
TE
QS

A
PR

OV
ID

ER
 ID

:P
RV

12
00

2(
AU

ST
RA

LIA
N

UN
IV

ER
SIT

Y)
 C

RI
CO

S
PR

OV
ID

ER
 C

OD
E:

 00
12

0C

INTRODUCTION TO GPU
ARCHITECTURE & PROGRAMMING

COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

APRIL 2024

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Logistics
Ø Attendance to the Lab sessions is highly encouraged. Most of the

practical aspects of the programming models are covered in the Labs.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

3

GPU SM Architecture
& Execution Model

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Real GPU Architecture: NVIDIA TESLA H100
Ø The NVIDIA “Hopper” H100 The NVIDIA GH100 GPU is composed

of multiple GPU Processing Clusters (GPCs), Texture Processing
Clusters (TPCs), Streaming Multiprocessors (SMs), L2 cache, and
HBM3 memory controllers.

Ø The full implementation of the GH100 GPU includes the following
units:
Ø 8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full

GPU
Ø 128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per

full GPU
Ø 4 Fourth-Generation Tensor Cores per SM, 576 per full GPU
Ø 6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers
Ø 60 MB L2 Cache
Ø Fourth-Generation NVLink and PCIe Gen 5

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

 NVIDIA H100 GPU Architecture In-Depth

19
NVIDIA H100 Tensor Core GPU Architecture

Figure 6.
GH100 Full GPU with 144 SM

s

 H100 SM Architecture
Building upon the NVIDIA A100 Tensor Core GPU SM

 architecture, the H100 SM
 quadruples

A100’s peak per-SM
 floating point com

putational power, due to the introduction of FP8, and
doubles A100’s raw SM

 com
putational power on all previous Tensor Core and FP32 / FP64

data types, clock-for-clock.

The new Transform
er Engine, com

bined with Hopper’s FP8 Tensor Cores, delivers up to 9x
faster AI training and 30x faster AI inference speedups on large language m

odels com
pared to

the prior generation A100. Hopper’s new DPX instructions enable up to 7x faster Sm
ith-

W
aterm

an algorithm
 processing for genom

ics and protein sequencing.

Hopper’s new fourth-generation Tensor Core, Tensor M
em

ory Accelerator, and m
any other new

SM
 and general H100 architecture im

provem
ents together deliver up to 3x faster HPC and AI

perform
ance in m

any other cases.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Real GPU Architecture: NVIDIA TESLA H100
Ø The GPU hardware parallelism is achieved through the replication

of SMs.
Ø Each SM has the following key components

Ø CUDA cores (e.g. FP32, FP64, Tensor cores)
Ø Shared Memory & L1 Cache
Ø Register File Load(LD)/Store(DT) Units, Special Function

Units (SFU) Warp Scheduler
Ø When a grid is launched its thread blocks are distributed among

available SMs by the GigaThread engine (see previous slide)
Ø All threads in a block are executed by the same SM
Ø Multiple thread blocks may be assigned to the same SM at once
Ø Instructions within a single thread are pipelined to leverage ILP

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

 NVIDIA H100 GPU Architecture In-Depth

21
NVIDIA H100 Tensor Core GPU Architecture

Figure 7. GH100 Streaming Multiprocessor (SM)

 TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Real GPU Architecture: NVIDIA TESLA H100

https://resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper

 NVIDIA H100 GPU Architecture In-Depth

20
NVIDIA H100 Tensor Core GPU Architecture

Table 1. NVIDIA H100 Tensor Core GPU Performance Specs

 NVIDIA H100 SXM5 NVIDIA H100 PCIe

Peak FP64 33.5 TFLOPS 25.6 TFLOPS

Peak FP64 Tensor Core 66.9 TFLOPS 51.2 TFLOPS

Peak FP32 66.9 TFLOPS 51.2 TFLOPS

Peak FP16 133.8 TFLOPS 102.4 TFLOPS

Peak BF16 133.8 TFLOPS 102.4 TFLOPS

Peak TF32 Tensor Core 494.7 TFLOPS | 989.4 TFLOPS1 378 TFLOPS | 756 TFLOPS1

Peak FP16 Tensor Core 989.4 TFLOPS | 1978.9 TFLOPS1 756 TFLOPS | 1513 TFLOPS1

Peak BF16 Tensor Core 989.4 TFLOPS | 1978.9 TFLOPS1 756 TFLOPS | 1513 TFLOPS2

Peak FP8 Tensor Core 1978.9 TFLOPS | 3957.8 TFLOPS1 1513 TFLOPS | 3026 TFLOPS1

Peak INT8 Tensor Core 1978.9 TOPS | 3957.8 TOPS1 1513 TOPS | 3026 TOPS1
1. Effective TFLOPS / TOPS using the Sparsity feature

What is a TFLOP?

