
TE
QS

A
PR

OV
ID

ER
 ID

:P
RV

12
00

2
(A

US
TR

AL
IA

N
UN

IV
ER

SI
TY

)
CR

IC
OS

PR

OV
ID

ER
 C

OD
E:

 0
01

20
C

GPU SM ARCHITECTURE &
PROGRAMMING MODEL

COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

MAY 2024

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Logistics
Ø Attendance to the Lab sessions is highly encouraged. Most of the

practical aspects of the programming models are covered in the Labs.

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

3

Device Version Grid Block Time Speedup

CPU matrix-add-cpu Nx, Ny = 32768 N/a 31,366 ms 1

CPU matrix-add-
openmp-avx

Nx, Ny = 32768 N/A 3302 ms 9.5

CPU matrix-add-
openmp-gcc

Nx, Ny = 32768 N/A 550 ms 57

GPU matrix-add-gpu 1024 x 1024 32 x 32 19.23 ms 1631

GPU matrix-add-gpu 1024 x 2048 32 x 16 18.40 ms 1704

GPU matrix-add-gpu 2048 x 1024 16 x 32 21.38 ms 1467

GPU matrix-add-gpu 2048 x 2048 16 x 16 18.73 ms 1674

NVIDIA V100 GPU AT NCI -2D MATRIX SUM

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

4

Heterogeneous
Computing

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Reference Material
Ø NVIDIA’s CUDA C++ Best Practices Guide, https://docs.nvidia.com/cuda/cuda-c-

best-practices-guide/
Ø Nvidia H100 TensorCore GPU Architecture https://resources.nvidia.com/en-

us-tensor-core

Ø Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018). Dissecting the NVIDIA volta
GPU architecture via microbenchmarking. arXiv preprint arXiv:1804.06826.

Ø Professional CUDA c programming. Cheng, John, Max Grossman, and Ty McKercher.
John Wiley & Sons, 2014.

Ø CUDA by Example: An Introduction to General-Purpose GPU Programming, Sanders,
Jason, and Edward Kandrot, Addison-Wesley Professional, 2010.

Ø Tesla V100 Performance Optimization Guide,
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/ tesla-
product-literature/v100-application-performance-guide.pdf

5

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/v100-application-performance-guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/v100-application-performance-guide.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/v100-application-performance-guide.pdf

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Heterogeneous Computing

§ Terminology:
§ Host The CPU and its memory (host memory)
§ Device The GPU and its memory (device memory)

Host Device

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS) {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 // Synchronize (ensure all the data is available)
 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
 result += temp[lindex + offset];

 // Store the result
 out[gindex] = result;
}

void fill_ints(int *x, int n) {
 fill_n(x, n, 1);
}

int main(void) {
 int *in, *out; // host copies of a, b, c
 int *d_in, *d_out; // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
 out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies
 cudaMalloc((void **)&d_in, size);
 cudaMalloc((void **)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,
d_out + RADIUS);

 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 free(in); free(out);
 cudaFree(d_in); cudaFree(d_out);
 return 0;
}

serial code

parallel code

serial code

parallel fn

Host

Host

Device

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The End of The Road for General-Purpose Processors
Ø End of Dennard scaling caused the end of the general-

purpose processor era (both uniprocessor and
multicore)

Ø Use of domain specific architectures (DSAs):
programmable but designed for a class of problems
with specific structures.

Ø GPUs are designed for data-parallel algorithms
(especially linear algebra)

Ø More transistors are devoted to data processing rather
than data caching and flow control

Ø Require domain specific programming model that
makes it possible for the software to match the
hardware (e.g. CUDA)

Ø Extracting performance requires the programmer to
expose parallelism, to manage memory efficiently (e.g.
caching), to tailor the algorithm to the hardware

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

TOP 500 List November 2023

https://www.top500.org/

9

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU versus GPU - FLOP rates

10

GPU FLOP Rates have been
growing exponentially:-

Ø 2010’s GFLOP/s – see the
graph opposite

Ø 2020’s TFLOPS/s to
PFLOP/s e.g. H100 GPU

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Impact of Heterogenous Computing

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

PCI Bus

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

PCI Bus

13

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

PCI Bus

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Simplistic View of the GPU Architecture
A scalable array of complex “cores” called Streaming
Multiprocessors (SM)
Ø Each core has an array of functional units (e.g.

