COMP4300 - Course Update

» Final Exam
» Wednesday 11/06/2025 at 2:00pm at Copland G31
(Building 24)
» The exam will cover all materials presented in the course
e.g. in labs, lectures and assignments etc
» Course/lecture notes permitted.

» Assignment 2
» Released on 24 April
» Due 26/05/2025, 11:55PM
» Start early e.g. now

OpenMP with GPUs

OpenMP is traditionally used for parallel programming on CPUs, but recent versions have extended support

to GPUs and other accelerators.

Target Directives
» #pragma omp target: Offloads a block of code to a GPU.

» #pragma omp target data: Manages data movement between host and device.
» #pragma omp target teams distribute parallel for: Enables fine-grained parallelism on the GPU.

Memory Management
» OpenMP handles memory transfers between host (CPU) and device (GPU) using map clauses.

» Example: map(to: a[0:N]) map(from: b[0:N])

Device Selection
» You can specify which device to use with device(n) clause.

» Useful in systems with multiple GPUs.

Unified Shared Memory (USM)
» Some implementations support shared memory between CPU and GPU, reducing the need for

explicit data transfers.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

OpenMP with GPUs

include <stdio.h>
#include <omp.h>
#define N 1000
int main () {
float a[N], b[N], cI[N];
// Initialize arrays
for (int 1 = 0; 1 < N; 1i++) {
ali] =1 * 1.0f;
b[i] =1 * 2.0f;
}
// Offload computation to GPU

#pragma omp target map(to: a[0:N], b[0:N]) map(from: c[0:N])

#pragma omp parallel for
for (int 1 = 0; 1 < N; 1i++) {
cli] = ali] + blil];

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU SM Architecture
& Execution Model

A Real GPU Architecture: NVIDIA TESLA H100

» The NVIDIA “Hopper” H100 The NVIDIA GH100 GPU is composed
of multiple GPU Processing Clusters (GPCs), Texture Processing
Clusters (TPCs), Streaming Multiprocessors (SMs), L2 cache, and
HBM3 memory controllers.

» The full implementation of the GH100 GPU includes the following
units:

» 8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full
GPU
128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per
full GPU
4 Fourth-Generation Tensor Cores per SM, 576 per full GPU
6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers
60 MB L2 Cache
Fourth-Generation NVLink and PCle Gen 5

A\

YV VYV

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

—

=

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Real GPU Architecture: NVIDIA TESLA H100

L1 Instruction Cache

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
sT

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

L0 Instruction Cache
‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

FP64
FP64
FPB4
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64

TENSOR CORE
4™ GENERATION

LD/ LD/ LD/ LD/ LD/ LD/ LD/

ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

Lo/
sT

ST ST

sT

ST

ST ST

LO Instruction Cache
‘Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

P4
FP64
FPe4
FP64
FPe4
FP64
FP84
FP64
FP84
FP64
FP64
FPe4
FP64
FP64
FP84
FP64

TENSOR CORE
4" GENERATION

LD/ LD/ LD/ LD/ LD/ LD/

ST ST

sT

sT

ST sT

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex

SFU

SFU

INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32
INT32

LD/
ST

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/ LD/
ST ST

sT

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

LD/ LD/ LD/
ST ST

ST

T

LO Instruction Cache

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

FP64
FP64
FP84
FP64
FP&4
FP64.
FP64
FP64 TENSOR CORE
FPe4 4™ GENERATION
FP64
FP64.
FP64
FP84
FP64.
FP64
FP64.

LD/ LD/ LD LD/
ST ST ST ST SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32
FP32

23

FP64
FP64
FP64
FP64
FP64
FP64
FP64
FP64 TENSOR CORE
FP64 4™ GENERATION
FP64
FP64
FP64
FP64
FP64
FP64
FP64

LD/ LD/ LD/ LD/
ST ST ST ST SFU

» The GPU hardware parallelism is achieved through the replication
of SMs.
» Each SM has the following key components

» CUDA cores (e.g. FP32, FP64, Tensor cores)

» Shared Memory & L1 Cache

» Register File Load(LD)/Store(DT) Units, Special Function
Units (SFU) Warp Scheduler

» When a grid is launched its thread blocks are distributed among
available SMs by the GigaThread engine (see previous slide)

» All threads in a block are executed by the same SM
» Multiple thread blocks may be assigned to the same SM at once
» Instructions within a single thread are pipelined to leverage ILP

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Real GPU Architecture: NVIDIA TESLA H100

Table 1. NVIDIA H100 Tensor Core GPU Performance Specs
NVIDIA H100 SXM5 NVIDIA H100 PCle

Peak FP64 33.5 TFLOPS 25.6 TFLOPS
Peak FP64 Tensor Core 66.9 TFLOPS 51.2 TFLOPS

Peak FP32 66.9 TFLOPS 51.2 TFLOPS

Peak FP16 133.8 TFLOPS 102.4 TFLOPS

Peak BF16 133.8 TFLOPS 102.4 TFLOPS
Peak TF32 Tensor Core 494.7 TFLOPS | 989.4 TFLOPS? 378 TFLOPS | 756 TFLOPS!
Peak FP16 Tensor Core 989.4 TFLOPS | 1978.9 TFLOPS! 756 TFLOPS | 1513 TFLOPS?
Peak BF16 Tensor Core 989.4 TFLOPS | 1978.9 TFLOPS! 756 TFLOPS | 1513 TFLOPS?
Peak FP8 Tensor Core 1978.9 TFLOPS | 3957.8 TFLOPS! 1513 TFLOPS | 3026 TFLOPS?
Peak INT8 Tensor Core 1978.9 TOPS | 3957.8 TOPS! 1513 TOPS | 3026 TOPS?

1. Effective TFLOPS / TOPS using the Sparsity feature

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

What is a TFLOP?

A TFLOP or Teraflop represents
the ability to process one trillion
floating point operations per
second.

What does a TFLOP look like?

For square, n x n matrices using
the standard matrix multiplication
algorithm the total number of
operations is O(n3). A matrix
multiply with n=10* rows will
require O(n3) = 1012 operations,
about 1 TFLOP.

)

)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Single Instruction Multiple Thread (SIMT) Model

Software

2

Thread

Qe

Thread Block

Hardware

O.
=
o

2
II g
] o

Thread Block

>

CUDA uses a Single Instruction Multiple Thread (SIMT)
architecture to manage and execute threads in groups of 32
called warps.

