COMP4300 - Course Update

» Final Exam
» Wednesday 11/06/2025 at 2:00pm at Copland G31 (Building 24)

» The exam will cover all materials presented in the course e.g. in
labs, lectures and assignments etc

» Course/lecture notes permitted.

» Assignment 2
» Released on 24 April
» Due 26/05/2025, 11:55PM
» Start early e.g. now




GPU Memory Model
& Management




SM-0 SM-1 SM-(N-1)

. T |--- “The NVIDIA CUDA compiler does a good
o | Koy o usen | n@nao | job in optimizing memory resources, but

an expert CUDA developer can choose to

use this memory hierarchy efficiently to

L2 Cache (40 MB in A100)

optimize the CUDA programs as needed.”

Global Memory (DRAM, 40 GB in A100)

The following memories are exposed by the GPU architecture:

>

>

Registers—These are private to each thread, which means that registers assigned to a thread are not visible to other threads. The compiler
makes decisions about register utilization.

L1/Shared memory (SMEM)—Every SM has a fast, on-chip scratchpad memory that can be used as L1 cache and shared memory. All
threads in a CUDA block can access shared memory, and all CUDA blocks running on a given SM can share the physical memory resource
provided by the SM.

Read-only memory—Each SM has an instruction cache, constant memory, texture memory and RO cache, which is read-only to kernel
code.

L2 cache—The L2 cache is shared across all SMs, so every thread in every CUDA block can access this memory. The NVIDIA A100 GPU has
increased the L2 cache size to 40 MB as compared to 6 MB in V100 GPUs.

Global memory—This is the framebuffer size of the GPU and DRAM sitting in the GPU.
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GPU - High Throughput Processor Computation Thread

Processing

Waiting for data

CPU core — Low Latency Processor

A JE B BN BN B

' Ready to be processed

» CPU architectures must minimize latency within each thread.
» On CPUs, every thread minimizes the data access time (white bars). During a single time slice, thread
gets work done as much as possible (green bar).
» To achieve this, CPUs require low latency, which requires large caches and complex control logic.
» Caches work best with only a few threads per core, as context switching between threads is expensive.

» GPU architecture hides instruction and memory latency with computation. In GPUs, threads are lightweight,
so a GPU can switch from stalled threads to other threads at no cost as often as every clock cycle.
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The GPU Memory Hierarchy

Speed
fastest

slowest Y

) Size
Registers | smallest
Caches
Main Memory
Disk Memory
Y biggest

Unified L2 Cache [ 6144 KB ]
64 B Cache Line TLBs
16-way set-associative

L1 Shared Memory g L1
Data Cache [upto 96 KB] g Instruction Cache

128 KB

*—HBM 1029

RG3

12 KB

°—L2 193——
°—L1 Data 28—
—Shared 19—

La tency (in cycles)

60

3
TTTTTEoAl T

6060

Typical memory hierarchy of progressively lower-latency but
lower-capacity memories to optimize performance

Main memory on modern GPUs is made of High-Bandwidth
Memory (HBM, better BW than DDR)

V100 has a 16-32 GB of HBM with a BW of 900 GB/s, latency
up to 1029 cycles

Unified L2 Cache, on V100 6 MB, with BW of 900 GB/s, latency
193 cycles

Two types lower-level caches & L1 and Shared Memory
V100 has 64 KB of L1 per SM with hit latency of 28 cycles

V100 has 64 KB of Shared Memory per SM with a peak hit
latency (no-conflict) of 19 cycles, and BW of 14.8 TB/s

Each SM has a 256 KB register file
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The GPU Memory Model

YV VvV

While L1 and L2 cache remain non-programmable,
the CUDA memory model exposes many additional
types of programmable memory:

» Registers, shared memory, local memory,
constant memory, texture memory and global
memory.

