COMP4300 - Course Update _
Introduction to the key
» Assignment 1

» Marks have been released COnCeptS Of the CU DA
- Assignment2 Programming Model

» Released on 24 April
» Due 26/05/2025, 11:55PM

» Start early

=

ECSAPRCMIOER D RVLZ002 AUSTRALAN UVERSITY) GREDS PRCVIER CODE. 20 TEOSAPACHIDERID V12002 AUSTRALAN UNVERSITY) HCOSPACVOER CODE: 01200

The H100 Architecture GPU and the CUDA Programming Model

Software GPU
Hopper H100 GPU
Hopper architecture :l
Threads are executed by a CUDA core.
A warp is 32 threads that are executed simultaneously.
Thread CUDA Core
EE Multiple warps can make up a thread block.
BEE Thread blocks are executed on a Streaming Multiprocessor.
[
|:| Several concurrent thread blocks can reside on one
multiprocessor - limited by multiprocessor resources
Thread Block SM

» Programming for the GPU is not an extension of CPU programming 2222% 22%22 22222 A kernel is launched as a grid of thread blocks
S |

» GPU hardware is changing rapidly, ever more massive parallelism
» You need to understand the scale of a problem that a GPU can address ! Grid Device ‘

Nvidia slides: Stephen Jones, How To Write A CUDA Program: The Ninja Edition [S62401] 4 Modified from original source: Maggie Zhang, Nvidia

S PRCMIORR D RVE2002 {AUSTRALAN UNVERSITY) RCDS RCHIEA COOE- 120

There Are Many Types of Parallelism Patterns

But Really There Are Only Two Types of Parallelism Patterns

Tensor Parallelism Data Parallelism

Divide individual
elements across
processors

Task Parallelism Data Parallelism
Divide independent e es
workflows across i

processors

Model Parallelism Task Parallelism
Divide data along dependent
dimensions across flows across

processors processors

Divide individual
elements across
processors
processors

> There are lots of different types of parallelism that are referred to in the literature > The reality for the GPU is that there are two fundamental types of parallelism
» Also referred too as fine- and coarse-grained parallelism

TEOSA PRCHOERID /12002 AUSTRALAN USVERSTY GHCCS PROVIOER CODE- 01200

CUDA is Both: Data Parallelism Inside Task Parallelism How Bulk Data Parallelism Runs on the GPU

Relative work to do

1x

Task Parallelism Independent Blocks

of Threads

Task Parallelism Data Parallelism

e Data Paralleli - Concurrent Threads
Divide individual

element: oss / in each Block
processors -

This is what you think is happening

» To achieve high performance on the GPU you need to address both types of parallelism

» Task A 2 Task B 2 Task C (Task B can only start after Task A completes)
» If you address only one you will see only a fraction of the possible performance

» We must understand how the hardware implements parallelism
» Future lectures will delve in to this in more detail

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

Bulk Per-Kernel Data Parallelism

Relative work to do

1x

his is what you think should be happening
We have 2x the GPU but only went 1.75x faster!
But this is what is actually happening:

» What happens when we double the size or number of GPUs?
» Task A and the last step of B fit in half the expanded GPU
» For a fixed problem size that fits in one GPU we do not get a 2x gain

The Scourge of the Ninja: Wave Quantization

Tiny little part of A that
didn’t fit in the fi

J

Extra wave of A can waste a lot of resources

There are no partial waves, hence “wave quantization”

» Here is an extreme example of the problem of wave quantization
» The problem size is just a little larger than a wave
» Lots of resources will be wasted

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

The Scourge of the Ninja: Wave Quantization

One is the number of blocks
that exactly fills the GPU

» A Wave is the ideal number of blocks that fills a GPU
» Wave quantization is a key challenge

TEOSA PRCHOERID /12002 AUSTRALAN USVERSTY GHCCS PROVIOER CODE- 01200

The Scourge of the Ninja: Wave Quantization

Tiny little part of A
didn't it in t

ostly idle GPU
because B cannot start
until the last thread
of A has finished

te a lot of resources

There are no partial waves, ve quantization”

» Here is an extreme example of the problem of wave quantization
» The problem is just a little larger than a wave (2 blocks)
» Most of the GPU will be idle when running A’ , Task B cannot start

The Scourge of the Ninja: Wave Quantization

Unless you've intentionally sized your grid launch to be one wave,
the quantization effect will on average be random

Lose ~50% (+/- 50%) of efficiency on the final

» Wave quantization Statistics: on average you will lose 50% of the performance
» Without planning, you may lose much more performance

