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COMP4300 - Course Update
Ø Final Exam

Ø Wednesday 11/06/2025 at 2:00pm at Copland G31 
(Building 24)

Ø The exam will cover all materials presented in the course 
e.g. in labs, lectures and assignments etc

Ø Course/lecture notes permitted.

Ø Assignment 2
Ø Released on 24 April
Ø Due 26/05/2025, 11:55PM
Ø Start early e.g. now
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OpenMP with GPUs
OpenMP is traditionally used for parallel programming on CPUs, but recent versions have extended support 
to GPUs and other accelerators. 

Target Directives
Ø #pragma omp target: Offloads a block of code to a GPU.
Ø #pragma omp target data: Manages data movement between host and device.
Ø #pragma omp target teams distribute parallel for: Enables fine-grained parallelism on the GPU.

Memory Management
Ø OpenMP handles memory transfers between host (CPU) and device (GPU) using map clauses.
Ø Example: map(to: a[0:N]) map(from: b[0:N])

Device Selection
Ø You can specify which device to use with device(n) clause.
Ø Useful in systems with multiple GPUs.

Unified Shared Memory (USM)
Ø Some implementations support shared memory between CPU and GPU, reducing the need for 

explicit data transfers.
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OpenMP with GPUs
include <stdio.h>
#include <omp.h>
#define N 1000
int main() {

float a[N], b[N], c[N];
// Initialize arrays
for (int i = 0; i < N; i++) {

a[i] = i * 1.0f;
b[i] = i * 2.0f;

}
// Offload computation to GPU
#pragma omp target map(to: a[0:N], b[0:N]) map(from: c[0:N])
#pragma omp parallel for
for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];
}
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A Real GPU Architecture: NVIDIA TESLA H100
Ø The NVIDIA “Hopper” H100 The NVIDIA GH100 GPU is composed 

of multiple GPU Processing Clusters (GPCs), Texture Processing 
Clusters (TPCs), Streaming Multiprocessors (SMs), L2 cache, and 
HBM3 memory controllers.

Ø The full implementation of the GH100 GPU includes the following 
units: 
Ø 8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full 

GPU
Ø 128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per 

full GPU
Ø 4 Fourth-Generation Tensor Cores per SM, 576 per full GPU
Ø 6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers
Ø 60 MB L2 Cache
Ø Fourth-Generation NVLink and PCIe Gen 5

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

 
                                                                                          NVIDIA H100 GPU Architecture In-Depth 

19 
NVIDIA H100 Tensor Core GPU Architecture 

 

Figure 6. 
GH100 Full GPU with 144 SM

s 

 H100 SM Architecture 
Building upon the NVIDIA A100 Tensor Core GPU SM

 architecture, the H100 SM
 quadruples 

A100’s peak per-SM
 floating point com

putational power, due to the introduction of FP8, and 
doubles A100’s raw SM

 com
putational power on all previous Tensor Core and FP32 / FP64 

data types, clock-for-clock. 

The new Transform
er Engine, com

bined with Hopper’s FP8 Tensor Cores, delivers up to 9x 
faster AI training and 30x faster AI inference speedups on large language m

odels com
pared to 

the prior generation A100. Hopper’s new DPX instructions enable up to 7x faster Sm
ith-

W
aterm

an algorithm
 processing for genom

ics and protein sequencing.  

Hopper’s new fourth-generation Tensor Core, Tensor M
em
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SM
 and general H100 architecture im
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ents together deliver up to 3x faster HPC and AI 

perform
ance in m

any other cases.  
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A Real GPU Architecture: NVIDIA TESLA H100
Ø The GPU hardware parallelism is achieved through the replication 

of SMs.
Ø Each SM has the following key components

Ø CUDA cores (e.g. FP32, FP64, Tensor cores)
Ø Shared Memory & L1 Cache
Ø Register File Load(LD)/Store(DT) Units, Special Function 

Units (SFU) Warp Scheduler
Ø When a grid is launched its thread blocks are distributed among 

available SMs by the GigaThread engine (see previous slide)
Ø All threads in a block are executed by the same SM
Ø Multiple thread blocks may be assigned to the same SM at once
Ø Instructions within a single thread are pipelined to leverage ILP

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
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Figure 7. GH100 Streaming Multiprocessor (SM) 
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A Real GPU Architecture: NVIDIA TESLA H100

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper
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Table 1. NVIDIA H100 Tensor Core GPU Performance Specs 