A TFLOP or Teraflop represents
the ability to process one trillion
floating point operations per
second.

What does a TFLOP look like?

For square, ! x !matrices using
the standard matrix multiplication
algorithm the total number of
operations is "(!3). A matrix
multiply with !=104 rows will
require "(!3) = 1012 operations,
about 1 TFLOP.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Single Instruction Multiple Thread (SIMT) Model
Ø CUDA uses a Single Instruction Multiple Thread (SIMT)

architecture to manage and execute threads in groups of 32
called warps.

Ø Each SM partitions the thread blocks into warps that it then
schedules for execution on available hardware resources.

Ø Threads in a warp execute the same instruction at the
same time.

Ø The SIMT model includes three key features that SIMD does
not:

Ø Each thread has its own instruction address counter.
Ø Each thread has its own register state.
Ø Each thread can have an independent execution path.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Thread Block Clusters and Grids with Clusters
 NVIDIA H100 GPU Architecture In-Depth

30
NVIDIA H100 Tensor Core GPU Architecture

A Grid is composed of Thread Blocks in the legacy CUDA programming model as in A100, shown in the left half of
the above diagram. The Hopper architecture adds an optional Cluster hierarchy, shown in the right half of the
diagram.

Figure 14. Thread Block Clusters and Grids with Clusters

Distributed Shared Memory

With Clusters, it is possible for all the threads to directly access other SM’s shared memory with
load, store, and atomic operations. This feature is called Distributed Shared Memory (DSMEM)
because the shared memory’s virtual address space is logically distributed across all the Blocks
in the Cluster. DSMEM enables more efficient data exchange between SMs, where data no
longer needs to be written to and read from global memory to pass the data. The dedicated SM-
to-SM network for Clusters ensures fast, low latency access to remote DSMEM. Compared to
using global memory, DSMEM accelerates data exchange between Thread Blocks by about 7x.

Figure 15. Thread Block to Thread Block data exchange (A100 vs H100 with
Clusters)

At the CUDA level, all the DSMEM segments from all Thread Blocks in the Cluster are mapped
into the generic address space of each thread, such that all of DSMEM can be referenced
directly with simple pointers. CUDA users can leverage the cooperative_groups API to construct
generic pointers to any Thread Block in the cluster. DSMEM transfers can also be expressed as
asynchronous copy operations synchronized with shared memory-based barriers for tracking
completion.

Figure 16 below shows the performance advantage of using Clusters on different algorithms.
Clusters improve the performance by allowing the programmer to directly control a larger portion

Ø With Clusters, it is possible for all the
threads to directly access other SM’s shared
memory with load, store, and atomic
operations.

Ø This feature is called Distributed Shared
Memory (DSMEM) because the shared
memory’s virtual address space is logically
distributed across all the Blocks in the
Cluster.

Ø DSMEM enables more efficient data
exchange between SMs, where data no
longer needs to be written to and read from
global memory to pass the data.

Ø The dedicated SM-to-SM network for
Clusters ensures fast, low latency access to
remote DSMEM.

Ø Compared to using global memory, DSMEM
accelerates data exchange between Thread
Blocks by about 7x.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Warp Execution
Ø A thread block is mapped to an SM and executed in warps
Ø The number of warps for a thread block can be determined

as ThreadsPerBlock/32
Ø If thread block size is not an even multiple of warp size,

some threads in the last warp are left inactive
Ø GPUs have very simple branch prediction mechanisms →

conditionals are problematic as they cause warp divergence,
i.e. threads in the same warp executing different instructions

Ø If threads of a warp diverge, the warp serially executes each
branch path, disabling threads that do not take that path

Ø Warp divergence can cause significantly degraded
performance (up to 1/32)

Ø Branch divergence occurs only within a warp. Different
conditional values in different warps do not cause warp
divergence.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Warp Scheduling: Resource Limitations

Ø The number of warps allocated to an SM depends on the
resources it requires and affects performance significantly

Ø The local execution context of a warp mainly consists of
program counters, registers and shared memory

Ø The execution context of each warp maintained on-SM during
its lifetime of the warp → warp context switch has no cost.