Each SM partitions the thread blocks into warps that it then
schedules for execution on available hardware resources.

Threads in a warp execute the same instruction at the
same time.

The SIMT model includes three key features that SIMD does
not:

> Each thread has its own instruction address counter.
» Each thread has its own register state.

» Each thread can have an independent execution path.

Thread Block Clusters and Grids with Clusters

Thread
Block

fil

Thread
Block

fil

A Grid is composed of Thread Blocks in the legacy CUDA programming model as in A100, shown in the left half of

Grid (A100)

Thread
Block

fil

Thread
Block

i

Thread
Block

jil

!
|

Grid with Clusters (H100)
Thread Block Cluster Thread Block Cluster

Thread Thread Thread Thread
Block Block Block Block

Y Y TR O

the above diagram. The Hopper architecture adds an optional Cluster hierarchy, shown in the right half of the

diagram.

>

With Clusters, it is possible for all the
threads to directly access other SM’s shared
memory with load, store, and atomic
operations.

This feature is called Distributed Shared
Memory (DSMEM) because the shared
memory’s virtual address space is logically
distributed across all the Blocks in the
Cluster.

DSMEM enables more efficient data
exchange between SMs, where data no
longer needs to be written to and read from
global memory to pass the data.

The dedicated SM-to-SM network for
Clusters ensures fast, low latency access to
remote DSMEM.

Compared to using global memory, DSMEM
accelerates data exchange between Thread

Blocks by about 7x. -

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Warp Execution

time

Hardware view

32 threads

Logical view

32 threads

32 threads

32 threads

32 threads

Thread Block Warps

Threads

EENENNe
EEEN
EEEN

EEEEEE

EEEEEE
EEEN
EEEN
EEEN -
EEEN

B coherent code
if clause
then clause

[l stall execution

A thread block is mapped to an SM and executed in warps

The number of warps for a thread block can be determined
as ThreadsPerBlock/32

If thread block size is not an even multiple of warp size,
some threads in the last warp are left inactive

GPUs have very simple branch prediction mechanisms -
conditionals are problematic as they cause warp divergence,
i.e. threads in the same warp executing different instructions

If threads of a warp diverge, the warp serially executes each
branch path, disabling threads that do not take that path

Warp divergence can cause significantly degraded
performance (up to 1/32)

Branch divergence occurs only within a warp. Different
conditional values in different warps do not cause warp
divergence.

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Warp Scheduling: Resource Limitations

More blocks with less Fewer blocks with more
shared memory per block shared memory per block

The number of warps allocated to an SM depends on the
resources it requires and affects performance significantly

The local execution context of a warp mainly consists of
program counters, registers and shared memory

The execution context of each warp maintained on-SM during its
lifetime of the warp - warp context switch has no cost.

Each SM has a fixed number of of 32-bit registers (256KB on H100)
and of shared memory (up to 228KB on H100) to be shared
among threads

The number of thread blocks and warps allocated to an SM
depends on how many registers and shared memory each thread
and thread block requires

These memory requirements change based on the kernel code

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Warp Scheduling: Resource Limitations

If a thread consumes more registers, fewer warps can be
placed on an SM (more registers per warp)

If thread block consumes more shared memory, fewer
thread blocks can be processed simultaneously by an SM

EEESEES ? » If there are insufficient registers or shared memory on each

B|m g e 2 SM to process at least one block, the kernel launch will fail

| O
] O

More blocks with less Fewer blocks with more
shared memory per block shared memory per block

12
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Warp Scheduling

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit

Instruction Dispatch Unit

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

While one warp is waiting (e.g., for data from memory),
the other warp can continue executing

An SM relies on thread-level parallelism to
maximize utilization of its functional units

This works essentially as hyperthreading, but
where the equivalent of a thread is a warp

Full compute resource utilization is achieved
when all warp schedulers have an eligible warp
at every clock cycle.

This ensures that the latency of each
instruction can be hidden by issuing other
instructions in other resident warps.

Latency hiding is particularly important in GPU
programming: GPU instruction latency is
hidden by computation from other warps (as
opposed to CPUs which are designed for
minimizing it!)

13

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Control of Warp Scheduling

warp 0 waiting while SM still busy

Warp Scheduler 0 - Warp 2 I Warp 3 | - Warp 4 |

no eligible warps to
cute

Time

Throughput

Latency
TEEaaes
FEEEE
E|EEEEE
CEEEEE
)
EEEEE L

>

>

The instruction latency can derive from either
arithmetic or memory instructions

Arithmetic instruction latency varies typically
between 4 and 20 cycles

Global memory instruction latency ~500 cycles
for global memory accesses (uncached
transactions)

The number of active warps required to hide
latency can be estimated with Little’s Law

#RequiredWarps = Latency X Throughput

Arithmetic operations: On H100 most single-
precision ops have a latency of 4 cycles, while
double-precision ones of 8 cycles

Global memory operations: Latency ~500
cycles

14

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Control of Warp Scheduling

warp 0 waiting while SM still busy

Warp Scheduler 1 - |--
» Example 1: Hide latency of single-
precision FMA to maintain full

no eligible warps to
execute Time
arithmetic utilization

Throughput
» V100 architecture considerations:

» Each SM can have 4 Selected
Warps/cycle, and maximum 64

g Active Warps
= » Latency of single-precision FMA
is 4 cycles

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNI

IVERSITY) CRICOS PROVIDER COD!

15

Latency Hiding Through Control of Warp Scheduling

warp 0 waiting while SM still busy
» Example 1: Hide 4-cycle latency of single-
precision (FP32) FMA to maintain full

Warp Scheduler 0 -- ---
v sovsir N | T arithmetic utilization
V100 architecture considerations:

no eligible warps to
» Each SM can have 4 Selected
Warps/cycle, and maximum 64

Active Warps
Latency of single-precision FMA is

>
4 cycles
Throughput goal: 4 Selected Warps - 32 x4

= 128 FMA/cycle (per SM)
Latency is 4 cycles, Parallelism required is

>
128 ¥4 = 512 FP32 ops per cycle
Number of Required Active Warps =

Throughput

Latency

#0psPerCycle - 512 - 16
#OpsPerWarp 32
= ——

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

16

Latency Hiding Through Control of Warp Scheduling

warp 0 waiting while SM still busy

e Seheddlert -—T—I-- » Example 2: Hide global memory transaction

e latency to maintain peak bandwidth
utilization

» V100 architecture considerations:
» Global memory bandwidth ~800GB/s
Latency of global memory transactions