Each memory type has a different scope, lifetime,
and caching behavior

A thread in a kernel has its own private local
memory

A thread block has its own shared memory, visible to
all threads in the same thread block

All threads can access global memory

The constant and texture memory spaces are read-
only

_
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The GPU Memory Model

> Registers
fastest memory space

Automatic variable declared in a kernel is

generally stored in a register

Register variables are thread-private

On V100 one thread can use maximum 255 registers
If a kernel uses more registers than this limit the
excess registers will spill over to local memory,
significantly impinging on performance

VVV VYV

» Local Memory

» Stores all thread-private variables that cannot fit
into the register space Local arrays with indices
whose values cannot be determined at compile-time

» Warning: values spilled to local memory reside in the
same physical location as global memory!

_
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The GPU Memory Model

» Shared Memory (ShM)

(Device) Grid

Block (0, 0)

Host

>

>

>

>

Stores variables decorated with the __shared
attribute
High-bandwidth and lower-latency memory

(basically a programmable cache)
Threads within same block can cooperate by sharing

data stored in shared memory
Access to shared memory must be synchronized using
-syncthreads ()

» Constant Memory

>

Stores variables decorated with the

—constant- attribute

>

>

Resides in device memory and is cached in a
dedicated, per-SM constant cache.

It is read-only, must be statically declared and must
initialized by the host using
cudaMemcpyToSymbol

Good for constants because of the dedicated caching

~
—/
N
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Summary of Memory Type Mappings and Features

QUALIFIER VARIABLE NAME MEMORY SCOPE LIFESPAN
float var Register Thread Thread
float Local Thread Thread
var [100]

__shared float vart Shared Block Block

__device__ float vart Global Global Application

__constant__ float vart Constant Global Application

t Can be either scalar variable or array variable

MEMORY ON/OFF CHIP CACHED ACCESS SCOPE LIFETIME

Register On n/a R/W 1 thread Thread

Local Off i R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off 7 R/W All threads + host Host allocation

Constant  Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

1 Cached only on devices of compute capability 2.x
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The GPU Memory Model

Global Memory

Largest, highest-latency memory

Global memory variables can be declared
statically, using  device  Declared
dynamically using cudaMalloc and released
using cudaFree

Danger of data hazards when multiple threads
access it, as for CPUs except that threads
cannot sync across blocks!

Optimizing global memory access on GPU
device is crucial for performance (see later
slides!)

10
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CUDA Memory
Management




Host < Device Data Transfers

CPU |1

PCle
8 GB/s

» CPU Memory

GPU

12

GDDR5
144 GB/s

»  GPU Memory

Once global memory is allocated
(cudaMalloc), you can transfer data between

host and device using cudaMemcpy

Due to the low relative bandwidth of the
CPU~GPU interconnect, host«device transfers
can throttle overall application performance
Nvlink provides higher performance

What actually happens when we call
cudaMemcpy?

)

@



Host < Device Data Transfers

CPU «— > CPU Memory

PCle
8 GB/s

GPU «—— > GPU Memory

Pageable Data Transfer

GDDR5
144 GB/s

Pinned Data Transfer

Device

DRAM

Device

DRAM

Host

Pageable Pinned
Memory Memory

Host

Pinned
Memory
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What actually happens when we call cudaMemcpy?

The allocated host memory (Malloc) is by default pageable,
that is, subject to page fault operations that move data in
host virtual memory to different physical locations as
directed by the operating system.

The GPU cannot safely access data in pageable memory

In a transfer: -

» The CUDA driver allocates temporary pinned (page-
locked) host memory

» Copies the source host data to pinned memory

» Transfers the data from pinned memory to device
memory



Host < Device Data Transfers

CPU «— > CPU Memory

» |n a transfer

e » The CUDA driver allocates temporary pinned (page-
8 GB/s locked) host memory

» Copies the source host data to pinned memory

G > GPUMemoy » Transfers the data from pinned memory to device
144 GB/s memory
Pageable Data Transfer Pinned Data Transfer > YOU can aVOId the eXtra Copy (and ImprOVG bOth |atency
perce petice and bandwidth) by directly allocating host-pinned memory
DRAM DRAM using cudaError t cudaMallocHost (void**hPtr,

size t count)

