GPU SM ARCHITECTURE & PROGRAMMING MODEL

COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

MAY 2024

TEOGAMPROVIDER ID: PRV IDDOZ (A USTRAU AN UNI PRDVI DER CODE: 001.002

2

4

Australian National University

Logistics

Attendance to the Lab sessions is highly encouraged. Most of the practical aspects of the programming models are covered in the Labs.

NVIDIA V100 GPU AT NCI -2D MATRIX SUM

Device	Version	Grid	Block	Time	Speedup
CPU	matrix-add-cpu	Nx, Ny = 32768	N/a	31,366 ms	1
CPU	matrix-add- openmp-avx	Nx, Ny = 32768	N/A	3302 ms	9.5
CPU	matrix-add- openmp-gcc	Nx, Ny = 32768	N/A	550 ms	57
GPU	matrix-add-gpu	1024 x 1024	32 x 32	19.23 ms	1631
GPU	matrix-add-gpu	1024 x 2048	32 x 16	18.40 ms	1704
GPU	matrix-add-gpu	2048 x 1024	16 x 32	21.38 ms	1467
GPU	matrix-add-gpu	2048 x 2048	16 x 16	18.73 ms	1674

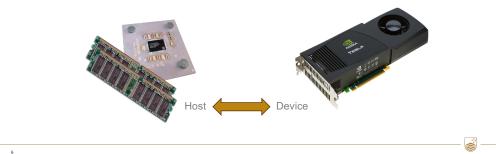
Heterogeneous Computing

Reference Material

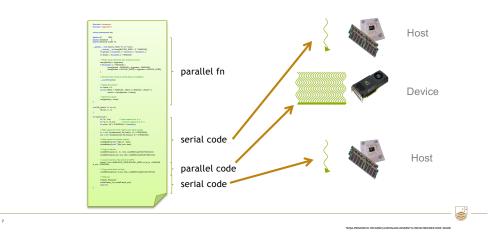
- > NVIDIA's CUDA C++ Best Practices Guide, <u>https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/</u>
- Nvidia H100 TensorCore GPU Architecture https://resources.nvidia.com/enus-tensor-core
- Jia, Z., Maggioni, M., Staiger, B., & Scarpazza, D. P. (2018). Dissecting the NVIDIA volta GPU architecture via microbenchmarking. arXiv preprint arXiv:1804.06826.
- Professional CUDA c programming. Cheng, John, Max Grossman, and Ty McKercher. John Wiley & Sons, 2014.
- CUDA by Example: An Introduction to General-Purpose GPU Programming, Sanders, Jason, and Edward Kandrot, Addison-Wesley Professional, 2010.
- Tesla V100 Performance Optimization Guide, <u>https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/</u><u>tesla-</u> product-literature/v100-application-performance-guide.pdf

Heterogeneous Computing

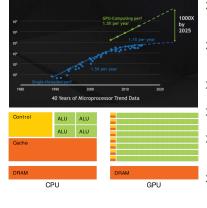
- Terminology:
 - *Host* The CPU and its memory (host memory)
 - Device The GPU and its memory (device memory)



Heterogeneous Computing



The End of The Road for General-Purpose Processors

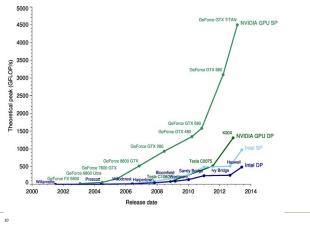


- End of Dennard scaling caused the end of the generalpurpose processor era (both uniprocessor and multicore)
- Use of domain specific architectures (DSAs): programmable but designed for a class of problems with specific structures.
- GPUs are designed for data-parallel algorithms (especially linear algebra)
- More transistors are devoted to data processing rather than data caching and flow control
- Require domain specific programming model that makes it possible for the software to match the hardware (e.g. CUDA)
- Extracting performance requires the programmer to expose parallelism, to manage memory efficiently (e.g. caching), to tailor the algorithm to the hardware

