
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

COMP4300 - Course Update
Ø Final Exam

Ø Wednesday 11/06/2025 at 2:00pm at Copland G31 (Building 24)
Ø The exam will cover all materials presented in the course e.g. in

labs, lectures and assignments etc
Ø Course/lecture notes permitted.

Ø Assignment 2
Ø Released on 24 April
Ø Due 26/05/2025, 11:55PM
Ø Start early e.g. now

1
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

2

GPU Memory Model
& Management

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The following memories are exposed by the GPU architecture:

Ø Registers—These are private to each thread, which means that registers assigned to a thread are not visible to other threads. The compiler
makes decisions about register utilization.

Ø L1/Shared memory (SMEM)—Every SM has a fast, on-chip scratchpad memory that can be used as L1 cache and shared memory. All
threads in a CUDA block can access shared memory, and all CUDA blocks running on a given SM can share the physical memory resource
provided by the SM.

Ø Read-only memory—Each SM has an instruction cache, constant memory, texture memory and RO cache, which is read-only to kernel
code.

Ø L2 cache—The L2 cache is shared across all SMs, so every thread in every CUDA block can access this memory. The NVIDIA A100 GPU has
increased the L2 cache size to 40 MB as compared to 6 MB in V100 GPUs.

Ø Global memory—This is the framebuffer size of the GPU and DRAM sitting in the GPU.
3

“The NVIDIA CUDA compiler does a good
job in optimizing memory resources, but
an expert CUDA developer can choose to
use this memory hierarchy efficiently to
optimize the CUDA programs as needed.”

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

4

Ø CPU architectures must minimize latency within each thread.
Ø On CPUs, every thread minimizes the data access time (white bars). During a single time slice, thread

gets work done as much as possible (green bar).
Ø To achieve this, CPUs require low latency, which requires large caches and complex control logic.
Ø Caches work best with only a few threads per core, as context switching between threads is expensive.

Ø GPU architecture hides instruction and memory latency with computation. In GPUs, threads are lightweight,
so a GPU can switch from stalled threads to other threads at no cost as often as every clock cycle.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The GPU Memory Hierarchy
Ø Typical memory hierarchy of progressively lower-latency but

lower-capacity memories to optimize performance
Ø Main memory on modern GPUs is made of High-Bandwidth

Memory (HBM, better BW than DDR)
Ø V100 has a 16-32 GB of HBM with a BW of 900 GB/s, latency

up to 1029 cycles
Ø Unified L2 Cache, on V100 6 MB, with BW of 900 GB/s, latency

193 cycles
Ø Two types lower-level caches → L1 and Shared Memory
Ø V100 has 64 KB of L1 per SM with hit latency of 28 cycles
Ø V100 has 64 KB of Shared Memory per SM with a peak hit

latency (no-conflict) of 19 cycles, and BW of 14.8 TB/s
Ø Each SM has a 256 KB register file

5
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The GPU Memory Model
Ø While L1 and L2 cache remain non-programmable,

the CUDA memory model exposes many additional
types of programmable memory:
Ø Registers, shared memory, local memory,

constant memory, texture memory and global
memory.

Ø Each memory type has a different scope, lifetime,
and caching behavior

Ø A thread in a kernel has its own private local
memory

Ø A thread block has its own shared memory, visible to
all threads in the same thread block

Ø All threads can access global memory
Ø The constant and texture memory spaces are read-

only

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The GPU Memory Model
Ø Registers

Ø fastest memory space
Ø Automatic variable declared in a kernel is

generally stored in a register
Ø Register variables are thread-private
Ø On V100 one thread can use maximum 255 registers
Ø If a kernel uses more registers than this limit the

excess registers will spill over to local memory,
significantly impinging on performance

Ø Local Memory
Ø Stores all thread-private variables that cannot fit

into the register space Local arrays with indices
whose values cannot be determined at compile-time

Ø Warning: values spilled to local memory reside in the
same physical location as global memory!