» Pinned host memory must be freed with
cudaError t cudaFreeHost (void *ptr)

Pinned
Memory
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Pageable Pinned
Memory Memory
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Global Memory Access Patterns

SM0 SM1
‘ Registers I ‘ Registers I
i ' ' ' ' ' ' '
SMEM L1 Read Constant SMEM L1 Read Constant
Only Only
memory address 128 160 192 224 256

2222222222222222222222222222222
(ITTTTT [TTTTTTTTTTTTTTT] |

thread ID 0 31
aligned and coalesced load

memory address 128 160 192 224 256

I 22 24222422222222220222 29 2 2 s
CLIITTTTTTITIITIIT T TIITIITI7T7d

thread ID 0 31

misaligned and uncoalesced load

>

Kernel memory requests issued per warp and
are served between the device memory and SM
on-chip memory using either 128-byte or 32-
byte transactions

All accesses to global memory go through the
L2 cache.

Accesses also pass through the L1 cache,
depending on the type of access and your
GPU'’s architecture

On devices of compute capability 6.0 or
higher, L1-caching is the default

L1 cache lines have a size of 128 bytes, and it
maps to four 32-byte aligned segments in device
memory

If each thread in a warp requests one4-byte value,
that results in 128 bytes of data per request

15
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Global Memory Access Patterns

SMO SM1
Registers Registers
| || I

R T 1 1 1 » L1 cache lines have a size of 128 bytes, and it maps to four
Sl (I (o (Rl I Bl R (ol (i 32-byte aligned segments in device memory

» If each thread in a warp requests one 4-byte value, that results
in 128 bytes of data per request
» There are two types of device memory accesses

» Aligned memory accesses: The first address of a device
memory adress 128 160 192 224 256 memory transaction is a multiple of 32 bytes

_ » Coalesced memory accesses: All 32 threads in a warp

P access a contiguous chunk of memory

(LT , :
thread ID 0 3 \ » Aligned coalesced memory accesses are ideal
ligned and | d load . . . .
alneciand cosleseed oa > Misaligned and/or uncoalesced memory transactions will
memory address 128 160 192 224 256 cause a loss of bandwidth efficiency!

I 22 24222422222222220222 29 2 2 s
CLIITTTTTTITIITIIT T TIITIITI7T7d

thread ID 0 31
misaligned and uncoalesced load

16
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Global Memory Access Patterns: Cached Loads

SMO SM1
Registers Registers
| || I

SMEM L1 Read Constant SMEM L1 Read Constant

memory address 128 160 192 224 256

2222222222222222222222222222222

(LITTTTT [TITTTITTITTTITT] |

thread ID 0 31
aligned and coalesced load

memory address 128 160 192 224 256

I 22 24222422222222220222 29 2 2 s
CLIITTTTTTITIITIIT T TIITIITI7T7d

thread ID 0 31
misaligned and uncoalesced load

Y VYV

On modern GPUs all loads go through L1-cache (cached loads)

Even if an L1 cache line size is 128 bytes, the memory
transaction from global memory to cache are performed at a
granularity of 32-byte segments

In aligned and coalesced loads a warp accesses 32 consecutive
words (e.g. 4 byte words) with the starting address in global
memory being a multiple of 32 bytes

This will be performed using 4 parallel 32-byte memory
transactions - cache-global-memory bus utilization
(efficiency) will be 100 %.