Ø Each SM has a fixed number of of 32-bit registers (256KB on
H100) and of shared memory (up to 228KB on H100) to be
shared among threads

Ø The number of thread blocks and warps allocated to an SM
depends on how many registers and shared memory each
thread and thread block requires

Ø These memory requirement change based the kernel code

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Warp Scheduling: Resource Limitations

Ø If a thread consumes more registers, fewer warps can be
placed on an SM (more registers per warp)

Ø If thread block consumes more shared memory, fewer
thread blocks can be processed simultaneously by an SM

Ø If there are insufficient registers or shared memory on each
SM to process at least one block, the kernel launch will fail

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Warp Scheduling

Ø An SM relies on thread-level parallelism to
maximize utilization of its functional units

Ø This works essentially as hyperthreading, but
where the equivalent of a thread is a warp

Ø Full compute resource utilization is achieved
when all warp schedulers have an eligible warp
at every clock cycle.

Ø This ensures that the latency of each
instruction can be hidden by issuing other
instructions in other resident warps.

Ø Latency hiding is particularly important in GPU
programming: GPU instruction latency is
hidden by computation from other warps (as
opposed to CPUs which are designed for
minimizing it!)While one warp is waiting (e.g., for data from memory),

the other warp can continue executing

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Control of Warp Scheduling
Ø The instruction latency can derive from either

arithmetic or memory instructions
Ø Arithmetic instruction latency varies typically

between 4 an 20 cycles
Ø Global memory instruction latency ∼500 cycles

for global memory accesses (uncached
transactions)

Ø The number of active warps required to hide
latency can be estimated with Little’s Law

#RequiredWarps = Latency ×Throughput

Ø Arithmetic operations: On H100 most single-
precision ops have a latency of 4 cycles, while
double-precision ones of 8 cycles

Ø Global memory operations: Latency ∼ 500
cycles

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Control of Warp Scheduling

Ø Example 1: Hide latency of single-
precision FMA to maintain full
arithmetic utilization

Ø V100 architecture considerations:

Ø Each SM can have 4 Selected
Warps/cycle, and maximum 64
Active Warps

Ø Latency of single-precision FMA
is 4 cycles

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Control of Warp Scheduling

Ø Example 1: Hide 4-cycle latency of single-
precision (FP32) FMA to maintain full
arithmetic utilization

Ø V100 architecture considerations:
Ø Each SM can have 4 Selected

Warps/cycle, and maximum 64
Active Warps

Ø Latency of single-precision FMA is
4 cycles

Ø Throughput goal: 4 Selected Warps → 32 ×4
= 128 FMA/cycle (per SM)

Ø Latency is 4 cycles, Parallelism required is
128 ∗4 = 512 FP32 ops per cycle

Ø Number of Required Active Warps =

#OpsPerWarp 32
#OpsPerCycle = 512 = 16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Control of Warp Scheduling

Ø Example 2: Hide global memory transaction
latency to maintain peak bandwidth
utilization

Ø V100 architecture considerations:
Ø Global memory bandwidth ∼ 800GB/s

Latency of global memory transactions
Ø ∼ 500 cycles
Ø HBM2 clock rate is 867 MHz

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Latency Hiding Through Control of Warp Scheduling
Ø Example 2: Hide global memory transaction latency to

maintain peak bandwidth utilization
Ø V100 architecture considerations:

Ø Global memory bandwidth ∼ 800GB/s Latency of
global memory transactions

Ø ∼ 500 cycles
Ø HBM2 clock rate is 867 MHz
Ø Bandwidth per cycle =

800 GB/s = 923 B/cycle (full GPU)
867 Mhz

Ø Required memory transaction volume = Bandwidth per
cycle × Latency = 456.5 KB

Ø Transferring one float (4 Bytes) per GPU thread →
114,125 threads -> 114,125threads ≈ 3566 warps

32 threads/warp
Ø 3566 warp = 43 warp/SM → at least 43

84 SM
 active Warps to hide the latency

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Can One Hide Latency? Beware Resource Limitations!