 NVIDIA H100 SXM5 NVIDIA H100 PCIe 

Peak FP64 33.5 TFLOPS 25.6 TFLOPS 

Peak FP64 Tensor Core 66.9 TFLOPS 51.2 TFLOPS 

Peak FP32 66.9 TFLOPS 51.2 TFLOPS 

Peak FP16 133.8 TFLOPS 102.4 TFLOPS 

Peak BF16 133.8 TFLOPS 102.4 TFLOPS 

Peak TF32 Tensor Core  494.7 TFLOPS | 989.4 TFLOPS1 378 TFLOPS | 756 TFLOPS1 

Peak FP16 Tensor Core 989.4 TFLOPS | 1978.9 TFLOPS1 756 TFLOPS | 1513 TFLOPS1 

Peak BF16 Tensor Core 989.4 TFLOPS | 1978.9 TFLOPS1 756 TFLOPS | 1513 TFLOPS2 

Peak FP8 Tensor Core 1978.9 TFLOPS | 3957.8 TFLOPS1 1513 TFLOPS | 3026 TFLOPS1 

Peak INT8 Tensor Core 1978.9 TOPS | 3957.8 TOPS1 1513 TOPS | 3026 TOPS1 
1. Effective TFLOPS / TOPS using the Sparsity feature 

  

What is a TFLOP?

A TFLOP or Teraflop represents 
the ability to process one trillion 
floating point operations per 
second.

What does a TFLOP look like?

For square, 𝑛 x 𝑛matrices using 
the standard matrix multiplication 
algorithm the total number of 
operations is 𝑂(𝑛3). A matrix 
multiply with 𝑛=104 rows will 
require 𝑂(𝑛3) = 1012 operations, 
about 1 TFLOP.
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The Single Instruction Multiple Thread (SIMT) Model
Ø CUDA uses a Single Instruction Multiple Thread (SIMT) 

architecture to manage and execute threads in groups of 32 
called warps.

Ø Each SM partitions the thread blocks into warps that it then 
schedules for execution on available hardware resources.

Ø Threads in a warp execute the same instruction at the 
same time.

Ø The SIMT model includes three key features that SIMD does 
not:

Ø Each thread has its own instruction address counter.

Ø Each thread has its own register state.

Ø Each thread can have an independent execution path.
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Thread Block Clusters and Grids with Clusters
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A Grid is composed of Thread Blocks in the legacy CUDA programming model as in A100, shown in the left half of 
the above diagram. The Hopper architecture adds an optional Cluster hierarchy, shown in the right half of the 
diagram. 

Figure 14. Thread Block Clusters and Grids with Clusters  

Distributed Shared Memory 

With Clusters, it is possible for all the threads to directly access other SM’s shared memory with 
load, store, and atomic operations. This feature is called Distributed Shared Memory (DSMEM) 
because the shared memory’s virtual address space is logically distributed across all the Blocks 
in the Cluster. DSMEM enables more efficient data exchange between SMs, where data no 
longer needs to be written to and read from global memory to pass the data. The dedicated SM-
to-SM network for Clusters ensures fast, low latency access to remote DSMEM. Compared to 
using global memory, DSMEM accelerates data exchange between Thread Blocks by about 7x. 

 

Figure 15. Thread Block to Thread Block data exchange (A100 vs H100 with 
Clusters) 

At the CUDA level, all the DSMEM segments from all Thread Blocks in the Cluster are mapped 
into the generic address space of each thread, such that all of DSMEM can be referenced 
directly with simple pointers. CUDA users can leverage the cooperative_groups API to construct 
generic pointers to any Thread Block in the cluster. DSMEM transfers can also be expressed as 
asynchronous copy operations synchronized with shared memory-based barriers for tracking 
completion.  

Figure 16 below shows the performance advantage of using Clusters on different algorithms. 
Clusters improve the performance by allowing the programmer to directly control a larger portion 

Ø With Clusters, it is possible for all the 
threads to directly access other SM’s shared 
memory with load, store, and atomic 
operations. 

Ø This feature is called Distributed Shared 
Memory (DSMEM) because the shared 
memory’s virtual address space is logically 
distributed across all the Blocks in the 
Cluster. 

Ø DSMEM enables more efficient data 
exchange between SMs, where data no 
longer needs to be written to and read from 
global memory to pass the data. 

Ø The dedicated SM-to-SM network for 
Clusters ensures fast, low latency access to 
remote DSMEM. 

Ø Compared to using global memory, DSMEM 
accelerates data exchange between Thread 
Blocks by about 7x.
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Warp Execution
Ø A thread block is mapped to an SM and executed in warps
Ø The number of warps for a thread block can be determined 

as ThreadsPerBlock/32
Ø If thread block size is not an even multiple of warp size, 

some threads in the last warp are left inactive
Ø GPUs have very simple branch prediction mechanisms →  

conditionals are problematic as they cause warp divergence, 
i.e. threads in the same warp executing different instructions

Ø If threads of a warp diverge, the warp serially executes each 
branch path, disabling threads that do not take that path

Ø Warp divergence can cause significantly degraded 
performance (up to 1/32)

Ø Branch divergence occurs only within a warp. Different 
conditional values in different warps do not cause warp 
divergence.
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Warp Scheduling: Resource Limitations

Ø The number of warps allocated to an SM depends on the
resources it requires and affects performance significantly

Ø The local execution context of a warp mainly consists of
program counters, registers and shared memory

Ø The execution context of each warp maintained on-SM during its
lifetime of the warp → warp context switch has no cost.