The cache controller will assemble the 4 blocks of data into a
single cache line

Subsequent accesses to the same cache line can be satisfied
with a single cache read transaction

17
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Global Memory Access Patterns: Cached Loads

addresses fromawarp ||| ||| ||/ [ [

YV VY vy

0 32 64 96 128 160 192 224 256 288 320 352

addresses fromawarp | || ||| ||| [ ]

P SN

32 64 96 128 160 192 224 256 288 320 352

o

addresses fromawarp | ||| | ]

‘,,1::225225:;” p—

0 32 64 96 128 160 192 224 256 288 320 352

addresses fromawarp | ||| ||| ||| /|| [/ [[[]]]

\\:§£§&e—‘______s====——

32 64 96 128 160 192 224 256 288 320 352

o

addresses fromawarp | ||| ||| || [ [[[[[]]]

‘l
?

o

32 64 96 128 160 192 224 256 288 320 352

If memory access is aligned and thread accesses are not
sequential, but randomized within a 128-byte range -
load efficiency 100%

If sequential threads in a warp access memory that is
sequential but not aligned with a 32-byte segment, five 32-
byte segments will be requested = load efficiency 80%

If all threads in the warp request the same data -
efficiency 4 bytes requested / 32 bytes loaded = 12.5%

If warp requests 32 4-byte words scattered across global
memory - efficiency 128 bytes requested / 1024 bytes
loaded = 12.5%
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Global Memory Access Patterns: Stores

addresses fromawarp || ||| ||| ||| {11111}

YV VY vy

0 32 64 96 128 160 192 224 256 288 320 352

addresses fromawarp | || ||| ||| [ ]

P SN

32 64 96 128 160 192 224 256 288 320 352

o

addresses fromawarp | ||| | ]

4”1::222225:;// pr—

0 32 64 96 128 160 192 224 256 288 320 352

addresses fromawarp | ||| ||| ||| /|| [/ [[[]]]

*\<:§;§ik—‘______‘=====__

32 64 96 128 160 192 224 256 288 320 352

o

addresses fromawarp | ||| ||| || [ [[[[[]]]

‘l
?

o

32 64 96 128 160 192 224 256 288 320 352

Before the Volta architecture stores were not L1-cached,
they were only cached in the L2 cache before being sent to
device memory

Since Volta stores are cached but the L1 cache is write-
through. In the context of an L1 cache, a “write-through”
policy means that when data is written to the L1 cache, it is
also immediately written to the next level of cache - L2

They are also performed at a 32-byte segment granularity
Store efficiency considerations are analogous to reads
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Memory Performance Tuning

20

There are two goals to strive for when optimizing device memory bandwidth utilization:

» Aligned and coalesced memory accesses that reduce wasted bandwidth
» Sufficient concurrent memory operations to hide memory latency

Maximization of concurrent memory accesses is also necessary and achievable by:

» Increasing the number of independent memory operations performed within each thread.

» Experimenting with the execution configuration of a kernel launch to expose sufficient parallelism
to each SM.

Unrolling loops that contain memory operations adds more independent, memory operations to the pipeline.

» You can unroll loops by using #pragma unroll X
» By default, the compiler unrolls small loops with a known trip count

If you use the —03 flag the compiler will attempt loop unrolling more aggressively.
The impact of loop unrolling on GPU code performance is very large

» arrayReadKernel <<< 32768, 512 >>> - 0.001825s
» arrayReadKernelUnroll4d <<< 32768, 512 >>> - 0.000599 s
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Shared Memory (ShiVi}

» Because it is on-chip, shared memory is much faster

M than local and global memory.

» In fact, shared memory latency is roughly 100x lower
than uncached global memory latency, provided that
there are no bank conflicts between the threads.

» Shared memory is allocated per thread block, so all
threads in the block have access to the same shared
memory.

» Threads can access data in shared memory loaded from
global memory by other threads within the same thread
block.

» This capability (combined with thread synchronization)
has a number of uses, such as user-managed data
caches, high-performance cooperative parallel
algorithms (parallel reductions, for example), and
to facilitate global memory coalescing in cases where it

SMEM L1 Read Constant
Only

would otherwise not be possible.
—

21
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Shared Memory (ShiVi}

» Shared memory is smaller, low-latency on-chip memory
M that offers much higher bandwidth than global memory

» On V100, each SM has by default 64 KB of ShiM,
configurable at compile time for up to 96 KB/SM

SMEM L1 Read Constant ) )
Only » Shared memory latency is roughly 20 to 30 times lower
than global memory, and bandwidth is nearly 10 times
higher.

