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matrix-add-cpu Nx, Ny = 32768 N/a 31,366 ms
CPU matrix-add- Nx, Ny = 32768 N/A 3302 ms 9.5
openmp-avx
CPU matrix-add- Nx, Ny = 32768 N/A 550 ms 57
openmp-gcc
GPU matrix-add-gpu 1024 x 1024 32x32 19.23 ms 1631
GPU matrix-add-gpu 1024 x 2048 32x16 18.40 ms 1704
GPU matrix-add-gpu 2048 x 1024 16 x 32 21.38 ms 1467
GPU matrix-add-gpu 2048 x 2048 16 x 16 18.73 ms 1674

Logistics

> Attendance to the Lab sessions is highly encouraged. Most of the
practical aspects of the programming models are covered in the Labs.
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Reference Material

> NVIDIA's CUDA C++ Best Practices Guide, https://docs.nvidia.com/cuda/cuda-c-
best-practices-guide/

> Nvidia H100 TensorCore GPU Architecture https://resources.nvidia.com/en-
us—-tensor-core

» Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018). Dissecting the NVIDIA volta
GPU architecture via microbenchmarking. arXiv preprint arXiv:1804.06826.

» Professional CUDA ¢ programming. Cheng, John, Max Grossman, and Ty McKercher.
John Wiley & Sons, 2014.

» CUDA by Example: An Introduction to General-Purpose GPU Programming, Sanders,
Jason, and Edward Kandrot, Addison-Wesley Professional, 2010.

» Tesla V100 Performance Optimization Guide,
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/ tesla-
product-literature/v100-application-performance-guide.pdf
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Heterogeneous Computing

= Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)
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The End of The Road for General-Purpose Processors

End of Dennard scaling caused the end of the general-
purpose processor era (both uniprocessor and
multicore)

Use of domain specific architectures (DSAs):
programmable but designed for a class of problems
with specific structures.

GPUs are designed for data-parallel algorithms

e e (especially linear algebra)

» More transistors are devoted to data processing rather
than data caching and flow control

» Require domain specific programming model that
makes it possible for the software to match the
hardware (e.g. CUDA)

Extracting performance requires the programmer to
expose parallelism, to manage memory efficiently (e.g.
caching), to tailor the algorithm to the hardware
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TOP 500 List November 2023

Rank

1

System

Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation
EPYC 64C 26Hz, AMD Instinct MI250, Slingshot-11, HPE
DOE/SC/Oak Ridge National Laboratory

United States

Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon
CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max,
Slingshot-11, Intel

DOE/SC/Argonne National Laboratory

United States

Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz,

NVIDIA H100. NVIDIA Infiniband NDR, Microsoft

Microsoft Azure
United States

Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C

2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science
Japan

LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC
64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC

Cores

8,699,904

4,742,808

1,123,200

7,630,848

2,752,704

Rmax
(PFlop/s)

1,194.00

585.34

561.20

442.01

379.70

Rpeak
(PFlop/s)

1,679.82

1,059.33

846.84

537.21

531.51

Power
(kw)

22,703

24,687

29,899

7.107

1,100.00

366.67

¢
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ANNOUNCING NVIDIA HI0D

GREATEST GENERATIONAL LEAP IN A DECADE
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CPU versus GPU - FLOP rates

Theoretical peak (GFLOP/s)
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GeForce FX 5800 Prescott

GeForce GTX TITAN

GeForce GTX 680,

GeForce GTX 580
GeForce GTX 480

GeForce GTX 280

GeForce 8800 GTX
GeForce 7800 GTX

Tesla C2075

Haswell

NVIDIA GPU SP

K20 NVIDIA GPU DP

Intel DP

GeForce 6800 Ultra Tmsgm Sandy Bidge™ vy Bridge
2004 2006 2008 2010 2012
Release date