Ø Example 1, requires 16 Active Warps to
hide the arithmetic latency.

Ø What are the register and shared memory
limits per SM for this to be achievable?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Can One Hide Latency? Beware Resource Limitations!

Ø In Example 1, one requires 16 Active Warps to
hide arithmetic latency.

Ø What are the register and shared memory
limits per SM in order for this to be
achievable?

Ø V100 architecture considerations:
Ø Register File Size/SM = 256 KB Shared

Memory Size/SM = 64 KB (96 KB
configurable)

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Can One Hide Latency? Beware Resource Limitations!
Ø In Example 1, one requires 16 Active Warps to

hide arithmetic latency.
Ø What are the register and shared memory limits

per SM in order for this to be achievable?
Ø V100 architecture considerations:

Ø Register File Size/SM = 256 KB of 32-bit
registers

Ø Shared Memory Size/SM = 64 KB
Ø (96 KB configurable)

Ø 16 warps ×32 thread = 512 threads
256KB/SM = 64,000 registers/SM
64,000 registers/SM = 125 registers/thread
32 bit/register

512 threads

Ø If your kernel requires >125 registers/thread it
cannot hide the arithmetic latency!

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Can One Hide Latency? Beware Resource Limitations!

Ø Example 1 requires 16 Active Warps to hide
arithmetic latency.

Ø What are the register and shared memory
limits per SM in order for this to be
achievable?

Ø V100 architecture considerations:
Ø Register File Size/SM = 256 KB of 32-bit

registers
Ø Shared Memory Size / SM = 64 KB
Ø (96 KB configurable)

Ø What about Shared Memory?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Can One Hide Latency? Beware Resource Limitations!

Ø What about Shared Memory?
Ø This depends on the thread block size and

the amount of shared memory requested per
thread block

Ø For example, thread block size = 128 and 64 KB
of shared memory per block, can we hide the
arithmetic latency?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Occupancy

Ø You want to have sufficient warps to hide
instruction latencies

Ø Occupancy = ActiveWarps / MaximumWarps
Ø It is a number 0 < Occupancy ≤ 1
Ø The higher the achieved occupancy the higher

the chance your code will hide instruction
latency

Ø This is just a rule of thumb. Can you achieve high
performance with Occupancy < 1?

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Guidelines for Grid and Block Sizes
Ø Small thread blocks: Too few threads per block leads to hardware limitations on the number of warps per SM

to be reached before all resources are fully utilized.

Ø Large thread blocks: Too many threads per block leads to fewer per-SM hardware resources available to
each thread

Ø In general, you should conduct experiments to discover the best execution configuration and resource
usage. Some rules of thumb:

Ø Keep the number of threads per block a multiple of warp size (32)
Ø Avoid small block sizes: Start with at least 128 or 256 threads per block.
Ø Adjust block size up or down according to kernel resource requirements.
Ø Keep the number of blocks much greater than the number of SMs to expose sufficient parallelism to

your device
Ø Ask the compiler to print the number of registers using the flag --ptxas-options=-v. In case

occupancy is register-limited try to optimize the number of registers per thread through the nvcc flag –
maxrregcount=NUM.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Synchronization

In CUDA, synchronization can be performed at two levels:
Ø System-level: Wait for all work on both the host and the device to complete.
Ø Block-level: Wait for all threads in a thread block to reach the same point in execution on the device.
Ø cudaError_t cudaDeviceSynchronize(void) can be used to block the host application until all

CUDA operations (copies, kernels, and so on) have completed
Ø __device__ void __syncthreads(void) can be used to synchronize all theads within a

block:
Ø Each thread in the same thread block must wait until all other threads in that thread block have

reached this synchronization point
Ø All global and shared memory accesses made by all threads prior to this barrier will
Ø be visible to all other threads in the thread block after the barrier

Ø There is no thread synchronization among different blocks.
Ø GPUs can execute blocks in any order. This enables CUDA programs to be scalable across massively

parallel GPUs.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Elapsed Time
Matrix dimensions nx = ny = 16,384
dim3 block(dimx, dimy);
dim3 grid((nx + block.x - 1) /
block.x, (ny + block.y - 1) /
block.y);