» You can think of it as a program-managed cache,
partitioned among all SM-resident thread blocks

» lItis generally useful as:

» An intra-block thread communication channel

» A program-managed cache for global memory data (you
have control over eviction)

» Scratch pad memory for transforming data to improve
global memory access patterns

N
=
V‘~\I

22
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Allocating Shared Memory

SM

SMEM

L1

Read
Only

Constant

>

Shared memory variables are declared with the
shared qualifier and can be either statically or

dynamically allocated

Static declaration

>
>

>

__shared float tile[size y][size X];
Declared inside a kernel function, the variable
scope is local to that kernel.

Declared outside of any kernels in a file, the
variable scope is global to all kernels.

Dynamic declaration

>
>

extern shared float tilel];

The size of this array is unknown at compile-

time — need to dynamically allocate shared

memory at each kernel invocation

kernel<<<grid, block, isize *
sizeof (float)>>>(...)

You can only declare 1D arrays dynamically.

23
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Shared Memory Banks: Access Mode and Bank Conflicts

With 4-Bytes data

Byte-address: 0 4 8 12 16 20 24 28 32 38 40 44

120 124 128

[o]1J23fafsJe[7[]s8fof10]

[30]31]

128 132 136 140 144 148

248 252 256

[s2]a3] [ [ T [ T T [ [ ] -

256 260 264

384

LT T T T T T T T T T

Bank-0 Bank-1

0 T1 T2 T3 T4 T5 T6 T7 T8 T9 TI10

Byte-address: 0 4 8 12
v v v

LT ]
W_I
Bank-31

T30 T31

12 12. 128

o ["1 23456 [7]8] 910

30 [ 31

32 | 33

Bank-0 Bank-1

0 ™1 T2 T3 T4 T5 T6 T7 T8 T9 TI10

IS

Bank-31

T30 T31

Byte-address: 0 8 12 16§ 20f 2 28] 32| 38 4 4
v v v v v v v

1 V2 [V3[a]s['6e['7]8] 910

24

Bank-31

>

>

>

Shared memory is divided into 32 equally-sized memory
modules, called banks, which can be accessed simultaneously

The addresses of shared memory are mapped to the 32 banks.

Bank indices:
= (4B word index) % 32

= ((1B word index)/ 4) % 32
= 8B word spans two successive banks

» When multiple addresses requested fall into the same bank, a
bank conflict occurs, causing the request to be replayed

> Bank conflict: 2 or more threads access within different 4B
words in the same bank Think: 2 or more threads access

different “rows” in the same bank

The hardware splits a request with a bank conflict into as
many separate conflict-free transactions as necessary,
decreasing the effective bandwidth by a factor equal to the
number of separate memory transactions required
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Shared Memory Banks:

With 4-Bytes data

Byte-address: 0 4 8 12 16 20 24 28 32 38 40 44

120 124 128

[ofaf2fsfa]s]e|7]8fofu]

[30]31]

128 132 136 140 144 148

248 252 256

[s2]a3] [ [ T [ T T [ [ ] -

LT 1

256 260 264

384

Bank-0 Bank-1

1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Byte-address: 0 4 8| 12| 16| 20| 2 28] 32f 38 & 44
v . v v V. v v

Bank-31

T30 T31

o ["1 23456 [7]8] 910 30 [ 31
32 [ 33
Bank-0 Bank-1 Bank-31
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T30 T-31

Byte-address: 0 8| 12| 16] 20| 2 28] 32| 38| 4 44
1 [Y2 [Y3 "4 |'s ['6e ['7]'8]9 [0

Bank-31

Access Mode and Bank Conflicts

> Bank conflict: 2 or more threads access within
different 4B words in the same bank Think: 2 or more
threads access different “rows” in the same bank

» N-way bank conflict: N threads in a warp conflict.
Worst case: 32-way conflict = 31 replays

» No bank conflict if:

» Several threads access the same 4-byte word
» Several threads access different bytes of the same 4-

byte word

25
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Access Mode and Bank Conflicts

Shared Memory Banks

> Bank conflict: 2 or more threads access within

different 4B words in the same bank Think: 2 or more

threads access different “rows” in the same bank

» N-way bank conflict: N threads in a warp conflict.