2014

GPU FLOP Rates have been
growing exponentially:-

» 2010’s GFLOP/s — see the
graph opposite

» 2020’s TFLOPS/s to
PFLOP/s e.g. H100 GPU

Simple Processing Flow

CPU Memory |

1. Copy input data from CPU memory to
GPU memory
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Simple Processing Flow

P

CPU Memory

1. Copy input data from CPU memory to

GPU memory

)

2. Load GPU program and execute,

caching data on chip for performance

A Simplistic View of the GPU Architecture
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“Shared” memory.
(16+48 KB)

A scalable array of complex “cores” called Streaming
Multiprocessors (SM)

>

Each core has an array of functional units (e.g.
ALUs) with SIMD execution

Instructions operate in groups of 32 “SIMD”
threads called warps

On the NVIDIA H100 GPU up to 64 warps can be
executed concurrently (interleaved) on a single SM
Up to 132 SMs x 128 CUDA cores/SM = 16896 Cuda
cores per device

H100 includes Tensor cores + Transformer engine
for training large language models

This is why GPUs are called throughput-oriented
architectures

Simple Processing Flow

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to
CPU memory

DRAM
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GPU computing is not meant to
replace CPU computing

CPU computing is good for control-
intensive tasks, and GPU computing is
good for data-parallel computation-
intensive tasks

Modern high-end HPC systems are
heterogenous: They combine CPUs and

GPUs, mapping tasks to the most suitable

PU

A typical heterogeneous compute node
consists of two multicore CPU sockets and

two or more many-core GPUs

GPUs operate in conjunction with a
CPU-based host typically through a PCI-

Express bus




Heterogenous Computing Heterogenous Computing

34 TFLOPS

NVIDIA Grace Hopper Superchlp 540 GFLOPS » In a heterogeneous, the CPU is called the host
| Hardware Consistency [ o] and the GPU is called the device
E CPU ;.1P2Dgrésx g:lé;imi\ . m TE - - » A heterogeneous application consists of two
E s . T = = parts: Host code (runs on CPU) and device code
’ = M N £ £ (runs on GPU)
o emmmmnd EXEE N S meSNARR= =] > Applications are initialized by the CPU: the
i 4x E E o LA A = CPU code is responsible for managing the
% o 16x PCle-5 GRACE , HOPPER 11&‘ NVLINK 4 E, 3 g GPU is Heterogeneous environment, code, and data for the device
ag = 512 GB/s CPU | GPU 200iGh/5 ~ ﬂ before loading compute-intensive tasks onto
(O] H z » Conan indow H100 SXM » the device.
T (C———) T g oo P ) »
! = FPo4 Tensor Core o7 terarlops > Host and device have distinct and separate
! i S7BrFLOPS virtual memory address spaces!
! TF32 Tensor Core. 989 terafLOPS? e
i BFLOATIG Tensor Core 1979 teraFLOPS? » Host <> device communication is slow and
f FP16 Tensor Core 1979 terafLOPS® becomes easily a performance bottleneck.
- FP8 Tensor Core 3,958 teraFLOPS?
INT8 Tensor Core 3,958 TOPS?
‘GPU memory 80GB
‘GPU memory bandwidth 3.35TB/s
— [ —

Compute Unified Device Architecture (CUDA) Hello World from a GPU

» CUDA Cis an is an extension of standard - .
» The qualifier global tells the compiler the