» ~500 cycles
> HBM2 clock rate is 867 MHz

Time

Throughput

Latency

17
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012(

Latency Hiding Through Control of Warp Scheduling

warp 0 waiting while SM still busy

Warp Scheduler 0 - Warp 2 | Warp 3 |- Warp 4 |
Warp Scheduler 1 - A
|

no eligible warps to
execute i
Time

Throughput

>
>
>

Latency

A A
TdEqQEeEeas
CEEEE
N
S
CEEEE

» Example 2: Hide global memory transaction latency to
maintain peak bandwidth utilization

Warné |- \;100 architecture considerations:

Global memory bandwidth ~800GB/s Latency of
global memory transactions

~500 cycles

HBM2 clock rate is 867 MHz

Bandwidth per cycle =

8006GB/5 ~ 923 B/cycle (full GPU)
867 Mhz

» Required memory transaction volume = Bandwidth per
cycle X Latency = 456.5 KB

» Transferring one float (4 Bytes) per GPU thread -
114,125 threads -> 114.125threads = 3566 warps

32 threads/warp

» 3566 warp = 43warp/SM - at least 43
84 SM

active Warps to hide the latency

7

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Can One Hide Latency? Beware Resource Limitations!

warp 0 waiting while SM still busy

no eligible warps to
execute Time

» Example 1, requires 16 Active Warps to
hide the arithmetic latency.

Throughput

» What are the register and shared memory
limits per SM for this to be achievable?

Latency

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNI

IVERSITY) CRICOS PROVIDER COD!

19

Can One Hide Latency? Beware Resource Limitations!

warp 0 waiting while SM still busy

:: ::::? - -- - » In Example 1, one requires 16 Active Warps to
—T—I hide arithmetic latency.

no eligible warps to
execute Time » What are the register and shared memory
limits per SM in order for this to be

achievable?
> V100 architecture considerations:

» Register File Size/SM = 256 KB Shared
Memory Size/SM = 64 KB (96 KB

configurable)

Throughput

Latency

o

¢
\ "N
=

20
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Can One Hide Latency? Beware Resource Limitations!

— » In Example 1, one requires 16 Active Warps to
hide arithmetic latency.
What are the register and shared memory limits

-- >
per SM in order for this to be achievable?

Warp Scheduler 1 - |
no eligible warps to
execute Time
Throughput » V100 architecture considerations:
» Register File Size/SM = 256 KB of 32-bit
registers

» Shared Memory Size/SM = 64 KB

» (96 KB configurable)
16 warps % 32 thread = 512 threads

B6KB/SM_ _ 64 000 registers/SM

32 bit/register
64,000 registers/SM _ 125 registers/thread

512 threads
» If your kernel requires >125 registers/thread it
cannot hide the arithmetic latency!

Latency

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

21

Can One Hide Latency? Beware Resource Limitations!

Example 1 requires 16 Active Warps to hide

arithmetic latency.
What are the register and shared memory

>
limits per SM in order for this to be

warp 0 waiting while SM still busy

no eligible warps to
cute

Time

achievable?
> V100 architecture considerations:
> Register File Size/SM = 256 KB of 32-bit

Throughput

registers
» Shared Memory Size / SM = 64 KB

» (96 KB configurable)
What about Shared Memory?

Latency

ER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

22

Can One Hide Latency? Beware Resource Limitations!

warp 0 waiting while SM still busy

e | | ENRE
» What about Shared Memory?

Warp Scheduler 1 - |
no eligible warps to
» This depends on the thread block size and
the amount of shared memory requested per

thread block
» For example, thread block size = 128 and 64 KB

of shared memory per block, can we hide the

Time

Throughput

arithmetic latency?

Latency

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

23

Occupancy

==
=

= | =Dz | D2
S e IS
3 IS
== | ==

A\

V V V

You want to have sufficient warps to hide
instruction latencies

Occupancy = ActiveWarps / MaximumWarps
It is @ number 0 < Occupancy <1

The higher the achieved occupancy the higher
the chance your code will hide instruction
latency

This is just a rule of thumb. Can you achieve high
performance with Occupancy < 17?

Guidelines for Grid and Block Sizes

» Small thread blocks: Too few threads per block leads to hardware limitations on the number of warps per SM
to be reached before all resources are fully utilized.

» Large thread blocks: Too many threads per block leads to fewer per-SM hardware resources available to
each thread

» In general, you should conduct experiments to discover the best execution configuration and resource
usage. Some rules of thumb:

Keep the number of threads per block a multiple of warp size (32)

Avoid small block sizes: Start with at least 128 or 256 threads per block.

Adjust block size up or down according to kernel resource requirements.

Keep the number of blocks much greater than the number of SMs to expose sufficient parallelism to
your device

Ask the compiler to print the number of registers using the flag ——ptxas-options=-v. In case
occupancy is register-limited try to optimize the number of registers per thread through the nvcc flag —
maxrregcount=NUM.

YV VY

A\

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Synchronization

26

In CUDA, synchronization can be performed at two levels:

>
>
>

System-level: Wait for all work on both the host and the device to complete.

Block-level: Wait for all threads in a thread block to reach the same point in execution on the device.
cudakError t cudaDeviceSynchronize (void) can be used to block the host application until all

CUDA operat_ions (copies, kernels, and so on) have completed

__device wvoid syncthreads(void) can be used to synchronize all theads within a block:
» Each thread in the same thread block must wait until all other threads in that thread block have

reached this synchronization point

» All global and shared memory accesses made by all threads prior to this barrier will

be visible to all other threads in the thread block after the barrier
» There is no thread synchronization among different blocks.

