COMP4300 - Course Update

» Final Exam
» Wednesday 11/06/2025 at 2:00pm at Copland G31 (Building 24)

» The exam will cover all materials presented in the course e.g. in
labs, lectures and assignments etc

» Course/lecture notes permitted.

» Assignment 2
» Released on 24 April
» Due 26/05/2025, 11:55PM
» Start early e.g. now

ECSAPRCMIOER D RVLZ002 AUSTRALAN UVERSITY) GREDS PRCVIER CODE. 20

SM-0 SM-1 SM-(N-1)

Registers Registers.
(256 KB per SM in A100) (256 KB per SM 1n A100)

Registers.
(256 KB per SM in A100)

“The NVIDIA CUDA compiler does a good
job in optimizing memory resources, but

L1/SNEM
(192 KB in A100)

| | an expert CUDA developer can choose to

use this memory hierarchy efficiently to
L2 Cache (40 MB in A100) I

i optimize the CUDA programs as needed.”

Global Memory (DRAM, 40 GB in A100) |

The following memories are exposed by the GPU architecture:

>

v

Registers—These are private to each thread, which means that registers assigned to a thread are not visible to other threads. The compiler
makes decisions about register utilization.

L1/Shared memory (SMEM)—Every SM has a fast, on-chip scratchpad memory that can be used as L1 cache and shared memory. All
threads in a CUDA block can access shared memory, and all CUDA blocks running on a given SM can share the physical memory resource
provided by the SM.

Read-only memory—Each SM has an instruction cache, constant memory, texture memory and RO cache, which is read-only to kernel
code.

L2 cache—The L2 cache is shared across all SMs, so every thread in every CUDA block can access this memory. The NVIDIA A100 GPU has
increased the L2 cache size to 40 MB as compared to 6 MB in V100 GPUs.

Global memory—This is the framebuffer size of the GPU and DRAM sitting in the GPU.

GPU Memory Model
& Management

CPU core — Low Latency Processor

TEOSAPACHIDERID V12002 AUSTRALAN UNVERSITY) HCOSPACVOER CODE: 01200

Computation Thread

Processing

Waiting for data

I Ready to be processed

AEEEETETETETE)

» CPU architectures must minimize latency within each thread.
» On CPUs, every thread minimizes the data access time (white bars). During a single time slice, thread
gets work done as much as possible (green bar).
» To achieve this, CPUs require low latency, which requires large caches and complex control logic.
» Caches work best with only a few threads per core, as context switching between threads is expensive.
» GPU architecture hides instruction and memory latency with computation. In GPUs, threads are lightweight,
so a GPU can switch from stalled threads to other threads at no cost as often as every clock cycle.

The GPU Memory Hierarchy

Speed Size

" %

Main Memory

smallest

biggest

slowest
L1 Shared Memory
Data Cache [upto 96 KB]
2
g
S
=
o
T

P0I0000G. B
66 S

Typical memory hierarchy of progressively lower-latency but
lower-capacity memories to optimize performance

Main memory on modern GPUs is made of High-Bandwidth
Memory (HBM, better BW than DDR)

V100 has a 16-32 GB of HBM with a BW of 900 GB/s, latency
up to 1029 cycles

Unified L2 Cache, on V100 6 MB, with BW of 900 GB/s, latency
193 cycles

Two types lower-level caches - L1 and Shared Memory
V100 has 64 KB of L1 per SM with hit latency of 28 cycles
V100 has 64 KB of Shared Memory per SM with a peak hit
latency (no-conflict) of 19 cycles, and BW of 14.8 TB/s

Each SM has a 256 KB register file

7

The GPU Memory Model

Block (0, 0)

> Registers

» fastest memory space

» Automatic variable declared in a kernel is
generally stored in a register

» Register variables are thread-private

» 0On V100 one thread can use maximum 255 registers

» If a kernel uses more registers than this limit the
excess registers will spill over to local memory,
significantly impinging on performance

» Local Memory
» Stores all thread-private variables that cannot fit
into the register space Local arrays with indices
whose values cannot be determined at compile-time
» Warning: values spilled to local memory reside in the
same physical location as global memory!