idi H # include <stdio . h>
e P ANSI providing APIs and a programming __global _ void hello FromGPU (void ) function is a device kernel and will be called
model for NVIDIA GPUs { o - from the CPU and executed on the GPU
T X . printf (" Hello World from GPU !\ n"); . . .
— » A CUDA program consists of a mixture } > The kemnel is launched with the triple angle
host and device code int main (void) 1 brackets notation (helloFromGPU <<<1,
= // hello from cpu 10>>>())
UDA Driver 7 . printf (" Hello World from CPU !\ n");
_ » NVIDIA’'s CUDA nvcc compiler separates hello FromGPU <<<l, 10>>>(); > The parameters within the triple angle brackets
_ ] the device code from the host code during cuda bevice keset 0 specify how many threads will execute the kernel
CUDA Libraries | Integrated CPU+GPU Code | the compilation process ) (10 GPU threads).
. . . . . 3 nvee -arch=sm 70 hello.cu -o hello » The function cudaDeviceReset () cleans up
SRR G | » The device (.:ode Is written using FUDA ¢ iei{oheéjfl 4 from coU 1 all resources associated with the current device
CUDA Aoty | ot Code | extended with keywords for labeling data- fiello forld Erom GEU ! > The flag -arch=sm 70 tells the nvoc
for Computing (PTX) . Hello World from GPU ! . .
parallel functions, called kernels compiler to produce a binary for the Volta
CUDADIver, | (iDebugger | e | Hello World from GPU ! V100 architecture
GPU I cru I




CUDA Programming Structure

GPU

Compute intensive portion

.
-!

Application Code

Sequential portion

CUDA C/C++ Application

Host code

Parallel code

Host code

Parallel code
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Device = GPU

i
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Device = GPU
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» A typical processing flow of a CUDA
program follows this pattern:

» Copy data from CPU memory to GPU
memory
» Invoke kernels to operate on the data
stored in GPU memory
» Copy data back from GPU memory to
CPU memory
» When a kernel has been launched, control
is returned immediately to the host.
» The host can operate independently of the

device for most operations. CUDA is an
asynchronous model.

CUDA Memory Management
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STANDARD C FUNCTIONS
malloc
memcpy
memset.

free

cudaMalloc

GPU

CUDA € FUNCTIONS
cudaMalloc
cudaMencpy
cudaMenset

cudaFree

cudaMemset
cudaFree
|

» CUDA provides functions to allocate device
memory, release device memory, and transfer
data between the host memory and device
memory

» GPU memory allocation - synchronous

IcudaError_t cudaMalloc ( void ** devPtr, size_t size ) I

» WARNING: device pointers (e.g devPtr) may not be
dereferenced in the host code.

CUDA Memory Management

Control

AL AL I
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STANDARD C FUNCTIONS

malloc
memcpy
memset

free

CUDA C FUNCTIONS

cudaMalloc
cudaMemcpy
cudaMemset

cudaFree

» CUDA provides functions to allocate device
memory, release device memory, and transfer
data between the host memory and device
memory

» GPU memory allocation > synchronous

IcudaErrorit cudaMalloc ( void ** devPtr, size t size )

» Transfer data between the host and device -
synchronous

(Device) Grid

Block (0, 0)

cudaMalloc

cudaMemnset ¥
cudaFree

cuda Error_t cuda Memcpy ( void * dst ,

const void * src , size_t count ,
cuda Memcpy Kind kind )

» Kinds of transfer: cudaMemcpyKind = {
cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice }

» cudaMemset and cudaFree are also synchronous

CUDA Thread Organization

Host

Device
Grid
Kernel | > Block
(0, 0)
Block”
0

Block Block
(1,0) 2,0

Block ' Block

a1 2,1

Block (1, 1)

» Two-level thread hierarchy decomposed into
blocks of threads and grids of blocks

» All threads spawned by a single kernel form a
thread grid

» Threads in a grid are grouped in thread
blocks

» Threads in the same block can cooperate using

block-local sychronization and shared memory

» Threads from different blocks cannot
synchronize!

» Each block has a unique ID, bblockIdx, within

the grid
» Each thread has a unique ID, threadIdx,
within its block (local)




Defining Grids and Blocks CUDA Kernel Semantics

e p— » CUDA organizes grids and blocks in » The definition of a CUDA kernel requires special function qualifiers

// define c d and block structure dim3 . . . .
Lok )5 three dimensions > global - Executed on device, callable from host and device,
dim3 grid ((nElem+block .x-1) /block .x); - -

/7 check grid and block c  from h > uint3 blockTdx = {blockIdx.x, blockIdx.y, must have void return type

orintf ("grid.x %d grid.y Lz %d\ blockIdx.z}

grid.x, grid.y, grid.z);
rintf ("block.x %d

> device  -» Executed on device, callable from device only
> :hostij Executed on host, callable from host only

» GPU kernels use implicit parallelism!