TOP 500 List November 2023

Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
8,699,904	1,194.00	1,679.82	22,703
4,742,808	585.34	1,059.33	24,687
1,123,200	561.20	846.84	
7,630,848	442.01	537.21	29,899
2,752,704	379.70	531.51	7,107
	2,752,704	2,752,704 379.70	2,752,704 379.70 531.51

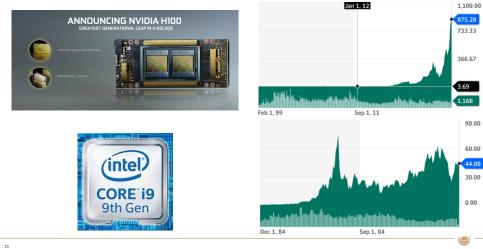
CPU versus GPU - FLOP rates



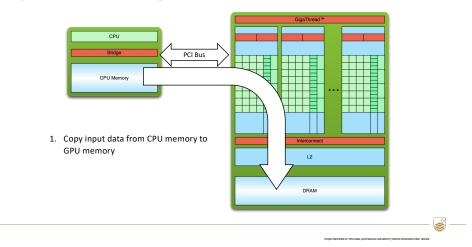
GPU FLOP Rates have been growing exponentially:-

- 2010's GFLOP/s see the graph opposite
- 2020's TFLOPS/s to PFLOP/s e.g. H100 GPU

Impact of Heterogenous Computing

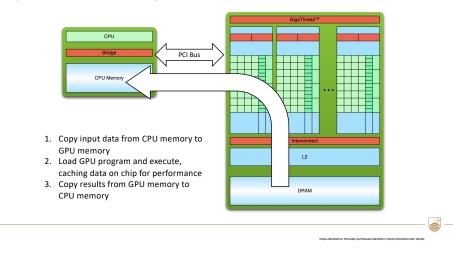


Simple Processing Flow

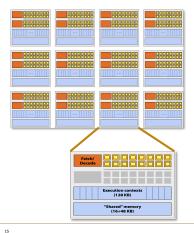


Simple Processing Flow PCI Bus CPU Memory 1. Copy input data from CPU memory to GPU memory 2. Load GPU program and execute, caching data on chip for performance DRAN

Simple Processing Flow



A Simplistic View of the GPU Architecture

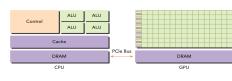


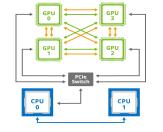
13

A scalable array of complex "cores" called Streaming Multiprocessors (SM)

- > Each core has an array of functional units (e.g. ALUs) with SIMD execution
- Instructions operate in groups of 32 "SIMD" threads called warps
- > On the NVIDIA H100 GPU up to 64 warps can be executed concurrently (interleaved) on a single SM
- Up to 132 SMs × 128 CUDA cores/SM = 16896 Cuda cores per device
- ▶ H100 includes Tensor cores + Transformer engine for training large language models
- > This is why GPUs are called throughput-oriented architectures

Heterogenous Computing

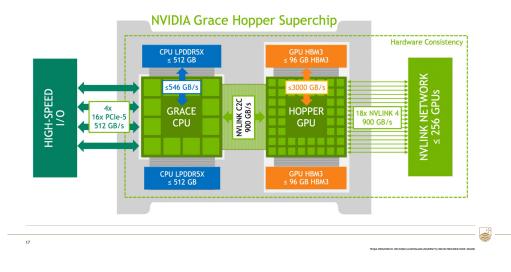




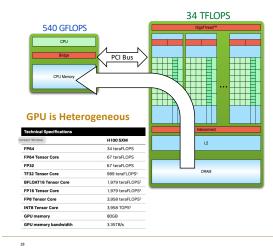
> GPU computing is not meant to replace CPU computing

- > CPU computing is good for controlintensive tasks, and GPU computing is good for data-parallel computationintensive tasks
- Modern high-end HPC systems are heterogenous: They combine CPUs and GPUs, mapping tasks to the most suitable ΡU
- > A typical heterogeneous compute node consists of two multicore CPU sockets and two or more many-core GPUs
- > GPUs operate in conjunction with a CPU-based host typically through a PCI-Express bus

