split: one dependency

» A key goal when implementing model parallelism is to
minimize inter-task synchronization ie Reduce waiting time
and keep the GPU busy

» This applies to task parallelism in general

38

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Big Problem With Task Parallelism: Thrashing The Cache

Each task sees a proportionately smaller cache because by definition they are working on different data

Hopper GH100 GPU

SMO SM 1 SM2 SM3 SM 131 [
|
regs regs regs regs regs |
(256k) (256k) (256k) (256k) (258k)
Lis L1$ Lis Ls Lis Lis
(256k) (256k) (256k) (256k) (256k) (256k)

L2 Cache (50MB)

Al A2

HBM Memory (80GB)

» As with many compute architectures, GPU memory is a critical resource
» The more tasks the less cache available, the more cache misses that undermine efficiency

39
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

40

You really really want cached data

A high L2 hit rate can give as much as a 10x boost in performance

bandwidth
2.9x

» A high cache hit rate produces the highest performing code
» L2 cache has higher bandwidth and lower latency than HBM memory

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

0

Aside: Stop running all your kernels row-major from the top left

Cache contains
last-read part of data

L2 Cache (50MB)

| /Q%@; D
-r B il
.-, i/
r s

HBM Memory (80GB)

» Row-major finishes at the bottom
» Task B will start again at the top left

4

Aside: Stop running all your kernels row-major from the top left

B
starts
reading
here

Then B misses in cache when
starting from the top

L2 Cache (50MB)

e HBM Memory (80GB)

here

» When switching to Task B you will always generate
a cache-miss with row-major kernels

43

Aside: Stop running all your kernels row-major from the top left

Finishes
here

Instead, working B in reverse
B L2 Y S
N A
..“\ 'I//",. L2 Cache (50MB)
N /V
N e

lb.ﬂ

HBM Memory (80GB)

starts
reading

here
As all blocks execute
independently, the program
still runs correctly

int blockId = gridDim.x - blockIdx.x - 1;
int data_index = threadIdx.x + blockId * blockDim.x;

» Running with B in reverse order will produce a cache hit (~10x faster)
» Managing cache effectively can deliver significant benefits

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

bandwidth
2.9x

memory
limited

HBM
Memory

If most programs are ..and L2 cache can run as much as ...and | know how to
limited by memory 10x faster than main memory ... split my program into
bandwidth ... smaller tasks...

» |dentifying whether your program is bandwidth limited is essential to
producing high performing code

» For most problems that you encounter this will be the case

» Can we run our problem in L2 cache?

44
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

45

To Keep Data in Cache We Run Each Task in Series, NOT in Parallel

L2 Cache (50MB)

HBM Memory (80GB)

Split data into cache-sized chunks We’'ll have one task per chunk

» Previous examples demonstrated how to split problems into smaller tasks
» Split the tasks into L2 cache-sized chunks

> Run each Task in series on the cache size chunk!

This is Known As “Tiling” Your Execution in Cache

You'll really want to design your program for this up-front

L2 Cache (50MB)

Input data and working
set must be sized to fit
entirely in L2 cache

HBM Memory (80GB)

Split data into cache-sized chunks Run tasks in series

» Running tasks in series is known as tiling e.g tile-based graphics rendering
» Choosing the optimal tiling size is crucial for achieving good performance

46

So We Can Task-Parallelise Our Task-Based Cache Tiling

This can get silly pretty fast...

HOEE
& A G
I

.
w
4

7~ N\ ¥ e
(B1a) (B1b) @
L2 Cache (50MB) "/ @

T]
@)) @) @)
\ y \ J
DAD
() () (oo

@ @) @) @

Now we need twice as many tasks

HBM Memory (80GB)

Split data into half-cache-sized chunks So now my tasks fit in 25MB each

» Can take advantage of both task and data parallelism, all running in cache
» Programming complexity increases

» Design from the start, refactoring to achieve this most likely will be hard

47

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The grid stride loop pattern in CUDA

» The grid stride loop pattern is a technique used in CUDA programming to ensure that a kernel can
efficiently process data arrays of any size

. _global wvoid saxpy(int n, float a, float *x, float *y) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i1 < n; 1 += blockDim.x * gridDim.x)

y[i] = a * x[i] + y[i];

» In this example, each thread calculates its unique index in the array (‘i = blockldx.x * blockDim.x +
threadldx.x’), and then processes the element at that index.

» The thread then increments its index by the total number of threads in the grid (*blockDim.x *
gridDim.x’), and processes the next element, repeating this process until all elements have been
processed

» This pattern allows the kernel to handle data arrays of any size, even when the number of threads
launched is less than the number of data elements.

» It also makes your CUDA kernels more flexible and scalable

48

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

7

Optimization Workflow in CUDA

Find Limiter
: 2 ’
Wr 0}"9{ VI? w of Memory Instruction Latency
Optimization! bound bound bound
> Try all the Compare to Compare to
optimization peak GB/s peak inst/s
methods in the << i ~ ~ <<
E0L Memory Instruction Configuration
optimization optimization optimization
» ..optimization is
endless... . -
Done!

S
49

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

50

Summary

VVVVYVYVYVYY

Programming a streaming multiprocessor is not an extension of CPU programming!

Is a GPU required based on the scale of the task and the ability to expose parallelism?
Data and task parallelism concepts are the GPU fundamentals that you should master
Seek to achieve wave quantization on the target GPU

Task parallelism

All-to-all algorithms break task parallelism, use higher level model parallelism

Create a CUDA graph of complex model parallelism tasks, reduce dependencies

Avoid bandwidth limitations, tile execution in cache