7
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The GPU Memory Model
Ø Shared Memory (ShM)

Ø Stores variables decorated with the __shared__
attribute

Ø High-bandwidth and lower-latency memory
(basically a programmable cache)

Ø Threads within same block can cooperate by sharing
data stored in shared memory

Ø Access to shared memory must be synchronized using
-syncthreads()

Ø Constant Memory
Ø Stores variables decorated with the
-constant- attribute
Ø Resides in device memory and is cached in a

dedicated, per-SM constant cache.
Ø It is read-only, must be statically declared and must

initialized by the host using
cudaMemcpyToSymbol

Ø Good for constants because of the dedicated caching

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Summary of Memory Type Mappings and Features

9
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The GPU Memory Model

Global Memory

Ø Largest, highest-latency memory
Ø Global memory variables can be declared

statically, using __device__ Declared
dynamically using cudaMalloc and released
using cudaFree

Ø Danger of data hazards when multiple threads
access it, as for CPUs except that threads
cannot sync across blocks!

Ø Optimizing global memory access on GPU
device is crucial for performance (see later
slides!)

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

11

CUDA Memory
Management

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Host ↔ Device Data Transfers

Ø Once global memory is allocated
(cudaMalloc), you can transfer data between
host and device using cudaMemcpy

Ø Due to the low relative bandwidth of the
CPU↔GPU interconnect, host↔device transfers
can throttle overall application performance

Ø Nvlink provides higher performance
Ø What actually happens when we call

cudaMemcpy?

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Host ↔ Device Data Transfers
Ø What actually happens when we call cudaMemcpy?
Ø The allocated host memory (Malloc) is by default pageable,

that is, subject to page fault operations that move data in
host virtual memory to different physical locations as
directed by the operating system.

Ø The GPU cannot safely access data in pageable memory
Ø In a transfer: -

Ø The CUDA driver allocates temporary pinned (page-
locked) host memory

Ø Copies the source host data to pinned memory
Ø Transfers the data from pinned memory to device

memory

13
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Host ↔ Device Data Transfers
Ø In a transfer

Ø The CUDA driver allocates temporary pinned (page-
locked) host memory

Ø Copies the source host data to pinned memory
Ø Transfers the data from pinned memory to device

memory
Ø You can avoid the extra copy (and improve both latency

and bandwidth) by directly allocating host-pinned memory
using cudaError_t cudaMallocHost(void**hPtr,
size t count)

Ø Pinned host memory must be freed with
 cudaError_t cudaFreeHost(void *ptr)

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Global Memory Access Patterns

aligned and coalesced load

misaligned and uncoalesced load

Ø Kernel memory requests issued per warp and
are served between the device memory and SM
on-chip memory using either 128-byte or 32-
byte transactions

Ø All accesses to global memory go through the
L2 cache.

Ø Accesses also pass through the L1 cache,
depending on the type of access and your
GPU’s architecture

Ø On devices of compute capability 6.0 or
higher, L1-caching is the default

Ø L1 cache lines have a size of 128 bytes, and it
maps to four 32-byte aligned segments in device
memory

Ø If each thread in a warp requests one4-byte value,
that results in 128 bytes of data per request

15
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Global Memory Access Patterns

aligned and coalesced load

misaligned and uncoalesced load

Ø L1 cache lines have a size of 128 bytes, and it maps to four
32-byte aligned segments in device memory

Ø If each thread in a warp requests one 4-byte value, that results
in 128 bytes of data per request

Ø There are two types of device memory accesses
Ø Aligned memory accesses: The first address of a device

memory transaction is a multiple of 32 bytes
Ø Coalesced memory accesses: All 32 threads in a warp

access a contiguous chunk of memory
Ø Aligned coalesced memory accesses are ideal
Ø Misaligned and/or uncoalesced memory transactions will

cause a loss of bandwidth efficiency!