» GPUs can execute blocks in any order. This enables CUDA programs to be scalable across massively

parallel GPUs.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Elapsed Time

A grid of a kernel

 Block0 | Block1 Block2 Block3
| Block4 | Block || Blocks || Block7 |
v v
GPU with 2 SMs GPU with 4 SMs
SM 0 SM 1 SMO SM 1 SM 2 SM 3
Block0 | Block 1. [Block0 | [Block1| [Block2 | Block3 |
Block2 | Block3 (Block4 BlockS Block6 | Block7
Block4 | Block5
, [Biocké [Block7

__global void sumMatrixOnGPU2D(float *A, float *B, float *C, int

NX, int NY) {
unsigned int ix
unsigned int iy

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;
unsigned int idx = iy * NX + ix;

if (ix < NX && iy < NY) {
Cl[idx] = A[idx] + B[idx]:
}

Matrix dimensions nx = ny = 16,384
dim3 block (dimx, dimy);

dim3 grid((nx + block.x - 1) /
block.x, (ny + block.y - 1) /
block.y);

» Performance on an NVIDIA Tesla M2070
(Fermi):
» Grid(xGDim, yGDim), Block(xBDim,
yBDim) = elapsed time
1. (512,512), (32,32) - 60 ms
2. (512,1024), (32,16) - 38 ms
3. (1024,512), (16,32) > 51 ms
4. (1024,1024),(16,16) - 46 ms
» You can measure achieved warp occupancy by
running
» ncu -—metrics achieved

occupancy
<application>

27

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Achieved Occupancy

A grid of a kernel

 Block0 | Block1 Block2 Block3
| Block4 | Block || Blocks || Block7 |
v v
GPU with 2 SMs GPU with 4 SMs
SM 0 SM 1 SMO SM 1 SM 2 SM 3
Block0 | Block 1. [Block0 | [Block1| [Block2 | Block3 |
Block2 | Block3 (Block4 BlockS Block6 | Block7
Block4 | Block5
, [Biocké [Block7

NX, int NY) {

Clidx]
}

unsigned int ix
unsigned int iy

__global void sumMatrixOnGPU2D(float *A, float *B, float *C,

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

unsigned int idx = iy * NX + ix;

if (ix < NX && iy < NY) {

= A[idx] + B[idx]:

int

» Grid(xGDim, yGDim), Block(xBDim,
yBDim) = elapsed time

1.
2.
3.
4,

(512,512), (32,32) > 60 ms

(512,1024), (32,16) -> 38 ms
(1024,512), (16,32) -> 51 ms
(1024,1024),(16,16) -> 46 ms

» Achieved Occupancy

1.

2.
3.
4

(512,512), (32,32) > 0.50

(512,1024), (32,16) -> 0.74
(1024,512), (16,32) - 0.77
(1024,1024),(16,16) -> 0.81

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Timings Versus Occupancy

A grid of a kernel

| Block0 | Block 1 | Block2 | Block3
| Blockd | Block’ || Blocké || Block? |
v v
GPU with 2 SMs GPU with 4 SMs
SM 0 SM 1 SMO SM 1 SM 2 SM 3
Block0 | Block 1. | Block0 [Block1 | Block2 | Block3 |
Block2 | Block3 (Block4 BlockS | Blocké Block7
Block4 | Block5
, [Biocké [Block7

NX, int NY) {

Clidx]
}

unsigned int ix
unsigned int iy

__global void sumMatrixOnGPU2D(float *A, float *B, float *C, int

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

unsigned int idx = iy * NX + ix;

if (ix < NX && iy < NY) {

= A[idx] + B[idx]:

» Elapsed time
1. (512,512), (32,32) > 60 ms
2. (512,1024), (32,16) > 38 ms
3. (1024,512), (16,32) > 51 ms
4. (1024,1024),(16,16) > 46 ms

» Achieved Occupancy
1. (512,512), (32,32) > 0.50
2. (512,1024), (32,16) > 0.74
3. (1024,512), (16,32) > 0.77
4. (1024,1024),(16,16) > 0.81

» Configuration “2” has more blocks than “1”,
this exposes more active warps to the device.
This is likely why “2” has higher achieved
occupancy and better performance than “1”.

» Configuration “4” has the highest achieved
occupancy, but it is not the fastest!

» Higher occupancy /4 higher performance.
There must be other factors that restrict

29

performance.
—

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Memory Operations

A grid of a kernel

 Block0 | Block1 Block2 Block3
| Block4 | Block || Blocks || Block7 |
v v
GPU with 2 SMs GPU with 4 SMs
SM 0 SM 1 SMO SM 1 SM 2 SM 3
Block0 | Block 1. [Block0 | [Block1| [Block2 | Block3 |
Block2 | Block3 (Block4 BlockS Block6 | Block7
Block4 | Block5
, [Biocké [Block7

NX, int NY) {

Clidx]
}

unsigned int ix
unsigned int iy

unsigned int idx

__global void sumMatrixOnGPU2D(float *A, float *B, float *C, int

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;
iy * NX + ix;

if (ix < NX && iy < NY) {

= A[idx] + B[idx]:

>

The kernel performs two memory loads,
one memory store, one FLOP per thread.

You can measure the global load

throughput using

» ncu --metrics gld
throughput <application>

1. (512,512), (32,32) -> 35.908GB/s

2. (512,1024), (32,16) -> 56.478GB/s
3. (1024,512), (16,32) -> 85.195GB/s
4. (1024,1024),(16,16) > 94.708GB/s

higher load throughput doesnot
guarantee higher performance!

30

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Memory Operations

A grid of a kernel

| Block0 | Block 1 | Block2 | Block3
| Blockd | Block’ || Blocké || Block? |
v v
GPU with 2 SMs GPU with 4 SMs
SM 0 SM 1 SMO SM 1 SM 2 SM 3
Block0 | Block 1. | Block0 [Block1 | Block2 | Block3 |
Block2 | Block3 (Block4 BlockS | Blocké Block7
Block4 | Block5
, [Biocké [Block7

NX, int NY) {

Clidx]
}

unsigned int ix
unsigned int iy
unsigned int idx = iy * NX + ix;

__global void sumMatrixOnGPU2D(float *A, float *B, float *C, int

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

if (ix < NX && iy < NY) {
A[idx] + B[idx]:;

» Global load throughput
1. (512,512), (32,32) -> 35.908GB/s
2. (512,1024), (32,16) - 56.478GB/s
3. (1024,512), (16,32) - 85.195GB/s
4. (1024,1024),(16,16) -> 94.708GB/s

» The global load efficiency is the ratio of
requested global load throughput to required
global load throughput.

» You can measure it using
ncu --metrics gld efficient
<application>

1. (512,512), (32,32) = 100 %

2. (512,1024), (32,16) > 100 %
3. (1024,512), (16,32) > 49.96 %
4. (1024,1024),(16,16) > 49.80 %

» This explains why the higher load throughput
and achieved occupancy of the last two cases
did not yield improved performance.