=

The GPU Memory Model

Block (0, 0)

» While L1 and L2 cache remain non-programmable,
the CUDA memory model exposes many additional
types of programmable memory:

» Registers, shared memory, local memory,
constant memory, texture memory and global
memory.

» Each memory type has a different scope, lifetime,
and caching behavior

» A thread in a kernel has its own private local
memory

» A thread block has its own shared memory, visible to
all threads in the same thread block

» Al threads can access global memory

» The constant and texture memory spaces are read-
only

The GPU Memory Model

Block (0, 0)

» Shared Memory (ShiV)

> Stores variables decorated with the __shared
attribute

» High-bandwidth and lower-latency memory
(basically a programmable cache)

» Threads within same block can cooperate by sharing
data stored in shared memory

» Access to shared memory must be synchronized using
-syncthreads ()

» Constant Memory
» Stores variables decorated with the
-constant- attribute

» Resides in device memory and is cached in a
dedicated, per-SM constant cache.

» ltis read-only, must be statically declared and must
initialized by the host using
cudaMemcpyToSymbol

» Good for constants because of the dedicated cachjng

P

=

Summary of Memory Type Mappings and Features The GPU Memory Model

QUALIFIER VARIABLE NAME MEMORY SCOPE LIFESPAN
float var Register Thread Thread
float Local Thread Thread Block (0, 0) Global Memory
var [100]
__shared float var T Shared Block Block .
__device__ float vart Global Global Application : éalgieaTt;n:ir;er;t:::;r;}gsrzz:‘EZ declared
__constant__ float vart Constant Global Application

statically, using _device Declared
dynamically using cudaMalloc and released

1 Can be either scalar variable or array variable

MEMORY ON/OFF CHIP CACHED ACCESS SCOPE LIFETIME using cudaFree

e | @ a RIW Tread Thread > Danger of dafta r(I:a;ards when n}':ultl;;le trcljreads

o] e = o py— —— access it, as for s except that threads
cannot sync across blocks!

Shared On n/a R/W All threads in block Block > Optimizing global memory access on GPU

Global Off T RW Al threads + host Host allocation device is crucial for performanoe (see later

Constant ~ Off Yes R All threads + host Host allocation SlideS!)

Texture off Yes R All threads + host Host allocation

1 Cached only on devices of compute capability 2.x

Host < Device Data Transfers

CUDA Memory
Management

» Once global memory is allocated
(cudaMalloc), you can transfer data between
host and device using cudaMemcpy

» Due to the low relative bandwidth of the
CPU—GPU interconnect, host—device transfers
can throttle overall application performance

> Nvlink provides higher performance

» What actually happens when we call
cudaMemcpy?

GDDR5
144 GB/s

@

Host <~ Device Data Transfers

o crittemey » What actually happens when we call cudaMemcpy?
» The allocated host memory (Malloc) is by default pageable,
e s that is, subject to page fault operations that move data in
host virtual memory to different physical locations as
directed by the operating system.
o gooRe. GFUMemery » The GPU cannot safely access data in pageable memory
, » In atransfer: -
D e e ot > The CUDA driver allocates temporary pinned (page-
locked) host memory
MJ 2 » Copies the source host data to pinned memory
7 » Transfers the data from pinned memory to device
memory
Host Host.
Pageable Pinned Pinned.
Memory Memory Memory
@ o

memory address 128 160 192 224 256

AaAaAAaAaA A A A2 2222222222 2240
]

thread ID 0 Ell
aligned and coalesced load

memory address 128 160 192 224 256

SN AV e
|

thread D 0 3

misaligned and uncoalesced load

Kernel memory requests issued per warp and
are served between the device memory and SM
on-chip memory using either 128-byte or 32-
byte transactions

All accesses to global memory go through the
L2 cache.