Ø Each SM has a fixed number of of 32-bit registers (256KB on H100)
and of shared memory (up to 228KB on H100) to be shared
among threads

Ø The number of thread blocks and warps allocated to an SM
depends on how many registers and shared memory each thread 
and thread block requires

Ø These memory requirements change based on the kernel code

11
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Warp Scheduling: Resource Limitations

Ø If a thread consumes more registers, fewer warps can be 
placed on an SM (more registers per warp)

Ø If thread block consumes more shared memory, fewer 
thread blocks can be processed simultaneously by an SM

Ø If there are insufficient registers or shared memory on each 
SM to process at least one block, the kernel launch will fail

12
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Latency Hiding Through Warp Scheduling

Ø An SM relies on thread-level parallelism to
maximize utilization of its functional units

Ø This works essentially as hyperthreading, but
where the equivalent of a thread is a warp

Ø Full compute resource utilization is achieved
when all warp schedulers have an eligible warp
at every clock cycle.

Ø This ensures that the latency of each 
instruction can be hidden by issuing other 
instructions in other resident warps.

Ø Latency hiding is particularly important in GPU
programming: GPU instruction latency is
hidden by computation from other warps (as
opposed to CPUs which are designed for
minimizing it!)

While one warp is waiting (e.g., for data from memory), 
the other warp can continue executing
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Latency Hiding Through Control of Warp Scheduling
Ø The instruction latency can derive from either

arithmetic or memory instructions
Ø Arithmetic instruction latency varies typically 

between 4 and 20 cycles
Ø Global memory instruction latency ∼500 cycles

for global memory accesses (uncached
transactions)

Ø The number of active warps required to hide 
latency can be estimated with Little’s Law

#RequiredWarps = Latency ×Throughput

Ø Arithmetic operations: On H100 most single-
precision ops have a latency of 4 cycles, while
double-precision ones of 8 cycles

Ø Global memory operations: Latency∼ 500
cycles
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Latency Hiding Through Control of Warp Scheduling

Ø Example 1: Hide latency of single-
precision FMA to maintain full 
arithmetic utilization

Ø V100 architecture considerations:

Ø Each SM can have 4 Selected 
Warps/cycle, and maximum 64 
Active Warps

Ø Latency of single-precision FMA 
is 4 cycles

15
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Latency Hiding Through Control of Warp Scheduling

Ø Example 1: Hide 4-cycle latency of single-
precision (FP32) FMA to maintain full 
arithmetic utilization

Ø V100 architecture considerations: 
Ø Each SM can have 4 Selected 

Warps/cycle, and maximum 64
Active Warps

Ø Latency of single-precision FMA is
4 cycles

Ø Throughput goal: 4 Selected Warps → 32×4
= 128 FMA/cycle (per SM)

Ø Latency is 4 cycles, Parallelism required is
128 ∗4 = 512 FP32 ops per cycle

Ø Number of Required Active Warps =

#OpsPerWarp        32
#OpsPerCycle = 512 = 16
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Latency Hiding Through Control of Warp Scheduling

Ø Example 2: Hide global memory transaction 
latency to maintain peak bandwidth 
utilization

Ø V100 architecture considerations:
Ø Global memory bandwidth ∼  800GB/s 

Latency of global memory transactions
Ø ∼  500 cycles
Ø HBM2 clock rate is 867 MHz

17
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Latency Hiding Through Control of Warp Scheduling
Ø Example 2: Hide global memory transaction latency to 

maintain peak bandwidth utilization
Ø V100 architecture considerations:

Ø Global memory bandwidth ∼  800GB/s Latency of 
global memory transactions

Ø ∼  500 cycles
Ø HBM2 clock rate is 867 MHz
Ø Bandwidth per cycle =

800 GB/s = 923 B/cycle (full GPU)
867 Mhz

Ø Required memory transaction volume = Bandwidth per
cycle × Latency = 456.5 KB

Ø Transferring one float (4 Bytes) per GPU thread →
114,125 threads -> 114,125threads ≈ 3566 warps

32 threads/warp
Ø 3566 warp = 43 warp/SM → at least 43

84 SM
                          active Warps to hide the latency

18
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Can One Hide Latency? Beware Resource Limitations!

Ø Example 1, requires 16 Active Warps to 
hide the arithmetic latency.

Ø What are the register and shared memory 
limits per SM for this to be achievable?

19
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Can One Hide Latency? Beware Resource Limitations!