31

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Memory Operations

| Block0 Block1 Block2 Block3 | > Global load throughput

Block4 BlockS Blocks Block7 1. (512,512), (32,32) > 35.908GB/s
y V 2. (512,1024), (32,16) > 56.478GB/s
GPU with 2 SMs GPU with 4 SMs 3. (1024,512), (16,32) > 85.195GB/s
MO | SM1 SMO | SM1 | SM2 | SM3 4. (1024,1024),(16,16) - 94.708GB/s
Block0 Block1 Block0 Block1 Block2 Block3 » Global load efficiency
CBlockz Block3 | TBockd Bocks Blocké Block7 | 1. §512,512),)(322,32))9 100 %
2. (512,1024), (32,16) > 100 %
. — 3. (1024,512), (16,32) - 49.96 %
| I 4. (1024,1024),(16,16) = 49.80 %
__global void sumMatrixOnGPU2D(float *A, float *B, float *C, int > The common feature fOI' the IaSt two
NX, int NY) { cases is that their block size in the

unsigned int ix
unsigned int iy

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

innermost dimension is half of a warp

unsigned int idx = iy * NX + ix; » For grid and block heuristics, the
. . innermost dimension should always be a
if (ix < NX && iy < NY) { . .

Clidx] = A[idx] + B[idx]; multiple of the warp size

}

32

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DEMO

2D Matrix Addition:
Memory Operations

GPU (A100) Memory Hierarchy

SM-0

SM-1

A100

SM-(N-1)

L2 Cache (40 MB in A100)

1
A 4

Global Memory (DRAM, 40 GB in A100)

34

CUDA Program

35

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

_

NVIDIA V100 GPU AT NCI - ZD MATRIX SUM

matrix-add-cpu Nx, Ny = 32768 /a 31,366 ms
CPU matrix-add- Nx, Ny =32768 N/A 3302 ms 9.5

openmp-avx
CPU matrix-add- Nx, Ny =32768 N/A 550 ms 57

openmp-gcc
GPU matrix-add-gpu 1024 x 1024 32x32 19.23 ms 1631 83.39% 85.37%
GPU matrix-add-gpu 1024 x 2048 32x16 18.40 ms 1704 86.5% 90.15%
GPU matrix-add-gpu 2048 x 1024 16 x 32 21.38 ms 1467 87.1% 82.07%
GPU matrix-add-gpu 2048 x 2048 16 x 16 18.73 ms 1674 90.37% 87.89%

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Heterogeneous
Computing

Reference Material

38

NVIDIA's CUDA C++ Best Practices Guide, https://docs.nvidia.com/cuda/cuda-c—
best-practices—-guide/

Nvidia H100 TensorCore GPU Architecture https://resources.nvidia.com/en-

us—-tensor—-core

Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018). Dissecting the NVIDIA volta
GPU architecture via microbenchmarking. arXiv preprint arXiv:1804.06826.

Professional CUDA ¢ programming. Cheng, John, Max Grossman, and Ty McKercher.
John Wiley & Sons, 2014.

CUDA by Example: An Introduction to General-Purpose GPU Programming, Sanders,
Jason, and Edward Kandrot, Addison-Wesley Professional, 2010.

Tesla V100 Performance Optimization Guide,
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/ tesla-

product-literature/v100-application-performance-guide.pdf

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/v100-application-performance-guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/v100-application-performance-guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/v100-application-performance-guide.pdf

Heterogeneous Computing

= Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

39

Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int “out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadldx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

/I Read input elements into shared memory.
templlindex] = inlgindex];
if (threadldx.x < RADIUS) (

temp{lindex - RADIUS] = in[gindex - RADIUS];

templlindex + BLOCK_SIZE] = ingindex + BLOCK_SIZE]:

}

1l Synchronize (ensure all the data is available)
__syncthreads();

11 Apply the stencil
int result =

RADIUS ; offset <= RADIUS ; offsets+)
plli

result += templlindex + offset];

Il Store the result
outlgindex] = result;

}

void filLints(int *x, int n) {
fill_n(x, n, 1);

}

int main(void) {

. 1l host copies of a, b, ¢
b I device copies of a, b, ¢
N + 2°RADIUS) * sizeof(int);

1l Alloc space for host copies and setup values
“malloc ts(in, N + 2RADIUS);
ts(out, N + 2°RADIUS);

c(size):
(int *)malloc(size); fill_i

1l Alloc space for device copies
cudaMalloc(void **)&d_in, size):
cudaMalloc(void **)&d_out, size);

1l Copy to device
i_in, in, size
i_out, out,

oDevice);

// Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
d_out + RADIUS);

1/ Copy result back to host
d_out, si

Il Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);
retur 0;

parallel fn

serial code

parallel code
serial code

INNANRANANN]

Host

Device

Host

40

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

*ow
-

~—/
"=

The End of The Road for General-Purpose Processors

» End of Dennard scaling caused the end of the general-
purpose processor era (both uniprocessor and
multicore)

» Use of domain specific architectures (DSAs):
programmable but designed for a class of problems
with specific structures.

T T e » GPUs are designed for data-parallel algorithms

S eprocesSoniEad et (especially linear algebra)

» More transistors are devoted to data processing rather

than data caching and flow control

» Require domain specific programming model that

makes it possible for the software to match the

hardware (e.g. CUDA)

Extracting performance requires the programmer to

expose parallelism, to manage memory efficiently (e.g.

caching), to tailor the algorithm to the hardware

Control ALU ALU

ALU ALU

I||||||||
\4

CPU GPU

41
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

TOP 500 List November 2023

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/0ak Ridge National Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon
CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max,
Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz,
NVIDIA H100, NVIDIA Infiniband NDR, Microsoft

Microsoft Azure
United States

Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C

2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science
Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC
64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Cores

8,699,904

4,742,808

1,123,200

7,630,848

2,752,704

Rmax
(PFlop/s)

1,194.00

585.34

561.20

442.01

379.70

Rpeak
(PFlop/s)

1,679.82

1,059.33

846.84

537.21

531.51

Power
(kW)

22,703

24,687

29,899

7,107

100,00

e)‘ln‘ L — e e €S0

Feb 1,99 Sep1, 11

The List.

https://www.top500.0rg/

V)

o

¢
N
=

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU versus GPU - FLOP rates

5000]