ALUs) with SIMD execution
Ø Instructions operate in groups of 32 “SIMD”

threads called warps
Ø On the NVIDIA H100 GPU up to 64 warps can be

executed concurrently (interleaved) on a single SM
Ø Up to 132 SMs × 128 CUDA cores/SM = 16896 Cuda

cores per device
Ø H100 includes Tensor cores + Transformer engine

for training large language models
Ø This is why GPUs are called throughput-oriented

architectures

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Heterogenous Computing
Ø GPU computing is not meant to

replace CPU computing
Ø CPU computing is good for control-

intensive tasks, and GPU computing is
good for data-parallel computation-
intensive tasks

Ø Modern high-end HPC systems are
heterogenous: They combine CPUs and
GPUs, mapping tasks to the most suitable
PU

Ø A typical heterogeneous compute node
consists of two multicore CPU sockets and
two or more many-core GPUs

Ø GPUs operate in conjunction with a
CPU-based host typically through a PCI-
Express bus

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Heterogenous Computing

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Heterogenous Computing

Ø In a heterogeneous, the CPU is called the host
and the GPU is called the device

Ø A heterogeneous application consists of two
parts: Host code (runs on CPU) and device code
(runs on GPU)

Ø Applications are initialized by the CPU: the
CPU code is responsible for managing the
environment, code, and data for the device
before loading compute-intensive tasks onto
the device.

Ø Host and device have distinct and separate
virtual memory address spaces!

Ø Host ↔ device communication is slow and
becomes easily a performance bottleneck.

PCI Bus

540 GFLOPS
34 TFLOPS

GPU is Heterogeneous

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Compute Unified Device Architecture (CUDA)
Ø CUDA C is an is an extension of standard

ANSI providing APIs and a programming
model for NVIDIA GPUs

Ø A CUDA program consists of a mixture
host and device code

Ø NVIDIA’s CUDA nvcc compiler separates
the device code from the host code during
the compilation process

Ø The device code is written using CUDA C
extended with keywords for labeling data-
parallel functions, called kernels

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Hello World from a GPU

include <stdio . h>
__global__ void hello From GPU (void)

{
printf (" Hello World from GPU !\ n");

}

int main (void) {
// hello from cpu
printf (" Hello World from CPU !\ n");
hello From GPU <<<1 , 10 > > >();
cuda Device Reset ();
return 0;

}

$ nvcc - arch = sm_70 hello . cu - o hello
$./ hello
Hello World from CPU !
Hello World from GPU !
Hello World from GPU !
...
Hello World from GPU !

Ø The qualifier global tells the compiler the
function is a device kernel and will be called
from the CPU and executed on the GPU

Ø The kernel is launched with the triple angle
brackets notation (helloFromGPU <<<1,
10>>>())

Ø The parameters within the triple angle brackets
specify how many threads will execute the kernel
(10 GPU threads).

Ø The function cudaDeviceReset() cleans up
all resources associated with the current device

Ø The flag -arch=sm 70 tells the nvcc
compiler to produce a binary for the Volta
V100 architecture

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Programming Structure

Ø A typical processing flow of a CUDA
program follows this pattern:

Ø Copy data from CPU memory to GPU
memory

Ø Invoke kernels to operate on the data
stored in GPU memory

Ø Copy data back from GPU memory to
CPU memory

Ø When a kernel has been launched, control
is returned immediately to the host.

Ø The host can operate independently of the
device for most operations. CUDA is an
asynchronous model.