» For example, from the host code

%d block .z %d\n",

» uint3 threadldx = {threadIdx.x, threadIdx.y,
threadIdx.z}

check Index <<<grid, block>>> ();

» When defined on the host grids and

__global__void checkIndex (void) {

printf ("threadTds:(3d, %d, 5d) blockIdx:(1d, %d, blocks use the dim3type (and not
;::\ii?(:“’m:(m' e omdbin G uint3) with 3 unsigned integer fields void sumArraysOnHost (float *A, float *B, float *C, const int N) ({
thread Idx .x, threadIdx.y, threadIdx.z,

for (int i = 0; i < N; i++4) {

block Idx .x, blockIdx .y, blockIdx .z, block Cli) = A[i) + B[i);

Din % blockbin.y, blockDin. 2, gridDin.x, » Note that the grid size is rounded up to )

. . }
B the multiple of the block size » You can obtain a GPU parallel kernel by peeling off the forloop and assigning work to

b

id.x 2 grid.y 1 grid.z 1 : : i
kst Ty § Mok 1 > For a given kernel, the grid and block different threads
threadIdx: (0, 0, 0) blockIdx:(1, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1 H H H
threadIdx: (1, 0, 0) blockIdx:(1, 0, 0) blockDim: (3, 1, 1,1 dlmenSIOns are dECIdEd baSEd on _global__ void sumArrays OnGPU ( float *A, float *B, float *C) {
threadldx: (2, 0, 0) blockIdx: (1, 0, 0) blockbin: (3, 1, 1,1 it t i - thread Idx . x;
threadldx: (0, 0, 0) blockIdx: (0, 0, 0) blockbi: (3, 1, 1,1 performance characteristics and é? i]l: Al ir]ea+ B[xi]f&
threadIdx: (1, 0, 0) blockIdx: (0, 0, 0) blockDim:(3, 1, 1, 1 imi 1 !
threadIdx: (2, 0, 0) blockIdx: (0, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1 |Im|tat|0nS Of GPU resources ‘—‘ !
» S