Ø In Example 1, one requires 16 Active Warps to
hide arithmetic latency.

Ø What are the register and shared memory 
limits per SM in order for this to be
achievable?

Ø V100 architecture considerations:
Ø Register File Size/SM = 256 KB Shared

Memory Size/SM = 64 KB (96 KB
configurable)

20
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Can One Hide Latency? Beware Resource Limitations!
Ø In Example 1, one requires 16 Active Warps to

hide arithmetic latency.
Ø What are the register and shared memory limits

per SM in order for this to be achievable?
Ø V100 architecture considerations:

Ø Register File Size/SM = 256 KB of 32-bit
registers

Ø Shared Memory Size/SM = 64 KB
Ø (96 KB configurable)

Ø 16 warps ×32 thread = 512 threads
256KB/SM = 64,000 registers/SM

64,000 registers/SM = 125 registers/thread
32 bit/register

512 threads
Ø If your kernel requires >125 registers/thread it

cannot hide the arithmetic latency!
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Can One Hide Latency? Beware Resource Limitations!

Ø Example 1 requires 16 Active Warps to hide 
arithmetic latency.

Ø What are the register and shared memory 
limits per SM in order for this to be 
achievable?

Ø V100 architecture considerations:
Ø Register File Size/SM =  256 KB of 32-bit 

registers
Ø Shared Memory Size /  SM =  64 KB
Ø (96 KB configurable)

Ø What about Shared Memory?

22
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Can One Hide Latency? Beware Resource Limitations!

Ø What about Shared Memory?
Ø This depends on the thread block size and 

the amount of shared memory requested per 
thread block

Ø For example, thread block size =  128 and 64 KB 
of shared memory per block, can we hide the 
arithmetic latency?
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Occupancy

Ø You want to have sufficient warps to hide 
instruction latencies

Ø Occupancy =  ActiveWarps / MaximumWarps
Ø It is a number 0 <  Occupancy ≤  1
Ø The higher the achieved occupancy the higher 

the chance your code will hide instruction 
latency

Ø This is just a rule of thumb. Can you achieve high 
performance with Occupancy <  1?

24
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Guidelines for Grid and Block Sizes
Ø Small thread blocks: Too few threads per block leads to hardware limitations on the number of warps per SM

to be reached before all resources are fully utilized.

Ø Large thread blocks: Too many threads per block leads to fewer per-SM hardware resources available to
each thread

Ø In general, you should conduct experiments to discover the best execution configuration and resource
usage. Some rules of thumb:

Ø Keep the number of threads per block a multiple of warp size (32)
Ø Avoid small block sizes: Start with at least 128 or 256 threads per block.
Ø Adjust block size up or down according to kernel resource requirements.
Ø Keep the number of blocks much greater than the number of SMs to expose sufficient parallelism to

your device
Ø Ask the compiler to print the number of registers using the flag --ptxas-options=-v. In case

occupancy is register-limited try to optimize the number of registers per thread through the nvcc flag –
maxrregcount=NUM.
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Synchronization

In CUDA, synchronization can be performed at two levels:
Ø System-level: Wait for all work on both the host and the device to complete.
Ø Block-level: Wait for all threads in a thread block to reach the same point in execution on the device.
Ø cudaError_t cudaDeviceSynchronize(void) can be used to block the host application until all

CUDA operations (copies, kernels, and so on) have completed
Ø __device__ void__syncthreads(void) can be used to synchronize all theads within a block:

Ø Each thread in the same thread block must wait until all other threads in that thread block have
reached this synchronization point

Ø All global and shared memory accesses made by all threads prior to this barrier will
       be visible to all other threads in the thread block after the barrier

Ø There is no thread synchronization among different blocks.
Ø GPUs can execute blocks in any order. This enables CUDA programs to be scalable across massively

parallel GPUs.
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2D Matrix Addition: Elapsed Time
Matrix dimensions nx = ny = 16,384
dim3 block(dimx, dimy);
dim3 grid((nx + block.x - 1) /
block.x, (ny + block.y - 1) /
block.y);

Ø Performance on an NVIDIA Tesla M2070 
(Fermi):
Ø Grid(xGDim, yGDim), Block(xBDim, 

yBDim) → elapsed time
1. (512,512), (32,32) → 60 ms
2. (512,1024), (32,16) → 38 ms
3. (1024,512), (16,32) → 51 ms
4. (1024,1024),(16,16) → 46 ms

Ø You can measure achieved warp occupancy by
running
Ø ncu –metrics achieved_
occupancy

  <application>

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int 
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}
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2D Matrix Addition: Achieved Occupancy

Ø Grid(xGDim, yGDim), Block(xBDim, 
yBDim) → elapsed time
1. (512,512), (32,32) → 60 ms
2. (512,1024), (32,16) → 38 ms
3. (1024,512), (16,32) → 51 ms
4. (1024,1024),(16,16) → 46 ms