Worst case: 32-way conflict = 31 replays

» No bank conflict if:
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Several threads access different bytes of the same 4-
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Access Mode and Bank Conflicts

Shared Memory Banks

There are three typical shared memory access modes

Parallel access: multiple addresses accessed by a warp that fall into

multiple banks.

» Optimally, a conflict-free shared memory parallel access is

performed when every address maps to a separate bank (top 2
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S 2=

Ve Jueg

£2 jueg

Zc ojueg

Le yueg

0Z >ueg

61 >ueg

8l >ueg

Zl2ned

9l jueg

Si>jues

V1 >ueg

ELUEE

Cl ueg

L1 yueg

0l >jueg

6>jueg

optimal parallel access pattern

g jueg

£>jueg

9 >ueg

g djueg

¥ >jueg

€ djueg

Z dueg

L dueg

0>jueg

cases on LHS). In this case all addresses are serviced in a single

memory transaction.

Serial access (worst pattern): When multiple addresses fall into the

same bank, the request must be serialized.

If all 32 threads in a warp access different memory locations
in a single bank, 32 memory transactions will be required!

L€ peaiyL
0€ peauyy
62 peaiyy
82 pealyy
Lz peaiyL
9z pesuyL
Sz pealyy
vz peaiyy
€z pealyy
zz peauyL
Lz peaiyL
0z peauyy
61 peauyy
81 pealy)
L1 peaIyL
91 peasyy
SL peaiyy
1 peaiyy
€1 peauyy
ZL peaiyy
Ll peaiyl
oL peauyy
6 peaiyy
g peaiyL
£ peaiyL
9 peaiyy
G peaiyL
¥ peaiyy
€ peaiyl
Z peaiyL
L peaiyL
0 pea.yL

LE ueg

(o =

6¢>ueg

8¢ >ueg

Lg>ueg

9c>jueg

SZzelleH

vz >ueg

£c>ueg

¢cued

Lg>ueg

0z jueg

61 >ueg

8l >ueg

Ll >ueg

91 ueg

Sl >ueg

V1 >ueg

€l dueg

Zl>ueg

L1 3ueg

0l dueg

6>jueg

g>jueg

£>\ueg

9>jueg

g ojueg

¥ >jueg

€ dueg

Z>jueg

L Jueg

X 2oetsN /7L X IS XX Zocoew s K

0>jueg

>

irregular but conflict-free access pattern

Broadcast access: All threads in a warp read the same address within

a single bank.

» One memory transaction is executed, and the accessed word

is broadcast to all requesting threads. Bandwidth utilization is

low because only a small number of bytes are read.

LE peauyy
0€ peaiyL
62 peaiyL
8Z peaiyL
Lz peaiyL
9z peaiyy
Sz peaiyy
¥ peaiyl
€2 peaiyL
zz peaiyL
Lz peaiyL
0z peaiyL
61 peaiyl
81 peaiyL
L1 peayy
91 peaiyl
SL peaiyy
1 peaiyl
€1 peaiyl
zL peaiyL
LL peayy
0L peaiyy
6 peaiyL
8 peaiyL
£ peaiyy
9 peaiyL
g peaiyL
¥ peaiyL
€ peaiyl
Z peaiyL
L peaiyL
0 peaiyL