Heterogenous Computing

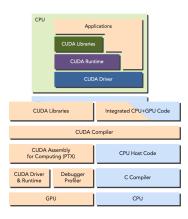


Heterogenous Computing



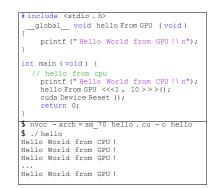
- In a heterogeneous, the CPU is called the host and the GPU is called the device
- A heterogeneous application consists of two parts: Host code (runs on CPU) and device code (runs on GPU)
- Applications are initialized by the CPU: the CPU code is responsible for managing the environment, code, and data for the device before loading compute-intensive tasks onto the device.
- Host and device have distinct and separate virtual memory address spaces!
- ➢ Host ↔ device communication is slow and becomes easily a performance bottleneck.

Compute Unified Device Architecture (CUDA)



- CUDA C is an is an extension of standard ANSI providing APIs and a programming model for NVIDIA GPUs
- A CUDA program consists of a mixture host and device code
- NVIDIA's CUDA nvcc compiler separates the device code from the host code during the compilation process
- The device code is written using CUDA C extended with keywords for labeling dataparallel functions, called kernels

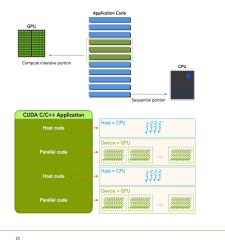
Hello World from a GPU



20

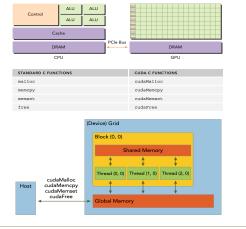
- The qualifier global tells the compiler the function is a device kernel and will be called from the CPU and executed on the GPU
- The kernel is launched with the triple angle brackets notation (helloFromGPU <<<1, 10>>>())
- The parameters within the triple angle brackets specify how many threads will execute the kernel (10 GPU threads).
- The function cudaDeviceReset() cleans up all resources associated with the current device
- The flag -arch=sm 70 tells the nvcc compiler to produce a binary for the Volta V100 architecture

CUDA Programming Structure



- A typical processing flow of a CUDA program follows this pattern:
- Copy data from CPU memory to GPU memory
- Invoke kernels to operate on the data stored in GPU memory
- Copy data back from GPU memory to CPU memory
- When a kernel has been launched, control is returned immediately to the host.
- The host can operate independently of the device for most operations. CUDA is an asynchronous model.

CUDA Memory Management



- CUDA provides functions to allocate device memory, release device memory, and transfer data between the host memory and device memory
- > GPU memory allocation \rightarrow synchronous

```
cuda Error_t cuda Malloc ( void ** devPtr, size_t size )

Transfer data between the host and device →
```

- Kinds of transfer: cudaMemcpyKind = {
- cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
- cudaMemcpyDeviceToDevice }

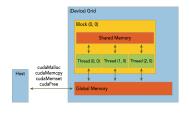
synchronous

 \succ cudaMemset and cudaFree are also synchronous

CUDA Memory Management

Control ALU ALU Cache	ALU ALU		
	ALU ALU		
DRAM <	PCle Bus DRAM	DRAM	

STANDARD C FUNCTIONS	CUDA C FUNCTIONS
nalloc	cudaMalloc
nencpy	cudaMemcpy
nenset	cudaMenset
free	cudaFree



- CUDA provides functions to allocate device memory, release device memory, and transfer data between the host memory and device memory
- ▶ GPU memory allocation \rightarrow synchronous

cuda Error_t cuda Malloc (void ** devPtr, size_t size)

WARNING: device pointers (e.g devPtr) may not be dereferenced in the host code.