Organizing Threads: Matrix Addition Matrix Addition with 2D Grid and 2D Blocks

» We want to perform the matrix sumC= A+ B in

// malloc device global memory
ix = threadidx.x + blockldx.x * blockDim.x

nx paraIIeI on the GPU float *d_MatA, *d MatB, *d MatC;
= : cudaMalloc ((void **) &d_Math, nBytes);
£5‘- > h . h . . d cudaMalloc ((void **) &d_MatB, nBytes);
i The matrices have dimensions nx and ny » Matrix dimensions nx = ny = 16,384 cudaMalloc ((void *%) &d MatC, nBytes)
3 // transfer data from host to device
e te—— » Each thread performs the addition e ey s o ey
g » Kernel execution configuration set to use a cuda Memcpy (d_MatB, h B, nBytes,
< .. .. .. i H _ cuda Memcpy Host To Device ) ;
: Clix, iy) = Alix, iy) + B(ix, iy) 2D grid and 2D block between lines 9-12 ~ // invoke kesmel at host side
;6 int dimx = 32; int dimy = 32;
= fepi : > Running on an NVIDIA Kepler K80 dim3 block (dimc, diny);
ny for a distinct element of A, B and C with row and A Mt xOnGEUID (512, 512) dim3 grid ((mxt block . x-1) /block . %, (ny+block .y-1) /
matrix coordinate: (jy) ] P P » sumMatrixOn << ’ ’ . plock . y);
Slobal e mamary idex: ich = iy + ix column indices (ix, iy ) (32,32)>>> elapsed 0.060323 sec L5tart = ‘hsecond (5
X . . N . 2D e (512 1024) sumMatrix OnGPU2D <<< grid, block >>>( dﬁMatA ,
» We can map a single thread to each matrix »  sumMatrixOnGEPU . . d_MatB, d_MatC, nx, ny);
[ I=I1 mzm 3 4 ms “,sm 7 | Rowo | tinthe A B C t iti i d (32,16)>>> elapsed 0.038041 sec cuda Device Synchronize ();
—Blodg(00H————Blocitthoy—— element in the A, B or C arrays at position 1dx >  sumMatrixonGPUZD <<< (1024,1024), iElaps - cpuSecond () - istart:
i i __global__ void sumMatrixOnGPU2D (float *Mata,
6 v e || @] 2w | R using a 2D grid of thread blocks where (16,16) >>> elapsed 0.045535 sec T oy S D (e
26 25 26| 27 |28 29| 30 | 31| Row3 > ix = threadldx.x + blockIdx.x * blockDim.x i Ly (e s
nsigned int iy = threadIdx. block Idx . *
Sl e et S S P S R » ix = threadIdx.y + blockIdx.y * T e s T sy
A A nsigned int idx = iy*nx + ix;
ny bl Bl Ml Wadll M el Wil R » blockDim.y ‘ifsixe< nx &8 iy < iy}
Col0 Col1 Col2 Col3 Col4 Col5 Colé6 Col7 . . ) MatC [idx ] = MatA [idx] + MatB [idx];
» idx = iy * nx + ix }
g — g —
27 &:4 28 W




Matrix Addition with 1D Grid and 1D Blocks

nx

Block (0) Block (1) Block (2) Block (3)

ny

global linear memory index: idx = iy*nx + ix

__global__ void sumMatrixOnGPULD (float *MatA, float *MatB
, float *MatC, int nx, int ny) (
unsigned int ix = threadIdx.x + blockIdx.x * blockDim . x;

if (ix < nx ) {
for (int iy=0; iy<ny; iy++) {
int didx = iy*nx + ix;
MatC [idx] = MatA [idx] + MatB [idx];

i
}
}

» Matrix dimensions nx = ny = 16,384

Now we use a 1D grid with 1D blocks

» Each thread in the new kernel handles
ny elements

» Running on an NVIDIA Kepler K80

v

» sumMatrixOnGPULD <<<(512,1), (32,1)>>>
elapsed 0.061352 sec

» sumMatrixOnGPU1D <<<(128,1), (128,1)>>>
elapsed 0.044701 sec

Matrix Addition with 2D Grid and 1D Blocks

Block (3,0)
Block (3,1)

Block (0,0)
Block (0,1)

Block (1,0)
Block (1,1)

Block (2,0)
Block (2,1)

ny _ Block (O,ny) | _Block(1,ny) | Block (2ny) | Block Giny) |

global linear memory index: idx = iy *nx + ix

global void sumMatrix OnGPUMix (float *MatA, float *MatB, float *
MatC, int nx, int ny) (
unsigned int ix = threadIdx .x + block Idx .x *block Dim . x;
unsigned int iy = block Idx .y;
unsigned int idx = iy*nx + ix;

if (ix < nx && iy < ny)

MatC [idx ] = MatA [idx] + MatB [idx];

}

>
>

Now we use a 2D grid with 1D blocks
Each thread takes care of only one data
element and the second dimension of grid
equals ny

Running on an NVIDIA Kepler K80

» sumMatrixOnGPUMix <<<(512,16384),
(32,1)>>> elapsed 0.073727 s

» sumMatrixOnGPUMix <<<(64,16384),
(256,1)>>> elapsed 0.030765 s
(best performance so far)
Changing execution configurations affects
performance
A naive kernel implementation does not
generally yield the best performance
For a given kernel, trying different grid and
block dimensions may yield better
performance




