cudaMallocManaged

>

cudaMallocManaged is a function in the CUDA API that allocates memory that can be accessed
by both the CPU and GPU.

Unified Memory Allocation
» When you use cudaMallocManaged, the allocated memory is accessible from both the
host (CPU) and the device (GPU).

» This eliminates the need for explicit memory transfers like cudaMemcpy between the host
and device.

Automatic Data Migration:

» The CUDA runtime automatically migrates data between the host and device as needed.
When the CPU accesses the memory, the data is moved to the host memory, and when the
GPU accesses it, the data is moved to the device memory. This migration is handled through
page faults

Simplified Programming Model:
» This is particularly useful for applications with irregular memory access patterns

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Multicore Architecture &
Cache Coherence

References

» Chapters 5, 6, from Parallel Computer Architecture A Hardware/Software Approach, D. E. Culler, J.
P. Singh, and A. Gupta, Morgan Kaufmann Publishers, Inc., ISBN-13: 9781558603431

» Intel performance analysis guide
https://software.intel.com/sites/products/collateral/hpc/vtune /performance analysis guid
e.pdf

» Chapters 1, 4, from Introduction to High Performance Computing for Scientists and Engineers
(Chapman & Hall/CRC Computational Science) Georg Hager and Gerhard Wellein.

» Intel: Optimizing Applications for NUMA
https://software.intel.com/content/www/us/en/develop/articles/
optimizing-applications—-for—-numa.html

» Intel: Avoiding and Identifying False Sharing Among Threads
https://software.intel.com/content/www/us/en/develop/articles/
avolding—and-identifying-false-sharing-among-threads.html

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html
https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

Hardware determines (parallel) software performance

Why do you need to know about hardware architecture?

» In order to write efficient parallel software, you must be aware of the
hardware design and constraints.

» Hardware parallelism is a function of cost and performance tradeoffs.

» Itis is ultimately the hardware architecture that determines the cost
(execution time) associated with each algorithmic motif e.g. CPU vs GPU

Taxonomy of parallel computing paradigms

A widely used taxonomy for describing the amount of concurrent control and data streams
present in a parallel architecture was proposed by Flynn*.

Single Instruction, Multiple Data (SIMD). A single instruction stream, either on a single
processor (core) or on multiple compute elements, provides parallelism by operating on

multiple data streams concurrently. Example: the SIMD capabilities (vectorization) of modern
superscalar microprocessors

Multiple Instruction, Multiple Data (MIMD). Multiple instruction streams on multiple
processors (cores) operate on different data items concurrently. Shared-memory and
distributed-memory parallel computers are typical examples for the MIMD paradigm.

Single-stream ILP as employed in superscalar, pipelined execution is not included in this
categorization.

*Flynn, Michael J. (December 1966). "Very high-speed computing systems". Proceedings of the IEEE. 54 (12): 1901—
1909. doi:10.1109/PROC.1966.5273.

5

https://en.wikipedia.org/wiki/Michael_J._Flynn
https://ieeexplore.ieee.org/document/1447203
https://en.wikipedia.org/wiki/Proceedings_of_the_IEEE
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FPROC.1966.5273

Shared-Memory Multiprocessors

% Bus

6

Memory

Processor

Processor

Processor

Processor

Cache

Cache

Cache

Cache

Memory

Memory

Memory

Memory

Single address space multiprocessors come in two forms: -

» Uniform Memory Access (UMA) Multiprocessors: Also known as
Symmetric Multiprocessors (SMP), these systems have a memory
architecture in which each processor in the multiprocessor system has
uniform access time to memory.

» In other words, latency and bandwidth are the same for all processors
and all memory locations. The latency to a word in memory does not
depend on which processor/core asks for it. This architecture is
common in multicore processor chips, such as those found in basic PCs
or mobile phones.

» Non-Uniform Memory Access (NUMA) Multiprocessors: In these
systems, memory access time depends on the memory location
relative to a processor.