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Global Memory Access Patterns: Cached Loads

aligned and coalesced load

misaligned and uncoalesced load

Ø On modern GPUs all loads go through L1-cache (cached loads)
Ø Even if an L1 cache line size is 128 bytes, the memory

transaction from global memory to cache are performed at a
granularity of 32-byte segments

Ø In aligned and coalesced loads a warp accesses 32 consecutive
words (e.g. 4 byte words) with the starting address in global
memory being a multiple of 32 bytes

Ø This will be performed using 4 parallel 32-byte memory
transactions → cache-global-memory bus utilization
(efficiency) will be 100 %.

Ø The cache controller will assemble the 4 blocks of data into a
single cache line

Ø Subsequent accesses to the same cache line can be satisfied
with a single cache read transaction

17
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Global Memory Access Patterns: Cached Loads

Ø If memory access is aligned and thread accesses are not
sequential, but randomized within a 128-byte range →
load efficiency 100%

Ø If sequential threads in a warp access memory that is
sequential but not aligned with a 32-byte segment, five 32-
byte segments will be requested → load efficiency 80%

Ø If all threads in the warp request the same data →
efficiency 4 bytes requested / 32 bytes loaded = 12.5%

Ø If warp requests 32 4-byte words scattered across global
memory → efficiency 128 bytes requested / 1024 bytes
loaded = 12.5%

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Global Memory Access Patterns: Stores

Ø Before the Volta architecture stores were not L1-cached,
they were only cached in the L2 cache before being sent to
device memory

Ø Since Volta stores are cached but the L1 cache is write-
through. In the context of an L1 cache, a “write-through”
policy means that when data is written to the L1 cache, it is
also immediately written to the next level of cache - L2

Ø They are also performed at a 32-byte segment granularity
Ø Store efficiency considerations are analogous to reads

19
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Memory Performance Tuning
There are two goals to strive for when optimizing device memory bandwidth utilization:
Ø Aligned and coalesced memory accesses that reduce wasted bandwidth
Ø Sufficient concurrent memory operations to hide memory latency

Maximization of concurrent memory accesses is also necessary and achievable by:
Ø Increasing the number of independent memory operations performed within each thread.
Ø Experimenting with the execution configuration of a kernel launch to expose sufficient parallelism

to each SM.

Unrolling loops that contain memory operations adds more independent, memory operations to the pipeline.
Ø You can unroll loops by using #pragma unroll X
Ø By default, the compiler unrolls small loops with a known trip count

If you use the -O3 flag the compiler will attempt loop unrolling more aggressively.
The impact of loop unrolling on GPU code performance is very large

Ø arrayReadKernel <<< 32768, 512 >>> → 0.001825 s
Ø arrayReadKernelUnroll4 <<< 32768, 512 >>> → 0.000599 s

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory (ShM)
Ø Because it is on-chip, shared memory is much faster

than local and global memory.
Ø In fact, shared memory latency is roughly 100x lower

than uncached global memory latency, provided that
there are no bank conflicts between the threads.

Ø Shared memory is allocated per thread block, so all
threads in the block have access to the same shared
memory.

Ø Threads can access data in shared memory loaded from
global memory by other threads within the same thread
block.

Ø This capability (combined with thread synchronization)
has a number of uses, such as user-managed data
caches, high-performance cooperative parallel
algorithms (parallel reductions, for example), and
to facilitate global memory coalescing in cases where it
would otherwise not be possible.

21
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory (ShM)
Ø Shared memory is smaller, low-latency on-chip memory

that offers much higher bandwidth than global memory
Ø On V100, each SM has by default 64 KB of ShM,

configurable at compile time for up to 96 KB/SM
Ø Shared memory latency is roughly 20 to 30 times lower

than global memory, and bandwidth is nearly 10 times
higher.