Accesses also pass through the L1 cache,
depending on the type of access and your
GPU'’s architecture

On devices of compute capability 6.0 or
higher, L1-caching is the default

L1 cache lines have a size of 128 bytes, and it
maps to four 32-byte aligned segments in device
memory

If each thread in a warp requests one4-byte value,
that results in 128 bytes of data per request

Host < Device Data Transfers

CPU j«—— > CPU Memory
» In a transfer
ocie » The CUDA driver allocates temporary pinned (page-
8Go/s locked) host memory
» Copies the source host data to pinned memory
G > GPUMemoy » Transfers the data from pinned memory to device
| reeems memory
Pageabl Data Trnsfer Fimed Dta Tnslr » You can avoid the extra copy (and improve both latency
oeie i and bandwidth) by directly allocating host-pinned memory
mJ .mJ using cudaError t cudaMallocHost (void**hPtr,
- —7 size t count)
» Pinned host memory must be freed with
ot o cudaError_t cudaFreeHost (void *ptr)

Global Memory Access Patterns

T A T » L1 cache lines have a size of 128 bytes, and it maps to four
" o 32-byte aligned segments in device memory
» If each thread in a warp requests one 4-byte value, that results
in 128 bytes of data per request
» There are two types of device memory accesses
» Aligned memory accesses: The first address of a device
memory transaction is a multiple of 32 bytes
» Coalesced memory accesses: All 32 threads in a warp
access a contiguous chunk of memory
treadiD © - \ » Aligned coalesced memory accesses are ideal
aligned and coalesoed load > Misaligned and/or uncoalesced memory transactions will
cause a loss of bandwidth efficiency!

memory address 128 160 192 224 256

AR A A AR A A 222222200

memory address 128 160 192 224 256

SN AT e
|

thread D 0 31
misaligned and uncoalesced load

Global Memory Access Patterns: Cached Loads Global Memory Access Patterns: Cached Loads

» On modern GPUs all loads go through L1-cache (cached loads)

m
mﬁ s [e F:li > Even if an L1 cache line size is 128 bytes, the memory it = > If memory access is aligned and thread accesses are not
I | - | —l transaction from global memory to cache are performed at a C L | e— | sequential, but randomized within a 128-byte range >
granularity of 32-byte segments load efficiency 100%
> Inaligned and coalesced loads a warp accesses 32 consecutive wastonen Fa— X > If sequential threads in a warp access memory that is

sequential but not aligned with a 32-byte segment, five 32-
byte segments will be requested -> load efficiency 80%

words (e.g. 4 byte words) with the starting address in global
memory being a multiple of 32 bytes

2 64 96 128 160 192 224 2% 288 320 352

addresses from a warp

memoyaddress_128 1w 2 2 el > This will be performed using 4 parallel 32-byte memory e > Ifall threads in the warp request the same data >
' - T — T T i -
transactions - cache-global-memory bus utilization I TR T e e T TR efficiency 4 bytes requested / 32 bytes loaded = 12.5%
HHHH T H (efficiency) will be 100 %. » If warp requests 32 4-byte words scattered across global
[T I [T] X X addresses from a warp . .
tesdd 0 B » The cache controller will assemble the 4 blocks of data into a ~ memory -> efficiency 128 bytes requested / 1024 bytes
aligned and coalescad load i i S) S = loaded = 12.5%
Slngle CaChe |Ine 0 32 64 9% 128 160 192 224 256 288 320 352 .
memory o128 0 72 2 = » Subsequent accesses to the same cache line can be satisfied
R R R addresses from awarp
with a single cache read transaction — —_
S A e
11 | 0 32 64 96 128 160 192 24 256 288 320 352
thread ID 0 kil
misaligned and uncoalesced load = =
e o

Global Memory Access Patterns: Stores Memory Performance Tuning

There are two goals to strive for when optimizing device memory bandwidth utilization:

» Aligned and coalesced memory accesses that reduce wasted bandwidth
addresses from a war
i Vv I » Sufficient concurrent memory operations to hide memory latency