» The architecture is used in multiprocessor systems and aims to
improve system performance by allowing a processor to access its
local memory faster than non-local memory (memory local to another
processor or memory shared between processors) —

=

=

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared-Memory Multiprocessors

Processor Processor

Processor

Processor

Cache Cache

Cache

Cache

% Bus

Memory Memory

Memory

Memory

[Memory

> A shared memory multiprocessor (SMMP) is one that offers the
programmer a single physical address space across all processors —
which is nearly always the case for multicore chips — although a
more accurate term would have been shared-address
multiprocessor.

» Uniform Memory Access (UMA) multiprocessors. Latency and
bandwidth are the same for all processors and all memory
locations. This is also called a symmetric multiprocessor (SMP).
The latency to a word in memory does not depend on which
processor/core asks for it.

» This architecture covers almost all single multicore processor chips,
e.g. 4 or more cores on basic PC or in your mobile phone.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

)

)

A\

Shared-Memory Multiprocessors

Processor

Processor

Processor

Processor

Cache

Cache

Cache

Cache

% Bus

Memory Memory

Memory

Memory

‘CPU‘ ‘CPU‘ ‘CPU‘ ‘CPU‘ ’CPU‘ ‘CPU‘

Uniform Memory Access (UMA) multiprocessors.

» Bandwidth bottlenecks are bound to occur when the
number of sockets (or Front Side Buses) is larger than a
certain limit. Does not scale due to the blocking nature of

the buses.

» Performance is improved using nonblocking networks such as
crossbar switches that establish point-to-point connections
between sockets and memory modules. Does not scale
because nonblocking networks quickly become too

expensive.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

)

)

Shared-Memory Multiprocessors

Processor Processor Processor Processor
Cache Cache Cache Cache
Memory Memory Memory Memory

% Bus

» cache coherent Non-Uniform Memory Access
(ccNUMA)

>

Each processor has its own local memory
module that it can access directly with a
distinctive performance advantage.

At the same time, it can also access any memory
module belonging to another processor using a
shared bus (or some other type of

interconnect).

A locality domain (LD) or NUMA node is a set
of processor cores together with their locally

connected memory

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared-Memory Multiprocessors

Shared memory multiprocessors (SMMP) come in two styles.
cache coherent Non-Uniform Memory Access (ccNUMA)

Intel SkyLake architecture

Configuration of a Skylake-SP Node

read/write (half-duplex)

(per direction)

(per direction)

Physical id=0 Physical id=1
0/40 | s/45 10/50 | 15/55 20/60 | 25/65 30/70 | 35/75
L3 L3 L3 13 L3 3 3 13
1/41 | 6/46 11/51 | 16/56 UltraPath = UltraPath 21/61 | 26/66 31/71 | 36/76
i i B i Interconnect | Interconnect L i — -
2/42 7/47 12/52 | 17/57 22/62 | 27/67 32/72 | 37/77
L3 L3 L3 3 L3 3 3 3
3/43 | 8/a8 13/53 | 18/s58 41.6 GB/s 23/63 | 28/68 33/73 | 38/78
3 L3 13 13 @10.4 GT/s 13 3 13 3
(Full-duplex)
a/aa | 9/a9 14/54 | 19/59 24/64 | 29/69 34/74 | 39/79
L3 L3 L3 13 L3 13 13 3
Memory Memory PCl Express PCl Express Memory Memory
Controller Controller Interface Interface Controller Controller
A A K 4 4 Yy) A
2666 MHz 2666 MHz
v L 2 v v v ¥ ¥ v v
v v
48 GB 48 GB connect connect 48 GB 48 GB
DDR4 DDR4 to B toIB DDR4 DDR4
Memory Memory @ 8 GT/s @ 8 GT/s Memory Memory
15.75 GB/s 15.75 GB/s
128 GB/s / / 128 GB/s

read/write (half-duplex)

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Modern Shared-Memory Multiprocessors

Processor]

Processor]

Processo

IProcessol

Processor]

Processor]

Processor]

Processol

g Interconnect

» cache coherent Non-Uniform Memory Access (ccNUMA)

>

>

Modern multiprocessor systems mix UMA locality
domains within an overall NUMA architecture

The LDs are linked via a coherent interconnect, which
allows access from any processor to any other
processor’s memory (single address space).