Ø You can think of it as a program-managed cache,
partitioned among all SM-resident thread blocks

Ø It is generally useful as:
Ø An intra-block thread communication channel
Ø A program-managed cache for global memory data (you

have control over eviction)
Ø Scratch pad memory for transforming data to improve

global memory access patterns

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Allocating Shared Memory
Ø Shared memory variables are declared with the

shared qualifier and can be either statically or
dynamically allocated

Ø Static declaration
Ø __shared__float tile[size y][size x];
Ø Declared inside a kernel function, the variable

scope is local to that kernel.
Ø Declared outside of any kernels in a file, the

variable scope is global to all kernels.
Ø Dynamic declaration

Ø extern__shared__float tile[];
Ø The size of this array is unknown at compile-

time → need to dynamically allocate shared
memory at each kernel invocation

Ø kernel<<<grid, block, isize *
 sizeof(float)>>>(...)

Ø You can only declare 1D arrays dynamically.

23
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory Banks: Access Mode and Bank Conflicts
Ø Shared memory is divided into 32 equally-sized memory

modules, called banks, which can be accessed simultaneously
Ø The addresses of shared memory are mapped to the 32 banks.

Bank indices:
§ (4B word index) % 32
§ ((1B word index) / 4) % 32
§ 8B word spans two successive banks

Ø When multiple addresses requested fall into the same bank, a
bank conflict occurs, causing the request to be replayed

Ø Bank conflict: 2 or more threads access within different 4B
words in the same bank Think: 2 or more threads access
different “rows” in the same bank

Ø The hardware splits a request with a bank conflict into as
many separate conflict-free transactions as necessary,
decreasing the effective bandwidth by a factor equal to the
number of separate memory transactions required

24

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory Banks: Access Mode and Bank Conflicts

Ø Bank conflict: 2 or more threads access within
different 4B words in the same bank Think: 2 or more
threads access different “rows” in the same bank

Ø N-way bank conflict: N threads in a warp conflict.
Worst case: 32-way conflict → 31 replays

Ø No bank conflict if:
Ø Several threads access the same 4-byte word
Ø Several threads access different bytes of the same 4-

byte word

25
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory Banks: Access Mode and Bank Conflicts

Ø Bank conflict: 2 or more threads access within
different 4B words in the same bank Think: 2 or more
threads access different “rows” in the same bank

Ø N-way bank conflict: N threads in a warp conflict.
Worst case: 32-way conflict → 31 replays

Ø No bank conflict if:
Ø Several threads access the same 4-byte word
Ø Several threads access different bytes of the same 4-

byte word

optimal parallel access pattern

irregular but conflict-free access pattern

irregular access pattern with potential bank conflicts

26

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory Banks: Access Mode and Bank Conflicts

optimal parallel access pattern

irregular but conflict-free access pattern

irregular access pattern with potential bank conflicts

There are three typical shared memory access modes

Parallel access: multiple addresses accessed by a warp that fall into
multiple banks.
Ø Optimally, a conflict-free shared memory parallel access is

performed when every address maps to a separate bank (top 2
cases on LHS). In this case all addresses are serviced in a single
memory transaction.

Serial access (worst pattern): When multiple addresses fall into the
same bank, the request must be serialized.
Ø If all 32 threads in a warp access different memory locations

in a single bank, 32 memory transactions will be required!
Broadcast access: All threads in a warp read the same address within
a single bank.
Ø One memory transaction is executed, and the accessed word

is broadcast to all requesting threads. Bandwidth utilization is
low because only a small number of bytes are read.