Ø Achieved Occupancy
1. (512,512), (32,32) → 0.50
2. (512,1024), (32,16) → 0.74
3. (1024,512), (16,32) → 0.77
4. (1024,1024),(16,16) → 0.81__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int 

NX, int NY) {
 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}
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2D Matrix Addition: Timings Versus Occupancy
Ø Elapsed time

1. (512,512), (32,32) → 60 ms
2. (512,1024), (32,16) → 38 ms
3. (1024,512), (16,32) → 51 ms
4. (1024,1024),(16,16) → 46 ms

Ø Achieved Occupancy
1. (512,512), (32,32) → 0.50
2. (512,1024), (32,16) → 0.74
3. (1024,512), (16,32) → 0.77
4. (1024,1024),(16,16) → 0.81

Ø Configuration “2” has more blocks than “1”,
this exposes more active warps to the device.
This is likely why “2” has higher achieved
occupancy and better performance than “1”.

Ø Configuration “4” has the highest achieved
occupancy, but it is not the fastest!

Ø Higher occupancy /= higher performance.
There must be other factors that restrict
performance.

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int 
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}
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2D Matrix Addition: Memory Operations

Ø The kernel performs two memory loads,
one memory store, one FLOP per thread.

Ø You can measure the global load 
throughput using
Ø ncu --metrics gld_

throughput <application> 
1. (512,512), (32,32) → 35.908GB/s
2. (512,1024), (32,16) → 56.478GB/s
3. (1024,512), (16,32) → 85.195GB/s
4. (1024,1024),(16,16) → 94.708GB/s

Ø higher load throughput does not 
guarantee  higher performance!

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int 
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}
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2D Matrix Addition: Memory Operations
Ø Global load throughput

1. (512,512), (32,32) → 35.908GB/s
2. (512,1024), (32,16) → 56.478GB/s
3. (1024,512), (16,32) → 85.195GB/s
4. (1024,1024),(16,16) → 94.708GB/s

Ø The global load efficiency is the ratio of
requested global load throughput to required
global load throughput.

Ø You can measure it using 
ncu --metrics gld_efficient
<application>

1. (512,512), (32,32) → 100 %
2. (512,1024), (32,16) → 100 %
3. (1024,512), (16,32) → 49.96 %
4. (1024,1024),(16,16) → 49.80 %

Ø This explains why the higher load throughput
and achieved occupancy of the last two cases
did not yield improved performance.

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int 
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}
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2D Matrix Addition: Memory Operations
Ø Global load throughput

1. (512,512), (32,32) → 35.908GB/s
2. (512,1024), (32,16) → 56.478GB/s
3. (1024,512), (16,32) → 85.195GB/s
4. (1024,1024),(16,16) → 94.708GB/s

Ø Global load efficiency
1. (512,512), (32,32) → 100 %
2. (512,1024), (32,16) → 100 %
3. (1024,512), (16,32) → 49.96 %
4. (1024,1024),(16,16) → 49.80 %

Ø The common feature for the last two
cases is that their block size in the
innermost dimension is half of a warp

Ø For grid and block heuristics, the
innermost dimension should always be a
multiple of the warp size

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int 
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}
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DEMO

2D Matrix Addition: 
Memory Operations
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GPU (A100) Memory Hierarchy
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CUDA Program
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Device Version Grid Block Time Speedup Occupancy Memory

CPU matrix-add-cpu Nx, Ny = 32768 N/a 31,366 ms 1

CPU matrix-add-
openmp-avx

Nx, Ny = 32768 N/A 3302 ms 9.5

CPU matrix-add-
openmp-gcc

Nx, Ny = 32768 N/A 550 ms 57

GPU matrix-add-gpu 1024 x 1024 32 x 32 19.23 ms 1631 83.39% 85.37%

GPU matrix-add-gpu 1024 x 2048 32 x 16 18.40 ms 1704 86.5% 90.15%

GPU matrix-add-gpu 2048 x 1024 16 x 32 21.38 ms 1467 87.1% 82.07%

GPU matrix-add-gpu 2048 x 2048 16 x 16 18.73 ms 1674 90.37% 87.89%

NVIDIA V100 GPU AT NCI - 2D MATRIX SUM 
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Heterogeneous 
Computing



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Reference Material
Ø NVIDIA’s CUDA C++ Best Practices Guide, https://docs.nvidia.com/cuda/cuda-c-

best-practices-guide/
Ø Nvidia H100 TensorCore GPU Architecture https://resources.nvidia.com/en-

us-tensor-core

Ø Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018). Dissecting the NVIDIA volta 
GPU architecture via microbenchmarking. arXiv preprint arXiv:1804.06826.

Ø Professional CUDA c programming. Cheng, John, Max Grossman, and Ty McKercher. 
John Wiley & Sons, 2014.