— &= & e

LE dueg

0€ >ueg

62 >ueg

8z>jues

Zezjues

9¢ Jjued

Seuey

e Jued

£cjleg

ccelliEsg

Lg >ueg

0Z >ueg

61 >ueg

81 Aueg

L1 >ueg

91 >ueg

Sl >ueg

V1 3ueg

€1 >ueg

cl>jueg

L1 >ueg

0l >ueg

6>ueg

g djueg

£>jueg

9 3jueg

g dueg

¥ 3ueg

irregular access pattern with potential bank conflicts

€ djueg

Z djueg

L jueg

0>jueg

®
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Shared Memory Banks: Access Mode and Bank Conflicts

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T30 T-31
Byte—address: 0 16 20 24 28 32 38| 4 44 12 12 128
a5 e [7]8] 910 30 [ 31
Rank-N  Rank-1 z-way bank coanICt Rank-21
T T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T30 T31
Byte—address: 12 16 20 2 28 32 38| 4 a4 12 12. 128
2 [3 a5 ['6["7 8 ]9 ]10 30 [ 31
Bank-0 Bank-1 2.way bank conflict Bank-31
T T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T30 T31
Byte-address: 0 12 16 2 28 32 38 4 44 12 12 128
2 |34 ['s|'6[7]8[9]10 30 | 31

Bank-31

Bank-0 Bank-1

3-way bank conflict

0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T30 T31
Byte-address: 0 4 8 12 6 20 2 28 32 38| 4 44 12 12: 128
01234567 "9 J'10 30 [ 31
32 [ 33
Bank-0 Bank-1 Bank-31
No bank conflicts
T T1 T2 T3 T4 T5 T6 T7 T8 T9 TI0 T30 T31
Byte-address: 0 4 12 20 24 38) 4 44 12p 124 128
o [ 172 5 [ 6 \8 |9 |10 30 [ 31
32 [ 33 MEAY
| |4 |
A eee -
Bank-0 Bank-1 Bank-31
No bank conflicts
T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T30 T-31
Byte-address: 0 12 1] 20 28 32 38| 4 44 12 12 128
o [ 172 A s Ne[7]8 ]9 10 30 [ 31
32 [ 33 oo
A eee -
Bank-0 Bank-1 Bank-31
No bank conflicts
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Bank Conflicts: Word Size & Phases

T-0 T1 T2 T3 T4 T-5 T-15
Phase1
Byte-address: 0 4 8 12 16 20 2 28 32 38 4 44 12 124 128
Od=0 ["1=d=1 [2d=2 ["3d=3 [ 4d=g |5 1515
16=1=16 | \ =T N i N sl VN -
X \ | \ | \ » 4B or smaller words - hardware processes addresses
i v . . .
Phasez  Sarko sanks \ \ \ \ \ \ of all threads in a warp in a single phase
T-16 T-17 T-18 T-19 T-20 T-21 T-31

8-byte words, no conflict .
y > 8B words are accessed in 2 phases:

= addresses of the first 16 threads in a warp
o m I e s s = addresses of the second 16 threads in a warp

Phase1
(2 way conflict)

» Bank conflicts occur only between threads in the
Byte-address: 0 8 12 16 20 24 28 32 38 40 44 12 124 128
0 1 1 2 === 3 =3 4 =4 e 15==15 Same phase

F L+ L F L+ b= B

16 A = - - A -
AL N\ X 1 \
_— \ )
Phase2 Bark-0 Bank-1 \ Bank-31
(no conflict)
T-16 T17 T18 T-19 T-20 T-21

T-31

8-byte words, 2-way conflict

S
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Code Example: 1D Convolution with Global Memory

input{0] input[129] input[N-128] input{N+1]

' '
LIT T [ ToeeJTTTTTT]1 'es [ T T T T T T TeeeJTTTTT]

W/ Y W W

LITTTTeoe TTTTTT] 'es [ [T T T TTeeeTTTT]
t t f

output[0] output[127] output[N-128] output[N-1]