Ninjas Use Single-Wave Kernels

Don’t map threads to da data to threads

Image suggests 16x16 tiles = 256 blocks

Hardware suggests V132 SMs = 11.5 x11.5 tiles

H100 with 132 SMs

1024x1024 image divided into 16x16 tiles

» Natural assumption is to map threads to data
» Correct mapping is the reverse - data to threads

» Divide your tasks across 132 SMs

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

Yes, More Waves Mitigates This, But Bigger GPUs = Fewer Waves

2012: Kepler GK110 architecture = 15 SMs
2022: Hopper H100 architecture = 132 SMs

9x SM count increase in 10 years

So a kernel
now runs in 1.1 waves on H10

We went from 10% overhead from
quantization to 50% overhead

That is: you could be running twice as fast
Hopper H100 Full Chip
Kepler GK110
Full Chip 132 SMs

» More waves can reduce the impact of wave quantization —

» original design assumption was for 100 waves

» The dramatic increase in the size of GPUs (the number of SMs) has reduced
the number of waves for a fixed workload and increased the overhead

TEOSA PRCHOERID /12002 AUSTRALAN USVERSTY GHCCS PROVIOER CODE- 01200

Ninjas Use Single-Wave Kernels
Don’t map thre: data; map dat: tl s

Image suggests 16x16 tiles = 256 blocks

Hardware suggests /132 SMs = 115 x11 5 tiles

Where possible, always map data to threads

H100 with 13;

» The consequence of poor mapping is that we have an imbalanced workload

Not a Silver Bullet

Single-wave kernels are better in almost all cases than non-integer-wave

How about the other
kind of parallelism?

Similar to “grid-stride loop” pattern frquently taught for CUDA

But there are a number of problems which may prevent use:
ize of tiling

Some algorithms require specific s
es (e.g. RTX-3090/80/70/60)

2. Must account for GPUs of different

3. Increase in code compl y by ng non-constant tile size

4. Load imbalance remains; may be no better than an extra partia
Task Parallelism

Divide independent
workflows across
processors

» The optimal programming approach is to produce single-wave kernels
» This will not always be possible, watch out for load imbalance » Data parallelism alone will rarely be sufficient to achieve top performance
» Bulk data parallelism will not typically achieve 100% efficiency » Task parallelism will help, but it is harder to implement

So Why Does Task Parallelism Help? So Why Does Task Parallelism Help?

I can’'t run B, but X is independent
of A so | can run X immediately Two independent tasks in series:
Are slower than two tasks in parallel:

» CUDA streams — concurrent execution
» Stream = A sequence of operations that execute in issue-order on the GPU

» CUDA operations from different streams may be interleaved

» Task A does not fill the GPU and Task B cannot run until A finishes
» Task X is independent of Task A, so Task X can now fill the GPU

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

So Why Does Task Parallelism Help?

But tasks 1 & 2 complete

SO W8 Bl c ol x XYy sooner averalwih
P L higher throughput
sresowerthan o e mporae: [N ‘®, |

Task ABC experiences
longer latency

» Throughput is faster with task parallelism

But What If | DON’T Conveniently Have Independent Work To Do?

How do | create task parallelism when there’s only one task?

» Not all problems you may encounter can be divided
into multiple independent tasks ...

| Can Turn It All Into A CUDA Graph

Stream 1 Stream 2 Stream 3

A wait 1 wait 1
B X
Execution is identical event 1 Y
C
D

(N <))~ ®)—>)

» Complex task parallelism can be represented in a CUDA graph

» A CUDA graph enables multiple GPU operations to be launched through
a single CPU operation

» Build and launch CUDA graphs

The Obvious Approach: Split The Data In Two

Also known as “Pipeline Parallelism” - yet another ty of paralleli vhich is really

» Pipeline parallelism allows you to create and take advantage of parallel tasks

Easy For Elementwise Programs
are entirely itting the ke h ar

EN
(D)
_/
void daxpy(int n, double alpha, double *x, double *y)
{

for(i =8; i<n; it+)

y[i] = alpha * x[i] + y[i];
Elementwise “ax plus y” vector scale-and-addition

» Always take advantage of elementwise kernels if they are greater than one wave

... Create Dependencies Between Tasks 1 & 2

This makes ry hard to co-schedule sub-portions of A, B and (

Example: 1D Stencil, radix-5

» Pipeline parallelism by splitting tasks can lead to chained dependencies
and undermine any performance gains

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

Example: 1D Stencil, radix-5

> Elementwise operations are a rare opportunity
» Convolutions are an example where surrounding data is required