Ø CUDA by Example: An Introduction to General-Purpose GPU Programming, Sanders, 
Jason, and Edward Kandrot, Addison-Wesley Professional, 2010.

Ø Tesla V100 Performance Optimization Guide, 
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/ tesla-
product-literature/v100-application-performance-guide.pdf
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Heterogeneous Computing

§ Terminology:
§ Host The CPU and its memory (host memory)
§ Device The GPU and its memory (device memory)

Host Device
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Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N          1024
#define RADIUS     3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
  temp[lindex - RADIUS] = in[gindex - RADIUS];
  temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
  result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

void fill_ints(int *x, int n) {
 fill_n(x, n, 1);
}

int main(void) {
 int *in, *out;              // host copies of a, b, c
 int *d_in, *d_out;          // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
 
 // Alloc space for device copies
 cudaMalloc((void **)&d_in,  size);
 cudaMalloc((void **)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, 
d_out + RADIUS);

 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;
}

serial code

parallel code

serial code

parallel fn

Host

Host

Device
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The End of The Road for General-Purpose Processors
Ø End of Dennard scaling caused the end of the general-

purpose processor era (both uniprocessor and 
multicore)

Ø Use of domain specific architectures (DSAs): 
programmable but designed for a class of problems 
with specific structures.

Ø GPUs are designed for data-parallel algorithms 
(especially linear algebra)

Ø More transistors are devoted to data processing rather 
than data caching and flow control

Ø Require domain specific programming model that 
makes it possible for the software to match the 
hardware (e.g. CUDA)

Ø Extracting performance requires the programmer to 
expose parallelism, to manage memory efficiently (e.g. 
caching), to tailor the algorithm to the hardware
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TOP 500 List November 2023

https://www.top500.org/
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CPU versus GPU - FLOP rates

43

GPU FLOP Rates have been 
growing exponentially:-

Ø 2010’s GFLOP/s – see the  
graph opposite

Ø 2020’s TFLOPS/s to 
PFLOP/s e.g. H100 GPU
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Impact of Heterogenous Computing

44
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Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory to 
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to 
CPU memory

PCI Bus
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A Simplistic View of the GPU Architecture
A scalable array of complex “cores” called Streaming 
Multiprocessors (SM)
Ø Each core has an array of functional units (e.g. 

ALUs) with SIMD execution
Ø Instructions operate in groups of 32 “SIMD” 

threads called warps
Ø On the NVIDIA H100 GPU up to 64 warps can be 

executed concurrently (interleaved) on a single SM
Ø Up to 132 SMs × 128 CUDA cores/SM = 16896 Cuda 

cores per device
Ø H100 includes Tensor cores + Transformer engine 

for training large language models
Ø This is why GPUs are called throughput-oriented 

architectures
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Heterogenous Computing
Ø GPU computing is not meant to 

replace CPU computing
Ø CPU computing is good for control-

intensive tasks, and GPU computing is
good for data-parallel computation-
intensive tasks

Ø Modern high-end HPC systems are 
heterogenous: They combine CPUs and
GPUs, mapping tasks to the most suitable
PU

Ø A typical heterogeneous compute node
consists of two multicore CPU sockets and
two or more many-core GPUs

Ø GPUs operate in conjunction with a
CPU-based host typically through a PCI-
Express bus
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Heterogenous Computing
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Heterogenous Computing

Ø In a heterogeneous, the CPU is called the host
and the GPU is called the device

Ø A heterogeneous application consists of two
parts: Host code (runs on CPU) and device code
(runs on GPU)

Ø Applications are initialized by the CPU: the 
CPU code is responsible for managing the
environment, code, and data for the device
before loading compute-intensive tasks onto
the device.

Ø Host and device have distinct and separate
virtual memory address spaces!

Ø Host ↔ device communication is slow and
becomes easily a performance bottleneck.

PCI Bus

540 GFLOPS
34 TFLOPS

GPU is Heterogeneous

51



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Compute Unified Device Architecture (CUDA)
Ø CUDA C is an is an extension of standard 

ANSI providing APIs and a programming
model for NVIDIA GPUs

Ø A CUDA program consists of a mixture
host and device code

Ø NVIDIA’s CUDA nvcc compiler separates
the device code from the host code during
the compilation process

Ø The device code is written using CUDA C
extended with keywords for labeling data-
parallel functions, called kernels

52



TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Hello World from a GPU

# include <stdio . h>
__global__ void hello From GPU ( void )

{
printf (" Hello World from GPU !\ n");

}

int main ( void ) {
// hello from cpu
printf (" Hello World from CPU !\ n");
hello From GPU <<<1 , 10 > > >();
cuda Device Reset ();
return 0;

}

$ nvcc - arch = sm_70 hello . cu - o hello
$ ./ hello
Hello World from CPU !
Hello World from GPU !
Hello World from GPU !
...
Hello World from GPU !