4500—% GeForee GTXTITAN NVIDIA GPU SP

_—t GPU FLOP Rates have been
= growing exponentially:-

GeForce GTX 680

» 2010’s GFLOP/s — see the
graph opposite

GeForce GTX 580

» 2020’s TFLOPS/s to

Theoretical peak (GFLOP/s)
a oS & 8
o o o o
it .5

Sl S K NVIDIA GPU DP
o S— PFLOP/s e.g. H100 GPU
] GeForce 8800 GTX Tesla C2075 Haswell
%00 _ GeForce%gzgrfﬁtr?oo in Bloomfield Sandy /B“‘(';’V Bridge s
0 i m"am(g‘s{-_afi)roe FX5800 Prescott rest tqarpengﬁsn'a C1060W, ,
2000 20'02 2004 20IOG 20108 20l1 0 20’1 2 2014

Release date

43
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Impact of Heterogenous Computing

ANNOUNCING NVIDIA H100

GREATEST GENERATIONAL LEAP IN A DECADE

1 |
PTTTTETTIITIYL | e

—

q CORE'i9
9th Gen

- : '."Tm' v,l' ’

1,100.00

Feb 1,99 Sep1, 11

90.00

T —

Dec1, 84 Sep 1,04

44

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Simple Processing Flow

PCI Bus >

CPU Memory

LTI LT

1. Copy input data from CPU memory to
GPU memory

45

Simple Processing Flow

PCI Bus >

CPU Memory

Copy input data from CPU memory to
GPU memory

Load GPU program and execute,
caching data on chip for performance

46

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Simple Processing Flow

PCI Bus >

/
AL

M F—

LTI

e

Copy input data from CPU memory to
GPU memory

Load GPU program and execute,
caching data on chip for performance
Copy results from GPU memory to
CPU memory

L2

DRAM

IRRERRAREREEND

47

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Simplistic View of the GPU Architecture

A scalable array of complex “cores” called Streaming

Multiprocessors (SM)

» Each core has an array of functional units (e.g.

ALUs) with SIMD execution
» Instructions operate in groups of 32 “SIMD”

threads called warps
» On the NVIDIA H100 GPU up to 64 warps can be

executed concurrently (interleaved) on a single SM

» Upto 132 SMs x 128 CUDA cores/SM

16896 Cuda

cores per device
» H100 includes Tensor cores + Transformer engine

0o | o0

oo | oo

oo|og || oo(oo || i
oo |0 || o e og|oo ||
oo |og || oo(oo | oo|og [
oo|ga || oo|oQ || oo|og (|
oo|@g | : oo|og | : 0o |og

oo|@a| oo|og| 0o |og

i T oo |og | oolog [
oo|og [oo|@o [ogog [
oo|og || oo(og | i
0o |0 || oog(og [og|oo ||
oo |og || oo(oo | oo|og [
oo|Qa | | oo|oQ [| oo|og (|
oo|og | : oo|og | : 0o |og

oo|@a| | oo|oa| - | oglog| |
i T 0o og | oolog [
oo@a]| [eaoerr)] [oooa
oo|oa || oo|og || oo|og ||
oo |ga || og(gg [og|oo ||
oo |oa || oo|og | oo|og [
oo|oa || oo |0 [| 0o |og (|
oo |og oo|og | : 0o |og

oo |og oo(om | | oolog| |
l-ll-l[_u_-_uﬁl ﬁnﬁ[
oooa [|| (oooerr] [oooo—
oo|og || oo(og | i
oo |oQ || oo |ga || oo|og |
oo |og | oo(og [oo|gg [
0o |og [| og(og [ogl@m (|
0o |og oo |@g 0o |og

0o |oa oo |og 0o |og

ooog i o | oolog

LTI

LTI

for training large language models
» This is why GPUs are called throughput-oriented

architectures

Execution contexts
(128 KB)

“Shared” memory
(16+48 KB)

48

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Heterogenous Computing

» GPU computing is not meant to
replace CPU computing

ALU ALU :
S — I — } = » CPU computing is good for control-

e = intensive tasks, and GPU computing is

ey PCle Bus _ good for data-parallel computation-

== ey intensive tasks
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, » Modern high-end HPC systems are

— GPU Summ— cpu — heterogenous: They combine CPUs and
v >< ------- T GPUs, mapping tasks to the most suitable
gy 4 N g PU

GPU | «— | GPU i

,,,,,,,, . 1 2k » A typical heterogeneous compute node

consists of two multicore CPU sockets and

> * two or more many-core GPUs
, | » GPUs operate in conjunction with a
- - CPU-based host typically through a PCI-

Express bus

49

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Heterogenous Computing

NVIDIA Grace Hopper Superchip

——

Hardware Consistency l

CPU LPDDR5X GPU HBM3
<512 GB < 96 GB HBM3

A

»
»
»
»
IS
»
»
»
>
»
»
»
»
»

e
oc
%
L
i
e
=
—
>
=

4x
16x PCle-5
512 GB/s

T Hl\!WHW%HHHHHH!\HHHHH\ i

GRACE HOPPER

- IHI -

GPU HBM3
< 96 GB HBM3

18x NVLINK 4
900 GB/s

= EN 29 ES B

()
L
Y
e
ey
I—
O
=

< 256 GPUs

YYVYYYY

50

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012(

Heterogenous Computing

34 TFLOPS

540 GFLOPS

CPU

GPU is Heterogeneous

» In a heterogeneous, the CPU is called the host
and the GPU is called the device

» A heterogeneous application consists of two
parts: Host code (runs on CPU) and device code
(runs on GPU)

» Applications are initialized by the CPU: the
CPU code is responsible for managing the
environment, code, and data for the device

before loading compute-intensive tasks onto
Content Window H100 SXM the dEVIce.
FP64 34 teraFLOPS
FP64 Tensor Core 67 teraFLOPS » Host and device have distinct and separate
Rae S7 iSrELORS virtual memory address spaces!
TF32 Tensor Core 989 teraFLOPS?
BFLOAT16 Tensor Core 1,979 teraFLOPS? » Host €& device communication is slow and
FP1S Tensor Core 1979 terafLOPS* becomes easily a performance bottleneck.
FP8 Tensor Core 3,958 teraFLOPS?
INT8 Tensor Core 3,958 TOPS?
GPU memory 80GB
GPU memory bandwidth 3.35TB/s

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Compute Unified Device Architecture (CUDA)

» CUDA Cis anis an extension of standard
cpu Il ANSI providing APIs and a programming
el model for NVIDIA GPUs

CUDA Libraries
- » A CUDA program consists of a mixture

_ host and device code
» NVIDIA’'s CUDA nvcc compiler separates

| the device code from the host code during

CUDA Libraries Integrated CPU+GPU Code the Compl|atIOn process
CUDA Compiler » The device code is written using CUDA C
SupAsseamby P Host Code extended with keywords for labeling data-
parallel functions, called kernels
“aracme | “hrener Gl
GPU CPU

52

Hello World from a GPU

53

include <stdio . h>
__global void hello From GPU (void)
{

printf (" Hello World from GPU !\ n");

}

int main (void) {
// hello from cpu

printf (" Hello World from CPU !\ n");

hello From GPU <<<1, 10>>>();
cuda Device Reset () ;
return O0;

}

> nvcc -arch=sm 70 hello .cu -o hello

$./ nhello

Hello World from CPU !
Hello World from GPU !
Hello World from GPU !