TEOSA PRCHOERID /12002 AUSTRALAN USVERSTY GHCCS PROVIOER CODE- 01200

So Instead, Reduce the Sizes of B& C

)f course, now you need more than two tasks

We do this enough times that every value of € has been computed exactly once

» Avoid the dependencies by reducing the size of dependent tasks (B&C)
» Reducing the size of tasks increases the number of tasks

Computation Depen
1 S Al. A2,/ te

over many data elements

ds On Data Size

Often, recomputing something is faster than writing it out to memory and then reading it back in

» This approach also introduces redundant computation at the edges
» The impact of redundant computation can be small as a few % over large arrays

d uy

All-to-All Algorithms Break Pipelining

with 1

re

jundant ¢

m

itation, so there’s

point

plitting the operatior

» The pipelining solution delivers no benefits in this case
» You will often be working with all-to-all algorithms

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

The Real Problem: All-to-All Algorithms

For example: sorting, fourier transforms, and unfortunately many other useful things

Elementwise Scalar operations, mappings, indexing

Convolutions, deriva filters, stencil operations

All-to-All Transitive functions, searching, sorting, reductions... and many others

» All to all algorithms require extensive communication and synchronization
» Memory usage and bandwidth can limit performance

TEOSA PRCHOERID /12002 AUSTRALAN USVERSTY GHCCS PROVIOER CODE- 01200

All-to-All Algorithms Break Pipelining

I can run until | hit an all-to-all operation, but then | need to sync across the whole workload

Elementwise A
T

Local B

Elementwise C c1 c2
T All-to-all operations break
pipeline asynchrony

All-to-all D All-to-all D

Elementwise E
T

Local F
T

All-to-all G
T

Elementwise H

[

Split into tasks
for pipelining

All-to-all G

They are in effect a
synchronization point

» You may be able to break chunks of your problem into pipelines
» All-to-all will act as a synchronization point

Model Parallelism: Task Parallelism For Complex Workflows Naive split of tasks to span GPUs

Parallel tasks Parallel tasks

Task 2 Task 3 Task 2 Task 3

‘Add & Nor

» Model parallelism divides a model into separate tasks

-) : » We can divide the model into seperate parts
» The example is a multi-layer deep learning model

» This is a form of task parallelism for complex workflows

=

ECSAPRCMIOER D RVLZ002 AUSTRALAN UVERSITY) GREDS PRCVIER CODE. 20 TEOSAPACHIDERID V12002 AUSTRALAN UNVERSITY) HCOSPACVOER CODE: 01200

Naive split of tasks to span GPUs Unbalanced Tasks Are Often Much Cheaper Than Over-Synchronization

Parallel Tasks

Task 2 Task 3

Input
Embedding

Feed

Forward o

‘Add & Norm
Uinear

Add & Norm Softmax

k 3 has four
inter-task

pendencies
‘Add & Norm

Feed
Forward

Add & Norm
Tinear

Softmax

» A simple split may not work well if you ignore dependencies between tasks » Reducing synchronization can be more efficient that attempting
» In this example Task 3 will act as a bottleneck to balance the task workload

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

And If You Need To Split More, Do It Hierarchically

Parallel tasks

Task 2 Task 3

OQutput
Embedd

In Other Words, Split The Model To Minimise Inter-Task Sync

Producer/Consumer split: one dependency

» Once you have identified a split that minimizes synchronization you can
then further split based on that hierarchy

A Big Problem With Task Parallelism: Thrashing The Cach

Each task sees a proportionately smaller cache because by definition they are working on different dat:

Hopper GH100 GPU

L2 Cache (S0MB)

Al A2

HBM Memory (80GB)

» As with many compute architectures, GPU memory is a critical resource

» The more tasks the less cache available, the more cache misses that undermine efficiency

39

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

» A key goal when implementing model parallelism is to
minimize inter-task synchronization ie Reduce waiting time
and keep the GPU busy

» This applies to task parallelism in general

TEOSA PRCHOERID /12002 AUSTRALAN USVERSTY GHCCS PROVIOER CODE- 01200

You really really want cached data

A high L2 hit rate can give as much as a 10x boost in performance

HBM
Memory

» A high cache hit rate produces the highest performing code
» L2 cache has higher bandwidth and lower latency than HBM memory

Aside: Stop running all your kernels row-major from the top left

Cache contains
last-read part of data

L2 Cache (S0MB)

HBM Memory (80GB)

» Row-major finishes at the bottom
» Task B will start again at the top left

Aside: Stop running all your kernels row-major from the top left

Finishes

Instead, working B in reverse
maximises hit rate

L2 Cache (50MB)