Ø The qualifier global tells the compiler the
function is a device kernel and will be called
from the CPU and executed on the GPU

Ø The kernel is launched with the triple angle
brackets notation (helloFromGPU <<<1,
10>>>())

Ø The parameters within the triple angle brackets
specify how many threads will execute the kernel
(10 GPU threads).

Ø The function cudaDeviceReset() cleans up
all resources associated with the current device

Ø The flag -arch=sm 70 tells the nvcc
compiler to produce a binary for the Volta
V100 architecture
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CUDA Programming Structure

Ø A typical processing flow of a CUDA 
program follows this pattern:

Ø Copy data from CPU memory to GPU
memory

Ø Invoke kernels to operate on the data
stored in GPU memory

Ø Copy data back from GPU memory to
CPU memory

Ø When a kernel has been launched, control 
is returned immediately to the host.

Ø The host can operate independently of the
device for most operations. CUDA is an
asynchronous model.
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CUDA Memory Management
ØCUDA provides functions to allocate device

memory, release device memory, and transfer
data between the host memory and device
memory

ØGPU memory allocation → synchronous

cuda Error_t cuda Malloc ( void ** devPtr , size_t size )

Ø Transfer data between the host and device →
synchronous

cuda Error_t cuda Memcpy ( void * dst ,
      const void * src , size_t count ,
       cuda Memcpy Kind kind )

Ø Kinds of transfer: cudaMemcpyKind = { 

cudaMemcpyHostToHost, cudaMemcpyHostToDevice,

cudaMemcpyDeviceToHost,

cudaMemcpyDeviceToDevice }
Ø cudaMemset and cudaFree are also synchronous
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CUDA Memory Management

Ø CUDA provides functions to allocate device
memory, release device memory, and transfer
data between the host memory and device
memory 

Ø GPU memory allocation → synchronous

cuda Error_t cuda Malloc ( void ** devPtr , size_t size )

Ø WARNING: device pointers (e.g devPtr) may not be
dereferenced in the host code.
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CUDA Thread Organization
Ø Two-level thread hierarchy decomposed into

blocks of threads and grids of blocks
Ø All threads spawned by a single kernel form a

thread grid
Ø Threads in a grid are grouped in thread

blocks
Ø Threads in the same block can cooperate using

block-local sychronization and shared memory
Ø Threads from different blocks cannot 

synchronize!
Ø Each block has a unique ID, bblockIdx, within

the grid
Ø Each thread has a unique ID, threadIdx,

within its block (local)
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Defining Grids and Blocks
int nElem = 6;
// define grid and block structure dim3
block (3) ;
dim3 grid (( nElem +block .x -1) /block .x);
// check grid and block dimension from host side 
printf (" grid .x %d grid .y %d grid .z %d\ n",

grid .x, grid .y, grid .z);
printf (" block .x %d block .y %d block .z %d\ n", 

block .x, block .y, block .z);
// check grid and block dimension from device

side
check Index <<<grid , block >>> ();

__global__void check Index (void ) {

printf (" thread Idx :(% d, %d, %d) block Idx :(% d, %d,
%d) block Dim :(% d, %d, %d) grid Dim :(% d, %d,
%d)\ n",

thread Idx .x, thread Idx .y, thread Idx .z, 
block Idx .x, block Idx .y, block Idx .z, block
Dim .x, block Dim .y, block Dim .z, grid Dim .x,
grid Dim .y, grid Dim .z);

}

Ø CUDA organizes grids and blocks in 
three dimensions

Ø uint3 blockIdx = {blockIdx.x, blockIdx.y, 
blockIdx.z}

Ø uint3 threadIdx = {threadIdx.x, threadIdx.y, 
threadIdx.z}

Ø When defined on the host grids and 
blocks use the dim3 type (and not 
uint3) with 3 unsigned integer fields

Ø Note that the grid size is rounded up to 
the multiple of the block size

Ø For a given kernel, the grid and block 
dimensions are decided based on 
performance characteristics and 
limitations of GPU resources
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CUDA Kernel Semantics
Ø The definition of a CUDA kernel requires special function qualifiers

Ø __global__ → Executed on device, callable from host and device,
must have void return type

Ø __device__ → Executed on device, callable from device only
Ø __host__ → Executed on host, callable from host only

Ø GPU kernels use implicit parallelism!
Ø For example, from the host code

void sum Arrays On Host ( float * A, float * B, float * C, const int N) { 
  for ( int i = 0; i < N; i ++) {

 C[ i] = A[ i] + B[ i];
}

}

Ø You can obtain a GPU parallel kernel by peeling off the forloop and assigning work to
different threads

__global__ void sum Arrays On GPU ( float * A, float * B, float * C) { 
 int i = thread Idx . x;
 C[ i] = A[ i] + B[ i];

}
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Organizing Threads: Matrix Addition
Ø We want to perform the matrix sum C =  A +  B in 

parallel on the GPU. 