21

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Memory Management
Ø CUDA provides functions to allocate device

memory, release device memory, and transfer
data between the host memory and device
memory

ØGPU memory allocation → synchronous

cuda Error_t cuda Malloc (void ** devPtr , size_t size)

Ø Transfer data between the host and device →
synchronous

cuda Error_t cuda Memcpy (void * dst ,
 const void * src , size_t count ,
 cuda Memcpy Kind kind)

Ø Kinds of transfer: cudaMemcpyKind = {

cudaMemcpyHostToHost, cudaMemcpyHostToDevice,

cudaMemcpyDeviceToHost,

cudaMemcpyDeviceToDevice }

Ø cudaMemset and cudaFree are also synchronous

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Memory Management

Ø CUDA provides functions to allocate device
memory, release device memory, and transfer
data between the host memory and device
memory

Ø GPU memory allocation → synchronous

cuda Error_t cuda Malloc (void ** devPtr , size_t size)

Ø WARNING: device pointers (e.g devPtr) may not be
dereferenced in the host code.

23

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Thread Organization

Ø Two-level thread hierarchy decomposed into
blocks of threads and grids of blocks

Ø All threads spawned by a single kernel form a
thread grid

Ø Threads in a grid are grouped in thread
blocks

Ø Threads in the same block can cooperate using
block-local sychronization and shared memory

Ø Threads from different blocks cannot
synchronize!

Ø Each block has a unique ID, bblockIdx, within
the grid

Ø Each thread has a unique ID, threadIdx,
within its block (local)

24

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Defining Grids and Blocks
int nElem = 6;
// define grid and block structure dim3
block (3) ;
dim3 grid ((nElem + block .x -1) / block .x);
// check grid and block dimension from host side
printf (" grid .x %d grid .y %d grid .z %d\ n",

grid .x, grid .y, grid .z);
printf (" block .x %d block .y %d block .z %d\ n",

block .x, block .y, block .z);
// check grid and block dimension from device

side
check Index <<<grid , block >>> ();

__global__void check Index (void) {

printf (" thread Idx :(% d, %d, %d) block Idx :(% d, %d,
%d) block Dim :(% d, %d, %d) grid Dim :(% d, %d,
%d)\ n",

thread Idx .x, thread Idx .y, thread Idx .z,
block Idx .x, block Idx .y, block Idx .z, block
Dim .x, block Dim .y, block Dim .z, grid Dim .x,
grid Dim .y, grid Dim .z);

}

Ø CUDA organizes grids and blocks in
three dimensions

Ø uint3 blockIdx = {blockIdx.x, blockIdx.y,
blockIdx.z}

Ø uint3 threadIdx = {threadIdx.x, threadIdx.y,
threadIdx.z}

Ø When defined on the host grids and
blocks use the dim3 type (and not
uint3) with 3 unsigned integer fields

Ø Note that the grid size is rounded up to
the multiple of the block size

Ø For a given kernel, the grid and block
dimensions are decided based on
performance characteristics and
limitations of GPU resources

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CUDA Kernel Semantics
Ø The definition of a CUDA kernel requires special function qualifiers

Ø __global__ → Executed on device, callable from host and device,
must have void return type

Ø __device__ → Executed on device, callable from device only
Ø __host__ → Executed on host, callable from host only

Ø GPU kernels use implicit parallelism!
Ø For example, from the host code

void sum Arrays On Host (float * A, float * B, float * C, const int N) {

 for (int i = 0; i < N; i ++) {
 C[i] = A[i] + B[i];

}
}

Ø You can obtain a GPU parallel kernel by peeling off the forloop and assigning work to
different threads

__global__ void sum Arrays On GPU (float * A, float * B, float * C) {
 int i = thread Idx . x;
 C[i] = A[i] + B[i];

}

26

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Organizing Threads: Matrix Addition
Ø We want to perform the matrix sum C = A + B in

parallel on the GPU.