> Before the Volta architecture stores were not L1-cached,

0 32 s 9% 128 160 192 24 2% 288 320 352

they were only cached in the L2 cache before being sent to Maximization of concurrent memory accesses is also necessary and achievable by:
addresses fromavarp. ([T device memory » Increasing the number of independent memory operations performed within each thread.
» Since Volta stores are cached but the L1 cache is write- » Experimenting with the execution configuration of a kernel launch to expose sufficient parallelism
through. In the context of an L1 cache, a “write-through” to each SM.
policy means that when data is written to the L1 cache, it is
also immediately written to the next level of cache - L2 Unrolling loops that contain memory operations adds more independent, memory operations to the pipeline.
» They are also performed at a 32-byte segment granularity » You can unroll loops by using #pragma unroll X
ssdesesfiomaver> v > Store efficiency considerations are analogous to reads » By default, the compiler unrolls small loops with a known trip count
0 32 64 9% 128 160 192 224 256 288 320 352
If you use the -03 flag the compiler will attempt loop unrolling more aggressively.
""jff'f"""‘“’ —j o The impact of loop unrolling on GPU code performance is very large
e » arrayReadKernel <<< 32768, 512 >>> ->0.001825s

» arrayReadKernelUnrolld <<< 32768, 512 >>> ->0.000599 s

Shared Memory (ShiV) Shared Memory (ShiV)

» Because it is on-chip, shared memory is much faster » Shared memory is smaller, low-latency on-chip memory
M than local and global memory. M that offers much higher bandwidth than global memory
» In fact, shared memory latency is roughly 100x lower » 0n V100, each SM has by default 64 KB of ShM,
SYEY " B S than uncached global memory latency, provided that SMEM u cend Constont configurable at compile time for up to 96 KB/SM
Only there are no ban.k conflicts between the threads. Only > Shared memory latency is roughly 20 to 30 times lower
» Shared memory is allocated per thread block, so all than global memory, and bandwidth is nearly 10 times
threads in the block have access to the same shared higher.

memory. >
» Threads can access data in shared memory loaded from
global memory by other threads within the same thread

You can think of it as a program-managed cache,
partitioned among all SM-resident thread blocks

block. » Itis generally useful as:

» This capability (combined with thread synchronization) > An intra-block thread communication channel
has a number of uses, such as user-managed data > A program-managed cache for global memory data (you
caches, high-performance cooperative parallel have control over eviction)))
algorithms (parallel reductions, for example), and > Scratch pad memory for transforming data to improve
to facilitate global memory coalescing in cases where it global memory access patterns

would otherwise not be possible.

2 2

A||ocating Shared Memory Shared Memory Banks: Access Mode and Bank Conflicts

> Shared memory variables are declared with the e » Shared memory is divided into 32 equally-sized memory
shared qualifier and can be either statically or N v s e e e e e o e s R Y modules, called banks, which can be accessed simultaneously
& dynamically allocated GEELLLLLLLL) LI 5 The addresses of shared memory are mapped to the 32 banks.
» Static declaration T I Bank indices:
SMEM L1 Read Constant » _ shared float tile[size y][size x]; - - = (4B word index) % 32
Only » Declared inside a kernel function, the variable ToTT T overse oo oo = ((1B word index) / 4) % 32
scope is local to that kernel. = 8B word spans two successive banks
> Deglared °Ut3iqe of any kemels in a file, the N EEEEEEER » When multiple addresses requested fall into the same bank, a
variable scope is global to all kernels. I;{;I :] . I . I . I . I . I . I . Iml bank conflict occurs, causing the request to be replayed
» Dynamic declaration pvened et » Bank conflict: 2 or more threads access within different 4B
» extern shared float tile[]; words in the same bank Think: 2 or more threads access
» The size of this array is unknown at compile- o T oo v ot oo oo - different “rows” in the same bank

time — need to dynamically allocate shared
memory at each kernel invocation
» kernel<<<grid, block, isize *
sizeof (float)>>>(...)
» You can only declare 1D arrays dynamically.