Ø Performance on an NVIDIA Tesla M2070
(Fermi):
Ø Grid(xGDim, yGDim), Block(xBDim,

yBDim) → elapsed time
1. (512,512), (32,32) → 60 ms
2. (512,1024), (32,16) → 38 ms
3. (1024,512), (16,32) → 51 ms
4. (1024,1024),(16,16) → 46 ms

Ø You can measure achieved warp occupancy by
running
Ø ncu –metrics achieved_
occupancy

 <application>

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Achieved Occupancy
Ø Grid(xGDim, yGDim), Block(xBDim,

yBDim) → elapsed time
1. (512,512), (32,32) → 60 ms
2. (512,1024), (32,16) → 38 ms
3. (1024,512), (16,32) → 51 ms
4. (1024,1024),(16,16) → 46 ms

Ø Achieved Occupancy
1. (512,512), (32,32) → 0.50
2. (512,1024), (32,16) → 0.74
3. (1024,512), (16,32) → 0.77
4. (1024,1024),(16,16) → 0.81__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int

NX, int NY) {
 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Timings Versus Occupancy
Ø Elapsed time

1. (512,512), (32,32) → 60 ms
2. (512,1024), (32,16) → 38 ms
3. (1024,512), (16,32) → 51 ms
4. (1024,1024),(16,16) → 46 ms

Ø Achieved Occupancy
1. (512,512), (32,32) → 0.50
2. (512,1024), (32,16) → 0.74
3. (1024,512), (16,32) → 0.77
4. (1024,1024),(16,16) → 0.81

Ø Configuration “2” has more blocks than “1”,
this exposes more active warps to the device.
This is likely why “2” has higher achieved
occupancy and better performance than “1”.

Ø Configuration “4” has the highest achieved
occupancy, but it is not the fastest!

Ø Higher occupancy /= higher performance.
There must be other factors that restrict
performance.

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Memory Operations
Ø The kernel performs two memory loads,

one memory store, one FLOP per thread.
Ø You can measure the global load

throughput using
Ø ncu --metrics gld_

throughput <application>
1. (512,512), (32,32) → 35.908GB/s
2. (512,1024), (32,16) → 56.478GB/s
3. (1024,512), (16,32) → 85.195GB/s
4. (1024,1024),(16,16) → 94.708GB/s

Ø higher load throughput does not
guarantee higher performance!

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Memory Operations
Ø Global load throughput

1. (512,512), (32,32) → 35.908GB/s
2. (512,1024), (32,16) → 56.478GB/s
3. (1024,512), (16,32) → 85.195GB/s
4. (1024,1024),(16,16) → 94.708GB/s

Ø The global load efficiency is the ratio of
requested global load throughput to required
global load throughput.

Ø You can measure it using
ncu --metrics gld_efficienct
<application>

1. (512,512), (32,32) → 100 %
2. (512,1024), (32,16) → 100 %
3. (1024,512), (16,32) → 49.96 %
4. (1024,1024),(16,16) → 49.80 %

Ø This explains why the higher load throughput
and achieved occupancy of the last two cases
did not yield improved performance.

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2D Matrix Addition: Memory Operations
Ø Global load throughput

1. (512,512), (32,32) → 35.908GB/s
2. (512,1024), (32,16) → 56.478GB/s
3. (1024,512), (16,32) → 85.195GB/s
4. (1024,1024),(16,16) → 94.708GB/s

Ø Global load efficiency
1. (512,512), (32,32) → 100 %
2. (512,1024), (32,16) → 100 %
3. (1024,512), (16,32) → 49.96 %
4. (1024,1024),(16,16) → 49.80 %

Ø The common feature for the last two
cases is that their block size in the
innermost dimension is half of a warp

Ø For grid and block heuristics, the
innermost dimension should always be a
multiple of the warp size

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int
NX, int NY) {

 unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
 unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int idx = iy * NX + ix;

 if (ix < NX && iy < NY) {
 C[idx] = A[idx] + B[idx];

 }
}

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

32

DEMO

2D Matrix Addition:
Memory Operations

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

33

GPU (A100) Memory Hierarchy

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

34

CUDA Program