Ø The matrices have dimensions nx and ny

Ø Each thread performs the addition

C (ix, iy) = A(ix, iy) + B(ix, iy)

for a distinct element of A, B and C with row and
column indices (ix, iy)

Ø We can map a single thread to each matrix
element in the A, B or C arrays at position idx
using a 2D grid of thread blocks where
Ø ix = threadIdx.x + blockIdx.x * blockDim.x

Ø ix = threadIdx.y + blockIdx.y *

Ø blockDim.y

Ø idx = iy * nx + ix

27

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Ø Matrix dimensions nx = ny = 16,384

Ø Kernel execution configuration set to use a
2D grid and 2D block between lines 9-12

Ø Running on an NVIDIA Kepler K80
Ø sumMatrixOnGPU2D <<<(512,512),

(32,32)>>> elapsed 0.060323 sec
Ø sumMatrixOnGPU2D <<<(512,1024),

(32,16)>>> elapsed 0.038041 sec
Ø sumMatrixOnGPU2D <<< (1024,1024),

(16,16) >>> elapsed 0.045535 sec

// malloc device global memory
float * d_MatA , * d_MatB , * d_Mat C ;
cuda Malloc ((void **) & d_MatA , n Bytes);
cuda Malloc ((void **) & d_MatB , n Bytes);
cuda Malloc ((void **) & d_MatC , n Bytes)
// transfer data from host to device
cuda Memcpy (d_MatA , h_A , nBytes ,

cuda Memcpy Host To Device);

cuda Memcpy (d_MatB , h_B , nBytes ,
 cuda Memcpy Host To Device);
// invoke kernel at host side
int dimx = 32; int dimy = 32;
dim3 block (dimx , dimy);

dim3 grid ((nx+ block . x -1) / block . x, (ny+ block . y -1) /
block . y);

i Start = cpu Second ();
sum Matrix On GPU 2 D <<< grid , block >>>(d_MatA ,

d_MatB , d_MatC , nx , ny);
cuda Device Synchronize ();

i Elaps = cpu Second () - i Start ;

global void sum Matrix On GPU 2D (float *MatA ,
float *MatB , float *MatC , int nx , int ny) {

unsigned int ix = thread Idx .x + block Idx .x *
block Dim . x;

unsigned int iy = thread Idx .y + block Idx .y *
block Dim . y;

unsigned int idx = iy* nx + ix;
if (ix < nx && iy < ny)
MatC [idx] = MatA [idx] + MatB [idx];

}

Matrix Addition with 2D Grid and 2D Blocks

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Matrix Addition with 1D Grid and 1D Blocks

Ø Matrix dimensions nx = ny = 16,384
Ø Now we use a 1D grid with 1D blocks
Ø Each thread in the new kernel handles

ny elements
Ø Running on an NVIDIA Kepler K80

Ø sumMatrixOnGPU1D <<<(512,1), (32,1)>>>
elapsed 0.061352 sec

Ø sumMatrixOnGPU1D <<<(128,1),(128,1)>>>

elapsed 0.044701 sec

global void sum Matrix On GPU 1D (float *MatA , float *MatB
, float *MatC , int nx , int ny) {

unsigned int ix = thread Idx .x + block Idx .x * block Dim . x;
if (ix < nx) {
for (int iy =0; iy <ny; iy ++) {
int idx = iy* nx + ix;
MatC [idx] = MatA [idx] + MatB [idx];

}
}
}

29

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Matrix Addition with 2D Grid and 1D Blocks
Ø Now we use a 2D grid with 1D blocks
Ø Each thread takes care of only one data

element and the second dimension of grid
equals ny

Ø Running on an NVIDIA Kepler K80
Ø sumMatrixOnGPUMix <<<(512,16384),
(32,1)>>> elapsed 0.073727 s

Ø sumMatrixOnGPUMix <<<(64,16384),
(256,1)>>> elapsed 0.030765 s
(best performance so far)

Ø Changing execution configurations affects
performance

Ø A naive kernel implementation does not
generally yield the best performance

Ø For a given kernel, trying different grid and
block dimensions may yield better
performance

global void sum Matrix On GPUMix (float * MatA , float * MatB , float *
MatC , int nx , int ny) {

 unsigned int ix = thread Idx . x + block Idx . x *block Dim . x;
unsigned int iy = block Idx . y;
unsigned int idx = iy* nx + ix;

if (ix < nx && iy < ny)
MatC [idx] = MatA [idx] + MatB [idx];

}

30