» The hardware splits a request with a bank conflict into as
many separate conflict-free transactions as necessary,
decreasing the effective bandwidth by a factor equal to the
number of separate memory transactions required

Shared Memory Banks: Access Mode and Bank Conflicts

With 4-Bytes data
Byte-address: 0 s 1 16 2 2 3w 3 3 s
[oTaT2sTefsTel7[s[s0]
128 12 16 10 14 s

T T T T T T T T T -
256 250 204

» Bank conflict: 2 or more threads access within
different 4B words in the same bank Think: 2 or more
threads access different “rows” in the same bank

To TI T2 T3 T4 TS T6 T7 TS T9 T

» N-way bank conflict: N threads in a warp conflict.
Worst case: 32-way conflict - 31 replays

» No bank conflict if:
» Several threads access the same 4-byte word
» Several threads access different bytes of the same 4-
byte word

To TI T2 T3 T4 TS T6 T7 TS TS TIO T30 T

Shared Memory Banks: Access Mode and Bank Conflicts

There are three typical shared memory access modes

Parallel access: multiple addresses accessed by a warp that fall into
multiple banks.
» Optimally, a conflict-free shared memory parallel access is
performed when every address maps to a separate bank (top 2
cases on LHS). In this case all addresses are serviced in a single

H memory transaction.
[Serial access (worst pattern): When multiple addresses fall into the
% %E %EE % EE :EEE E EEE 3 gl same bank, the request must be serialized.

‘egular but confictree acce » If all 32 threads in a warp access different memory locations

in a single bank, 32 memory transactions will be required!

$31133311% § "g g % 55 § § 1113 §| Broadcast access: All threads in a warp read the same address within
EEFFEFFFFFEEEEEEEEEEEE £] asingle bank.
SEREEEREEEEENEEEE N EERRRRENERERER » One memory transaction is executed, and the accessed word
‘3‘ HHHEEE R R B e D is broadcast to all requesting threads. Bandwidth utilization is

low because only a small number of bytes are read.

@
Q
£
9]
o
8
&
°
2
5
3
)
5
9
<3
@
2
o
o
o
=]
=
El
=
=X
@

Shared Memory Banks: Access Mode and Bank Conflicts

» Bank conflict: 2 or more threads access within
different 4B words in the same bank Think: 2 or more
threads access different “rows” in the same bank

3 » N-way bank conflict: N threads in a warp conflict.
j Worst case: 32-way conflict - 31 replays

S YyoyTLweone®o 2T 22R IR IRSRRRRS

1R3R3800005000000000000000000000) 5 o bank conflict i

iregular but conflict-free access pattern » Several threads access the same 4-byte word

» Several threads access different bytes of the same 4-
byte word

S| Bank

=
Q

otential bank conflicts

5 | Bank

irregular access patter

Shared Memory Banks: Access Mode and Bank Conflicts

T30 T3

TOOTI T2 T3 T4 TS T6 T7 T8 T9 Ti0 T30 T3

No bank conflicts
Istaed 2-way bank conflict 7
To L T2 T3 T4 TS T6 T TS TS Ta0
To T T2 T3 T4 TS T6 T7 T8 T9 TI0 0 T3
Byte-address: o] 4 2 0 s o w
Fid AP I sTe Tl ACH KT
AT
S N . I
[[——2 o e
ko skt 2-way bank conflict - No bank conflicts

TO TI T2 T3 T4 TS T6 T7 T8 T IO T30 131

Bank Conflicts: Word Size & Phases

T2 T3 i s

2
"

Phase1

Byteaddress: 0| 4 8] 12 16] 20 20f 28 32) 38 ad a4

[fofFo 11 T242 ['3F3 [afa s
16=1=1¢ e

.
I R R

8-byte words, no conflict

Phase1
(2 way conflict)

Byte-address: 0

o T1 T2 T3 T4 s T15
12 16 20 24 28 32| 38 ad a4 2
1

l 124 128
11242 34344454 54-15
31

e =l U N N : Beﬂ

T16 T17 T18 T19 20 21 T

{

8-byte words, 2-way conflict

4B or smaller words > hardware processes addresses
of all threads in a warp in a single phase

8B words are accessed in 2 phases:
= addresses of the first 16 threads in a warp
= addresses of the second 16 threads in a warp