CUDA Thread Organization

Host	D	evice				
		Grid				
Kernel	 >	Bloc (0, 0		Block (1, 0)	Block (2, 0)	
			:k I)	Block (1, 1)	Block (2, 1)	
Block (1, 1)						
V	Thread (0, 0)		Thread (2, 0)	Thread (3, 0)	Thread (4, 0)	
	Thread (0, 1)	Thread (1, 1)	Thread (2, 1)	Thread (3, 1)	Thread (4, 1)	
	Thread (0, 2)	Thread (1, 2)	Thread (2, 2)	Thread (3, 2)	Thread (4, 2)	

24

- Two-level thread hierarchy decomposed into blocks of threads and grids of blocks
- All threads spawned by a single kernel form a thread grid
- Threads in a grid are grouped in thread blocks
- Threads in the same block can cooperate using block-local sychronization and shared memory
- Threads from different blocks cannot synchronize!
- Each block has a unique ID, bblockIdx, within the grid
- Each thread has a unique ID, threadIdx, within its block (local)

23

TEOSA PROVIDERIO: PRV12002 (AUSTRALIAN UNIVERSITY) CRCOS PROVIDER CODE

Defining Grids and Blocks

nElem = define grid and block structure dim3 block (3); dim3 grid ((nElem+block.x=1) / block.x); check grid and block dimension from host side printf ("grid.x %d grid.y %d grid.z %d\n", grid.x, grid.y, grid.z); rintf ("block.x %d block.y %d block.z %d\n", block.x, block.y, block.z);
/ check grid and block dimension from device side checkIndex <<<grid , block >>> (); global void checkIndex (void) { printf (" thread Idx :(%d, %d, %d) block Idx :(%d, %d %d) block Dim :(%d, %d, %d) grid Dim :(%d, %d, &d)\n". thread Idx.x, thread Idx.y, thread Idx.z, block Idx . x, block Idx . v, block Idx . z, block Dim.x, blockDim.y, blockDim.z, gridDim.x, grid Dim.v. grid Dim.z);

grid.x 2 grid.y 1 grid.z 1 block.x 3 block.y 1 block.z 1 threadIdx:(0, 0, 0) blockIdx:(1, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1) threadIdx:(1, 0, 0) blockIdx:(1, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1 threadIdx: (2, 0, 0) blockIdx: (1, 0, 0) blockDim: (3, 1, 1) gridDim: (2, 1, 1) threadIdx:(0, 0, 0) blockIdx:(0, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1 threadIdx:(1, 0, 0) blockIdx:(0, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, threadIdx:(2, 0, 0) blockIdx:(0, 0, 0) blockDim:(3, 1, 1) gridDim:(2, 1, 1

- CUDA organizes grids and blocks in three dimensions
- > uint3 blockIdx = {blockIdx.x, blockIdx.y, blockIdx.z}
- > uint3 threadIdx = {threadIdx.x, threadIdx.y, threadIdx.z}
- When defined on the host grids and blocks use the dim3type (and not uint3) with 3 unsigned integer fields
- Note that the grid size is rounded up to the multiple of the block size
- For a given kernel, the grid and block dimensions are decided based on performance characteristics and limitations of GPU resources

CUDA Kernel Semantics

- > The definition of a CUDA kernel requires special function gualifiers
 - ➢ global → Executed on device, callable from host and device, must have void return type
 - \blacktriangleright device \rightarrow Executed on device, callable from device only
 - \blacktriangleright host \rightarrow Executed on host, callable from host only
- GPU kernels use implicit parallelism!
- For example, from the host code

Matrix dimensions nx = ny = 16.384

Running on an NVIDIA Kepler K80

2D grid and 2D block between lines 9-12

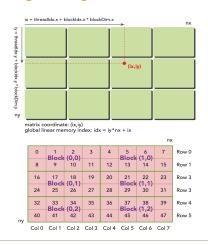
> sumMatrixOnGPU2D <<<(512,512),</p>

oid sum Arrays On Host (float *A, float *B, float *C, const int N) { for (int i = 0; i < N; i++) {</pre> C[i] = A[i] + B[i];

You can obtain a GPU parallel kernel by peeling off the forloop and assigning work to different threads

_global void sum Arrays On GPU (float * A, float * B, float * C) { int i = thread Idx . x; C[i] = A[i] + B[i];