Hello World from GPU !

The qualifier global tells the compiler the
function is a device kernel and will be called
from the CPU and executed on the GPU

The kernel is launched with the triple angle
brackets notation (helloFromGPU <<<1,
10>>>())

The parameters within the triple angle brackets
specify how many threads will execute the kernel
(10 GPU threads).

The function cudaDeviceReset () cleans up
all resources associated with the current device
The flag -arch=sm 70 tells the nvcc
compiler to produce a binary for the Volta
V100 architecture

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Programming Structure

Application Code

» A typical processing flow of a CUDA

.] program follows this pattern:
%E » Copy data from CPU memory to GPU
Compute intensive portion _ cPU m e m 0 ry
— D > Invoke kernels to operate on the data
G

stored in GPU memory
» Copy data back from GPU memory to
Host code R 141 CPU memory

el o %%E%;PU% > When a kernel has been launched, control
is returned immediately to the host.

Host code o 3333 » The host can operate independently of the

Device = GPU . o o
lol code) device for most operations. CUDA is an
asynchronous model.

Sequential portion

CUDA C/C++ Application

i

-

54 =

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Memory Management

» CUDA provides functions to allocate device
memory, release device memory, and transfer

ALU I ALU |

Control

ALU I ALU |

_ data between the host memory and device
| oPU
= ey » GPU memory allocation = synchronous

STANDARD C FUNCTIONS CUDA C FUNCTIONS cudaError t cudaMalloc (void** devPtr, size t size)
malloc cudaMalloc

memeRy cuaatiencey » Transfer data between the host and device >
:emset cu:aMemset SynCh ron 0 us
ree cudaFree

cuda Error t cuda Memcpy (void * dst ,

const void * src , size t count ,
cuda Memcpy Kind kind)

» Kinds of transfer: cudaMemcpyKind = {
cudaMemcpyHostToHost, cudaMemcpyHostToDevice,

cudaMemcpyDeviceToHost,
cudaMalloc

cudaMemcpy cudaMemcpyDeviceToDevice }
cudaMemset
cudaFree » cudaMemset and cudaFree are also synchronous

. £

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Memory Management

ALU | ALU I

ALU I ALU |

Control

» CUDA provides functions to allocate device
memory, release device memory, and transfer
data between the host memory and device

PCle Bus
_

CPU

[a]
Y
c

STANDARD C FUNCTIONS CUDA C FUNCTIONS m e m O ry

malloc cudaMalloc

memcpy cudaMemcpy

neneet cudatenset » GPU memory allocation = synchronous
free cudaFree

cuda Error_t cudaMalloc (void ** devPtr , size t size)

» WARNING: device pointers (e.g devPtr) may not be
dereferenced in the host code.

cudaMalloc
cudaMemcpy
cudaMemset
cudaFree

. £

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Thread Organization

Host Device
Grid
Kernel Block Block Block
(0, 0) (1,0) (2,0)
Block~ Block - Block
(6.1 (1.1 ~(2,1)
Block (1, 1)

Two-level thread hierarchy decomposed into
blocks of threads and grids of blocks

All threads spawned by a single kernel form a
thread grid

Threads in a grid are grouped in thread

blocks

Threads in the same block can cooperate using
block-local sychronization and shared memory
Threads from different blocks cannot
synchronize!

Each block has a unique ID, bblockIdx, within
the grid

Each thread has a unique ID, threadIdx,
within its block (local)

57

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Defining Grids and Blocks

int nElem = 6;
// define grid and block structure dim3
lock (3) ;

im3 grid ((nElem+block .x-1) /block.x);
// check grid and block dimension from host side
rintf ("grid.x $d grid.y %d grid.z %$d\n",

grid .x, grid.y, grid.z);
rintf ("block .x %$d block.y %$d block.z %$d\n",
block .x, block.y, block.z);
// check grid and block dimension from device
side

check Index <<<grid , block>>> ();
__global void checkIndex (void) {

printf (" threadIdx : (%d, %d, %d)
%$d) blockDim:(%d, %d, %d)
%$d)\ n",

thread Idx . x,

blockIdx : (5d, %d,

gridDim: (%d, %d,
thread Idx .y, threadIdx.z,
blockIdx .x, blockIdx .y, blockIdx .z, block

Dim .x, blockDim.y, blockDim.z, gridDim. x,
gridDim .y, gridDim. z);

grid.x 2 grid.y 1 grid.z 1
block.x 3 block.y 1 block.z 1

threadIdx: (0, 0, 0) blockIdx:(1, 0, 0) blockDim: (3, 1, 1) gridDim:(2, 1,
threadIdx: (1, 0, 0) blockIdx:(1, 0, 0) blockDim: (3, 1, 1) gridDim:(2, 1,
threadIdx: (2, 0, 0) blockIdx: (1, 0, 0) blockDim: (3, 1, 1) gridDim:(2, 1,
threadIdx: (0, 0, 0) blockIdx:(0, 0, 0) blockDim: (3, 1, 1) gridDim:(2, 1,
threadIdx: (1, 0, 0) blockIdx:(0, 0, 0) blockDim: (3, 1, 1) gridDim:(2, 1,
threadIdx: (2, 0, 0) blockIdx:(0, 0, 0) blockDim: (3, 1, 1) gridDim:(2, 1,

» CUDA organizes grids and blocks in
three dimensions

» uint3 blockIdx = {blockIdx.x,
blockIdx.z}

blockIdx.y,

» uint3 threadIdx = {threadIdx.x,
threadIdx.z}

threadIldx.y,

» When defined on the host grids and
blocks use the dim3type (and not
uint3) with 3 unsigned integer fields

» Note that the grid size is rounded up to
the multiple of the block size

» For a given kernel, the grid and block
dimensions are decided based on
performance characteristics and
limitations of GPU resources

58

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Kernel Semantics

» The definition of a CUDA kernel requires special function qualifiers
» _ global -> Executed on device, callable from host and device,
must have void return type
» device - Executed on device, callable from device only
» _ host - Executed on host, callable from host only
» GPU kernels use implicit parallelism!