HBM Memory (80GB)

starts
reading
here =

As all blot
int blockId = gridDim.x - blockIdx.x - 1; i
int data_index = threadIdx.x + blockId * blockDim.x; Sl s

» Running with B in reverse order will produce a cache hit (~10x faster)
» Managing cache effectively can deliver significant benefits

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

Aside: Stop running all your kernels row-major fi

B
starts
reading
here Then B misses in cache when
starting from the top

L2 Cache (S0MB)

Finishes HBM Memory (80GB)
here

» When switching to Task B you will always generate
a cache-miss with row-major kernels

TEOSA PRCHOERID /12002 AUSTRALAN USVERSTY GHCCS PROVIOER CODE- 01200

memory
limited

If most programs are ...and L2 cache can run as much as ..and | know how to
limited by memory 10x faster than main memory ... split my program into
bandwidth .. smaller tasks...

» ldentifying whether your program is bandwidth limited is essential to
producing high performing code

» For most problems that you encounter this will be the case

» Can we run our problem in L2 cache?

To Keep Data in Cache We Run Each Task in Series, NOT in Parallel

L2 Cache (50MB)
(a1)
(c1

HBM Memory (80GB)

Split data into cache-sized chunks We'll have one task per chunk

» Previous examples demonstrated how to split problems into smaller tasks
> Split the tasks into L2 cache-sized chunks
» Run each Task in series on the cache size chunk!

So We Can Task-Parallelise Our Task-Based Cache Tiling
t st

This can get silly pretty f

5@ O

L2 Cache (SOMB)

(A1) @

Cc1a @

HBM Memory (80GB) @ @ @ g/\)
4a 4b

Split data into half-cache-sized chunks So now my tasks fit in 25MB each Now we need twice as many tasks

» Can take advantage of both task and data parallelism, all running in cache
» Programming complexity increases
» Design from the start, refactoring to achieve this most likely will be hard

TEQSA ROVIOR 0 PVEZS0 AUSTRALAN UNVERSTY) CROOS ROV CO0E Q012EC

This is Known As “Tiling” Your Execution in Cache

You'll really want to design your program for this up-f

LM

L2 Cache (50MB)

entirely in L2 cache

Input data and working y @
set must be sized to fit

HBM Memory (80GB)

Split data into cache-sized chunks Run tasks in series

» Running tasks in series is known as tiling e.g tile-based graphics rendering
» Choosing the optimal tiling size is crucial for achieving good performance

TEOSA PRCHOERID /12002 AUSTRALAN USVERSTY GHCCS PROVIOER CODE- 01200

The grid stride loop pattern in CUDA

» The grid stride loop pattern is a technique used in CUDA programming to ensure that a kernel can
efficiently process data arrays of any size

| global__ void saxpy(int n, float a, float *x, float *y) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; 1 += blockDim.x * gridDim.x) {

y[il = a * x[1] + y[i];

» In this example, each thread calculates its unique index in the array ('i = blockldx.x * blockDim.x +
threadldx.x’), and then processes the element at that index.

» The thread then increments its index by the total number of threads in the grid (*blockDim.x *
gridDim.x’), and processes the next element, repeating this process until all elements have been

processed
» This pattern allows the kernel to handle data arrays of any size, even when the number of threads

launched is less than the number of data elements.
» It also makes your CUDA kernels more flexible and scalable

a8

Optimization Workflow in CUDA

Wrong View of
Optimization!

» Try all the
optimization
methods in the
book

» ..optimization is
endless...

Find Limiter
I
\2 v 2
Memory Instruction Latency
bound bound bound
Compare to Compare to
peak GB/s peak inst/s
<< i ~ ~ i <<
Memory Instruction Configuration
optimization optimization optimization
L]

!

!

Done!

OERI0:PRV1202AUSTRALAN UIVERSTY) CRCCS PROVOER CODE G120

Summary

» Programming a streaming multiprocessor is not an extension of CPU programming!

> Is a GPU required based on the scale of the task and the ability to expose parallelism?
» Data and task parallelism concepts are the GPU fundamentals that you should master
» Seek to achieve wave quantization on the target GPU

» Task parallelism

» All-to-all algorithms break task parallelism, use higher level model parallelism

» Create a CUDA graph of complex model parallelism tasks, reduce dependencies

» Avoid bandwidth limitations, tile execution in cache

TEOSAPACHIDERID V12002 AUSTRALAN UNVERSITY) HCOSPACVOER CODE: 01200