Organizing Threads: Matrix Addition



- \blacktriangleright We want to perform the matrix sum C = A + B in parallel on the GPU.
- > The matrices have dimensions nx and ny
- Each thread performs the addition

C(ix, iy) = A(ix, iy) + B(ix, iy)

for a distinct element of A, B and C with row and column indices (ix, iy)

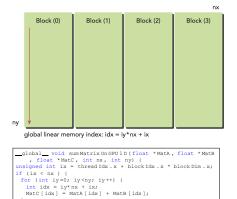
- We can map a single thread to each matrix element in the A, B or C arrays at position idx using a 2D grid of thread blocks where
 - > ix = threadIdx.x + blockIdx.x * blockDim.x
 - > ix = threadIdx.y + blockIdx.y *
 - > blockDim.v \geq idx = iv * nx + ix

Matrix Addition with 2D Grid and 2D Blocks

// malloc device global memory float *d_MatA, *d_MatB, *d_MatC; cuda Malloc ((void **) & d_MatA, nBytes); cuda Malloc ((void **) & d MatB, nBytes); cuda Malloc ((void **) & d MatC, n Bytes) // transfer data from host to device cuda Memcpy (d_MatA , h_A , nBytes , cuda Memcpy Host To Device); > Kernel execution configuration set to use a cuda Memcpy (d MatB, h B, nBytes, cuda Memcpy Host To Device); // invoke kernel at host side int dimx = 32; int dimy = 32; dim3 block (dimx, dimy); dim3 grid ((nx+block.x-1) / block.x, (ny+block.y-1) / block . y); iStart = cpuSecond (); (32,32)>>> elapsed 0.060323 sec sum Matrix On GPU 2 D <<< grid , block >>>(d MatA , sumMatrixOnGPU2D <<<(512,1024),</p> d_MatB, d_MatC, nx, ny); (32,16)>>> elapsed 0.038041 sec cuda Device Synchronize (); iElaps = cpuSecond () - iStart. sumMatrixOnGPU2D <<< (1024,1024),</p> _global__void sum Matrix On GPU 2D (float *MatA, float *MatB, float *MatC, int nx, int ny) { unsigned int ix = threadIdx.x + blockIdx.x * (16,16) >>> elapsed 0.045535 sec blockDim.x; unsigned int iy = threadIdx.y + blockIdx.y * block Dim .y; unsigned int idx = iy*nx + ix; if (ix < nx && iy < ny) MatC[idx] = MatA[idx] + MatB[idx];

27

Matrix Addition with 1D Grid and 1D Blocks



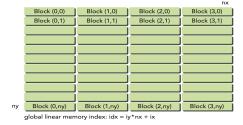
29

- > Matrix dimensions nx = ny = 16,384
- Now we use a 1D grid with 1D blocks
- Each thread in the new kernel handles ny elements

30

- Running on an NVIDIA Kepler K80
- > sumMatrixOnGPU1D <<<(512,1), (32,1)>>>
 elapsed 0.061352 sec
- > sumMatrixOnGPU1D <<<(128,1),(128,1)>>>
 elapsed 0.044701 sec

Matrix Addition with 2D Grid and 1D Blocks



global void sum Matrix On GPUMix (float *MatA, float *MatB, float * MatC, int nx, int ny) { unsigned int ix = thread Idx .x + block Idx .x *block Dim .x; unsigned int iy = block Idx .y; unsigned int idx = iy*nx + ix; if (ix < nx && iy < ny) MatC[idx] = MatA[idx] + MatB[idx];

> Now we use a 2D grid with 1D blocks

- Each thread takes care of only one data element and the second dimension of grid equals ny
- Running on an NVIDIA Kepler K80 sumMatrixOnGPUMix <<<(512,16384), (32,1)>>> elapsed 0.073727 s
 - > sumMatrixOnGPUMix <<<(64,16384), (256,1)>>> elapsed 0.030765 s (best performance so far)
- Changing execution configurations affects performance
- A naive kernel implementation does not generally yield the best performance
- For a given kernel, trying different grid and block dimensions may yield better performance