Bank conflicts occur only between threads in the
same phase

Code Example: 1D Convolution with Global Memory

// DEVICE CODE
#define THREADS_PER BLK 128
__global__ void convolve (int N, float * input
, float * output) {
// per -block ShM allocation
__shared__ float support [THREADS_ PER_BLK +2];
int index = block Idx .x * blockDim.x +
thread Idx . x; // thread local variable
support [thread Idx . x] = input [index];
if (thread Idx .x < 2) |
support [THREADS_PER BLK + thread Idx .x] =
input [index + THREADS PER BLK];
}
__syncthreads ();
float result = 0.0f; // thread - local variable
for (int i=0; 1<3; i++)
result += support [thread Idx .x + i];
output [index] = result / 3. f;

// HOST CODE
int N = 1024 * 1024;

// allocate arrays in device memory cuda Malloc
(& devInput , sizeof (float) * (N+2)); cudaMalloc (&

dev Output , sizeof (float) * N);
// Initialize contents of dev Input here

convolve <<<N/ THREADS_PER_BLK , THREADS_PER_BLK >>> (

N, devInput , dev Output);

|

output{0] | output{1] | output(2] | output{3]| outputi4]| output(s]|

input(1] | input{2] | input{3] | input{4]

Both input and output are global memory arrays
All threads cooperatively load a block region from
global memory into the support shared memory
array

All threads in the block synchronize (
syncthreads ()) to ensure all threads have access

to updated support values
Each thread computes result for one element using
support values and writes results to output
What is the advantage compared to previous
version?

Code Example: 1D Convolution with Global Memory

hpirm input[129] input{N-128] input{N+1]
ITTTTT e TTTTTTIT I JIIIIHJ"-IIIIH‘I
) ! %
CITTTT e TTTTTTT I TTTTTTT T+ TTTTT]
t t t
output(0] output{127] output-126] output]h1]

// DEVICE CODE

#define THREADS_PER_BLK 128

__global__ void convolve (int N, float* input,
float * output) {

int index = blockIdx .x * blockDim.x + H . . .
o e e » Simple 1D convolution of input array into output

fl t 1t = 0.0f; // thread - loca variable

for (int 3=0; <3 140 array

T 1t += input [index + i]; .

JINL > Both input and output are global memory arrays

¥

— > Each thread computes result for one element out

int N = 1024 * 1024;

/7 allocate the output array

cudaMalloc (* (N+2))i

cudaMalloc (&devOutput , sizeof (float) * N);

// Initialize contents of devInput here ...

convolve <<<N/ THREADS_PER BLK , THREADS_PER_BLK >>>(
N, devInput, devOutput);

g

input(1] ‘ input(2] | inputf3] | input{4]

, float * output) {
if (threadIdx .x < 2) {

Code Example: 1D Convolution with Global Memory
// DEVICE CODE
define THREADS_PER_BLK 128
I-.-asn|-m1
// per -block ShM allocation
__shared__ float support [THREADS_PER BLK +2];
int index = block Idx .x * blockDim.zx +
thread Idx . x; // thread local variable output{0] | output{1] | output(2] | outputi3]| output(4] ms]-
= input [index];
support [THREADS_PER_BLK + thread Idx . x] =
input [index + THREADS_PER BLK]; » Both input and output are global memory arrays
} . .
» All threads cooperatively load a block region from

_global__ void convolve (int N, float * input
support [thread Idx .x] =
__syncthreads (); "
global memory into the support shared memory

float result = 0.0 f; // thread - local variable
for (int i=0; 1<3; 1i++) array

result += support [thread Idx .x + il; . .
output [index] = result / 3. f; » All threads in the block synchronize (

syncthreads ()) to ensure all threads have access
int N = 1024 * 10247 to updated support values

// allocate arrays in device memory cudaMalloc 5 Each thread computes result for one element using

(& devInput , sizeof (float) * (N+2)); cudaMalloc (& .
dev Output , sizeof (float) * N); support values and writes results to output
// Initialize contents of dev Input here ... » Total of 130 load instructions from global mem

convolve <<<N/ THREADS PER BLK , THREADS PER BLK >>> (. . .
N, devInput , devOutput); - instead of 3x128 load instructions