// DEVICE CODE
#define THREADS PER BLK 128

__global__ void convolve (int N, float* input,
float * output) {

int index = blockIdx .x * blockDim. x H H H H
e e oAy e L » Simple 1D convolution of input array into output
float result = 0.0f; // thread -local variable
for (int 1i=0; 1i<3; 1i++) array
result += input [index + 1i]; .
output [ index ] = rosalt / 3. £; » Both input and output are global memory arrays

}

» Each thread computes result for one element out
int N = 1024 * 1024; the Output array

// allocate arrays in device memory

cudaMalloc (&devInput , sizeof (float) * (N+2) );

cudaMalloc (& devOutput , sizeof (float) * N);

// Initialize contents of devInput here ...

convolve <<<N/ THREADS PER BLK , THREADS PER BLK >>>(
N, devInput , devOutput);

// HOST CODE
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Code Example: 1D Convolution with Global Memory

// DEVICE CODE

# define THREADS PER BLK 128

_global__ void convolve (int N,

, float * output ) {
// per —block ShM allocation
__shared__ float support [ THREADS PER BLK +2];
int index = block Idx .x * blockDim . x +
thread Idx . x; // thread local variable

support [ thread Idx . x] = input [ index ];

if (thread Idx . x < 2) {

support [ THREADS PER BLK + thread Idx . x] =
input [ index + THREADS PER BLK 1;

float * input

}

__syncthreads ();
float result = 0.0f; // thread - local variable
for (int 1i=0; 1<3; 1i++)

result += support [ thread Idx .x + 1];

output [ index ] = result / 3. f;

// HOST CODE

int N = 1024 * 1024;

// allocate arrays in device memory

(& devInput , sizeof (float ) * (N+2)

dev Output , sizeof ( float ) * N);

// Initialize contents of dev Input here

convolve <<<N/ THREADS PER BLK , THREADS PER BLK >>> (
N, devInput , dev Output);

cuda Malloc
); cuda Malloc (&

Y VY

input[1] | input(2] | input3] | input[4] | input[5]

<1

output[2] | output[3]

Both input and output are global memory arrays
All threads cooperatively load a block region from
global memory into the support shared memory
array

All threads in the block synchronize (
syncthreads () ) to ensure all threads have access

to updated support values

Each thread computes result for one element using
support values and writes results to output

What is the advantage compared to previous
version?

output[0] | output[1]

31
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Code Example: 1D Convolution with Global Memory

// DEVICE CODE

# define THREADS PER BLK 128

_global__ void convolve (int N,

, float * output ) {
// per —block ShM allocation
__shared__ float support [ THREADS PER BLK +2];
int index = block Idx .x * blockDim . x +
thread Idx . x; // thread local variable

support [ thread Idx . x] = input [ index ];

if (thread Idx . x < 2) {

support [ THREADS PER BLK + thread Idx . x] =
input [ index + THREADS PER BLK 1;

float * input

}

__syncthreads ();
float result = 0.0f; // thread - local variable
for (int 1i=0; 1<3; 1i++)

result += support [ thread Idx .x + 1];

output [ index ] = result / 3. f;

// HOST CODE

int N = 1024 * 1024;

// allocate arrays in device memory

(& devInput , sizeof (float ) * (N+2)

dev Output , sizeof ( float ) * N);

// Initialize contents of dev Input here

convolve <<<N/ THREADS PER BLK , THREADS PER BLK >>> (
N, devInput , dev Output);

cuda Malloc
); cuda Malloc (&

Y VY

input[1] | input(2] | input3] | input[4] | input[5]

N [N/
output[0] | output[1] | output[2] | output[3]| output[4]| output[5] output([7]

Both input and output are global memory arrays
All threads cooperatively load a block region from
global memory into the support shared memory
array

All threads in the block synchronize (
syncthreads () ) to ensure all threads have access

to updated support values

Each thread computes result for one element using
support values and writes results to output

Total of 130 load instructions from global mem
instead of 3x128 load instructions
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