» For example, from the host code

void sumArrays OnHost (float *A, float *B, float *C, const int N) {
for (int 1 = 0; 1 < N; 1++) {
C[i] = A[i] + B[1i];
}
}

» You can obtain a GPU parallel kernel by peeling off the forloop and assigning work to
different threads

_global void sumArrays On GPU (float *A, float *B, float *C) {

int i1 = thread Idx . x;
Cli] = A[1i] + B[1i];

>

59
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Organizing Threads:

=Al

3
<

Kungppo|q , Axpppolq + Axpipeaiy

ny

ix = threadldx.x + blockldx.x * blockDim.x

A

nx

matrix coordinate: (ix,iy)
global linear memory index: idx = iy*nx + ix

nx

0 1 2 3 4 5 6 7
Block (0,0) Block (1,0)

8 9 11 12 13 14 15
16 17 18 19 20 21 22 23
Block (0,1) k(1,1)

24 25 26 27 28 29 30 31
32 33 34 35 36 3 38 39
Block (0,2) Block (1,2)

40 41 42 43 44 4 46 47
Col0 Col1 Col2 Col3 Col4 Col5 Colé6 Col7

Row O

Row 1

Row 3

Row 3

Row 4

Row 5

>

>

Matrix Addition

We want to perform the matrix sumC= A+ B in
parallel on the GPU.

The matrices have dimensions nx and ny

Each thread performs the addition
Clix, iy) = Alix, iy) + B(ix, iy)

for a distinct element of A, B and C with row and
column indices (ix, iy)

We can map a single thread to each matrix
element in the A, B or C arrays at position 1dx

using a 2D grid of thread blocks where

» ix = threadIdx.x + blockIdx.x * blockDim.x
» ix = threadldx.y + blockIdx.y *

» blockDim.y

F idx = iy * nx + ix

60

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Matrix Addition with 2D Grid and 2D Blocks

Matrix dimensions nx = ny = 16,384

Kernel execution configuration set to use a

2D grid and 2D block between lines 9-12 -

Running on an NVIDIA Kepler K80

» sumMatrixOnGPU2D <<<(512,512),
(32,32)>>> elapsed 0.060323 sec

» sumMatrixOnGPU2D <<<(512,1024),

(32,16)>>> elapsed 0.038041 sec

» sumMatrixOnGPU2D <<< (1024,1024),
(16,16) >>> elapsed 0.045535 sec

// malloc device global memory

float *d MatA, *d MatB, *d MatC;

cuda Malloc ((void **) &d MatA , nBytes);
cuda Malloc ((void **) &d MatB, nBytes);
cuda Malloc ((void **) &d MatC, nBytes)

// transfer data from host to device
cuda Memcpy (d MatA , h A, nBytes,

cuda Memcpy Host To Device);
cuda Memcpy (d MatB, h B, nBytes,
cuda Memcpy Host To Device);
// invoke kernel at host side

int dimx = 32; int dimy = 32;

dim3 block (dimx , dimy);

dim3 grid ((nx+ block .x-1) /block .x, (ny+block.y-1)/
block . y);

iStart = cpuSecond ();

sumMatrix OnGPU 2D <<< grid, block >>>(d MatA,
d MatB, d MatC, nx, ny);

cuda Device Synchronize ();
iElaps = cpuSecond () - 1iStart;:

__global__ void sumMatrixOnGPU2D (float *MatA,
float *MatB, float *MatC, int nx, int ny) {

unsigned int ix = threadIdx .x + blockIdx.x *
block Dim . x;

unsigned int iy = threadIdx .y + blockIdx.y *
block Dim . y;

unsigned int idx = iy*nx + 1ix;
if (ix < nx && 1y < ny)
MatC [idx] = MatA [idx] + MatB [idx];

}

61

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Matrix Addition with 1D Grid and 1D Blocks

nx
Block (0) Block (1) Block (2) Block (3) » Matrix dimensions nx = ny = 16,384
» Now we use a 1D grid with 1D blocks
» Each thread in the new kernel handles
ny elements
» Running on an NVIDIA Kepler K80
> sumMatrixOnGPU1D <<<(512,1), (32,1)>>>
elapsed 0.061352 sec
> sumMatrixOnGPU1D <<<(128,1), (128,1)>>>
ny v elapsed 0.044701 sec

global linear memory index: idx = iy*nx + ix

__global__ void sumMatrixOnGPU1lD (float *MatA, float *MatB
, float *MatC, int nx, int ny) {

unsigned int ix = threadIdx .x + blockIdx.x * blockDim . x;
if (ix < nx) {
for (int 1iy=0; iy<ny; iy++) {
int idx = iy*nx + 1ix;
MatC [idx] = MatA [idx] + MatB [idx];

}
}
}

62
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Matrix Addition with 2D Grid and 1D Blocks

Block (0,0) I Block (1,0) I Block (2,0) I Block (3,0) I
Block (0,1) | Block(1,1) | Block(2,1) | Block(3,1) |
J J] J

J) J J

J J J J

J J J J

J J J J

J J J J

J J) J

J J J J

ny Block (O,ny) | Block(1,ny) | Block(2,ny) | Block(3,ny) |

global linear memory index: idx = iy*nx + ix

global void sumMatrix On GPUMix (float * MatA,
MatC, int nx, int ny) {
unsigned int ix = thread Idx .x + block Idx
unsigned int iy block Idx . y;

unsigned int idx = iy*nx + 1ix;
if (ix < nx && iy < ny)
MatC [idx] = MatA [idx] + MatB [idx];

}

float *MatB, float *

. X *blockDim . x;

>
>

Now we use a 2D grid with 1D blocks

Each thread takes care of only one data
element and the second dimension of grid
equals ny

Running on an NVIDIA Kepler K80

» sumMatrixOnGPUMix <<<(512,16384),
(32,1)>>> elapsed 0.073727 s

» sumMatrixOnGPUMix <<< (64,16384),
(256,1)>>> elapsed 0.030765 s
(best performance so far)

Changing execution configurations affects

performance

A naive kernel implementation does not

generally yield the best performance

For a given kernel, trying different grid and
block dimensions may yield better
performance

63

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