Ø The matrices have dimensions nx and ny

Ø Each thread performs the addition
 
C (ix, iy ) =  A(ix, iy ) +  B(ix, iy ) 

for a distinct element of A, B and C with row and 
column indices (ix, iy )

Ø We can map a single thread to each matrix 
element in the A, B or C arrays at position idx 
using a 2D grid of thread blocks where
Ø ix = threadIdx.x + blockIdx.x * blockDim.x

Ø ix = threadIdx.y + blockIdx.y *

Ø blockDim.y

Ø idx = iy * nx + ix
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Ø Matrix dimensions nx = ny = 16,384

Ø Kernel execution configuration set to use a
2D grid and 2D block between lines 9-12

Ø Running on an NVIDIA Kepler K80
Ø sumMatrixOnGPU2D <<<(512,512), 

(32,32)>>> elapsed 0.060323 sec 
Ø sumMatrixOnGPU2D <<<(512,1024), 

(32,16)>>> elapsed 0.038041 sec
Ø sumMatrixOnGPU2D <<< (1024,1024), 

(16,16) >>> elapsed 0.045535 sec

// malloc device global memory
float * d_MatA , * d_MatB , * d_Mat C ;
cuda Malloc (( void **) & d_MatA , n Bytes );
cuda Malloc (( void **) & d_MatB , n Bytes );
cuda Malloc (( void **) & d_MatC , n Bytes )
// transfer data from host to device
cuda Memcpy ( d_MatA , h_A , nBytes , 

cuda Memcpy Host To Device );

cuda Memcpy ( d_MatB , h_B , nBytes ,
    cuda Memcpy Host To Device );
// invoke kernel at host side

int dimx = 32; int dimy = 32;
dim3 block ( dimx , dimy );

dim3 grid (( nx+ block . x -1) / block . x, ( ny+ block . y -1) /
block . y);

i Start = cpu Second ();
sum Matrix On GPU 2 D <<< grid , block >>>( d_MatA ,

d_MatB , d_MatC , nx , ny); 
cuda Device Synchronize ();

i Elaps = cpu Second () - i Start ;

global void sum Matrix OnGPU 2D ( float *MatA , 
float *MatB , float *MatC , int nx , int ny) {

unsigned int ix = thread Idx .x + block Idx .x *
block Dim .x;

unsigned int iy = thread Idx .y + block Idx .y * 
block Dim .y;

unsigned int idx = iy* nx + ix;
if (ix < nx && iy < ny)
MatC [idx ] = MatA [idx ] + MatB [idx ];

}

Matrix Addition with 2D Grid and 2D Blocks
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Matrix Addition with 1D Grid and 1D Blocks

Ø Matrix dimensions nx = ny = 16,384
Ø Now we use a 1D grid with 1D blocks
Ø Each thread in the new kernel handles

ny elements
Ø Running on an NVIDIA Kepler K80

Ø sumMatrixOnGPU1D <<<(512,1), (32,1)>>>
elapsed 0.061352 sec

Ø sumMatrixOnGPU1D <<<(128,1),(128,1)>>>
elapsed 0.044701 sec

global void sum Matrix OnGPU 1D ( float *MatA , float *MatB
, float *MatC , int nx , int ny) {

unsigned int ix = thread Idx .x + block Idx .x * block Dim .x; 
if (ix < nx ) {
for (int iy =0; iy <ny; iy ++) {
int idx = iy* nx + ix;
MatC [idx ] = MatA [idx ] + MatB [idx ];

}
}
}
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Matrix Addition with 2D Grid and 1D Blocks
Ø Now we use a 2D grid with 1D blocks
Ø Each thread takes care of only one data

element and the second dimension of grid
equals ny

Ø Running on an NVIDIA Kepler K80
Ø sumMatrixOnGPUMix <<<(512,16384), 
(32,1)>>> elapsed 0.073727 s

Ø sumMatrixOnGPUMix <<<(64,16384), 
(256,1)>>> elapsed 0.030765 s 
(best performance so far)

Ø Changing execution configurations affects 
performance

Ø A naive kernel implementation does not 
generally yield the best performance

Ø For a given kernel, trying different grid and 
block dimensions may yield better 
performance

global void sum Matrix On GPUMix ( float * MatA , float * MatB , float *
MatC , int nx , int ny) {

    unsigned int ix = thread Idx . x + block Idx . x *block Dim . x;
unsigned int iy = block Idx . y; 
unsigned int idx = iy* nx + ix;

if ( ix < nx && iy < ny)
MatC [ idx ] = MatA [ idx ] + MatB [ idx ];

}
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