27
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory Banks: Access Mode and Bank Conflicts

No bank conflicts

No bank conflicts

No bank conflicts3-way bank conflict

2-way bank conflict

2-way bank conflict

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Bank Conflicts: Word Size & Phases

8-byte words, no conflict

8-byte words, 2-way conflict

Ø 4B or smaller words → hardware processes addresses
of all threads in a warp in a single phase

Ø 8B words are accessed in 2 phases:
§ addresses of the first 16 threads in a warp
§ addresses of the second 16 threads in a warp

Ø Bank conflicts occur only between threads in the
same phase

29
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Code Example: 1D Convolution with Global Memory

// DEVICE CODE
#define THREADS_PER_BLK 128
global void convolve (int N, float * input ,

float * output) {
int index = block Idx .x * block Dim .x +

thread Idx .x; // thread-local variable
float result = 0.0 f; // thread -local variable
for (int i=0; i<3; i++)
result += input [index + i];
output [index] = result / 3. f;

}

// HOST CODE
int N = 1024 * 1024;
// allocate arrays in device memory
cuda Malloc (& devInput , sizeof (float) * (N+2));
cuda Malloc (& devOutput , sizeof (float) * N);
// Initialize contents of dev Input here ...
convolve <<<N/ THREADS_PER_BLK , THREADS_PER_BLK >>>(

N, devInput , dev Output);

Ø Simple 1D convolution of input array into output
array

Ø Both input and output are global memory arrays
Ø Each thread computes result for one element out

the output array

30

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Code Example: 1D Convolution with Global Memory

support [thread Idx . x] = input [index];
if (thread Idx . x < 2) {
support [THREADS_PER_BLK + thread Idx . x] =

input [index + THREADS_PER_BLK];
}
syncthreads ();

// DEVICE CODE
define THREADS_PER_BLK 128
global void convolve (int N, float * input
, float * output) {

// per - block ShM allocation
shared float support [THREADS_PER_BLK +2];

int index = block Idx . x * block Dim . x +
thread Idx . x; // thread local variable

float result = 0.0 f; // thread - local variable
for (int i =0; i <3; i ++)
result += support [thread Idx . x + i];

output [index] = result / 3. f;

// HOST CODE
int N = 1024 * 1024;
// allocate arrays in device memory cuda Malloc
(& devInput , sizeof (float) * (N +2)); cuda Malloc (&
dev Output , sizeof (float) * N);
// Initialize contents of dev Input here ...
convolve <<<N/ THREADS_PER_BLK , THREADS_PER_BLK >>> (

N, devInput , dev Output);

Ø Both input and output are global memory arrays
Ø All threads cooperatively load a block region from

global memory into the support shared memory
array

Ø All threads in the block synchronize (
syncthreads()) to ensure all threads have access
to updated support values

Ø Each thread computes result for one element using
support values and writes results to output

Ø What is the advantage compared to previous
version?

31
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Code Example: 1D Convolution with Global Memory

support [thread Idx . x] = input [index];
if (thread Idx . x < 2) {
support [THREADS_PER_BLK + thread Idx . x] =

input [index + THREADS_PER_BLK];
}
syncthreads ();

// DEVICE CODE
define THREADS_PER_BLK 128
global void convolve (int N, float * input
, float * output) {

// per - block ShM allocation
shared float support [THREADS_PER_BLK +2];

int index = block Idx . x * block Dim . x +
thread Idx . x; // thread local variable

float result = 0.0 f; // thread - local variable
for (int i =0; i <3; i ++)
result += support [thread Idx . x + i];

output [index] = result / 3. f;

// HOST CODE
int N = 1024 * 1024;
// allocate arrays in device memory cuda Malloc
(& devInput , sizeof (float) * (N +2)); cuda Malloc (&
dev Output , sizeof (float) * N);
// Initialize contents of dev Input here ...
convolve <<<N/ THREADS_PER_BLK , THREADS_PER_BLK >>> (

N, devInput , dev Output);

Ø Both input and output are global memory arrays
Ø All threads cooperatively load a block region from

global memory into the support shared memory
array

Ø All threads in the block synchronize (
syncthreads()) to ensure all threads have access
to updated support values

Ø Each thread computes result for one element using
support values and writes results to output

Ø Total of 130 load instructions from global mem
instead of 3×128 load instructions

32