The interconnect provides a high-speed connection.
QuickPath (QPI) current technologies favored by Intel,
were replaced on Skylake by Intel Ultra Path
Interconnect (UPI)

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Cache Coherence
Problem

Cache line design (review)

13

Cache write hit policies:-

» Write-through: This policy writes data to the cache and the main memory at the same time. It ensures consistency
as the main memory always contains the same data as the cache. However, it can be slower because every write to
the cache requires a write to the main memory.

» Write-back: In this policy, only the cache location is updated during a write operation. The main memory is updated
only when the word is replaced from the cache. This policy can reduce the number of references to main memory,
thereby improving performance. However, it may lead to inconsistency between the cache and main memory.

Cache write miss policies: -

» Write-no-allocate or write-around: This policy bypasses cache entry allocation in case of a cache miss. This policy
helps avoid cache pollution (filling the cache with entries that are not frequently used) but may result in higher
latency for read operations if the recently written data is accessed soon.

» Write-allocate: Under this policy, the cache line is loaded into the cache, followed by a write operation. This is done
with the hope that subsequent writes (or even reads) will be made to that location, leading to a hit. In other words,
a cache block is first allocated before performing the write action.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache line design (review)

Let’s assume our datais int x = 1
Tag

1000

-

Data (64 bytes)]

When evicting (removing data from the cache)
D=?V=?

» The “D” stands for “Dirty” bit. If D=1, it means that the data in the cache has been modified (is “dirty”) and needs to be written
back to the main memory before eviction. If D=0, the data has not been modified (is “clean”) and can be safely evicted without
a write-back.

» The “V” stands for “Valid” bit. If V=1, it means that the data in the cache line is valid. If V=0, then the cache line is either empty
or has been invalidated and should not be read.

14

]

-

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Parallel caching

What happens if two processors (cores) want to read and write to the
same location in memory (e.g. our int A)?

CPU | CPU 2 Main
[I [I Memory
Cache Cache

15

Parallel caching

16

What happens if multiple processors (cores) want to read and write to the same location in

memory (e.g. our int A)?

» Reading A should return the last value written to its address by any processor.

CPU |
1
Cache

CPU 2

[

Cache

Main

Memory

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

17

Al cpu CPU 2 Main
I 4|_|7 Memory
E Cache Cache

» We have variable A stored in
main memory at address &2, it's
initial valueis A= 0.

» We assume write-back cache

policy. Write-back: In this policy,
only the cache location is updated
during a write operation.

time Action P1$ P2$ P3$ P4$

£, 0
ty P1loadsA [0]miss 0
ty P2loadsA 0 [0]miss 0

t1: Processor P1S loads data A into its cache. This is a miss because
the data A was not initially present in the cache of P1S.

t2: Processor P2S also loads data A into its cache. This is also a miss
because the data A was not initially present in the cache of P2S.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A] cpul CPU 2
N | . N |
E Cache Cache

Main

Memory

> We have variable A stored in

main memory at address
it's initial valueis A= 0.

» We assume write-back cache

policy.

18

S

time Action P1$ P2$ P3$ P4S Mem[&A]

to 0
t1 P1loads A [0]miss 0
t, P2loadsA 0 [0]miss 0
ts PlstoresA 1 0 0
t P3 loads A 1 0 [0] miss 0

t3: Processor P1S stores data A. The value in the cache of P1S is
updated to 1, indicating that the data A has been modified.

t4: Processor P3S loads data A into its cache. This is a miss because
the data A was not initially present in the cache of P3S.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Al cpu CPU 2 Main
J_Ii 4|_|7 Memory
E Cache Cache

» We have variable 2 stored in
main memory at address &A;
it's initial valueis A= 0.

» We assume write-back cache
policy.

19

time

Action

P1loadsA [0] miss

P2 loads A
P1 stores A
P3 loads A
P3 stores A
P2 loads A

P1$

0
1
1
1

—_

P2$

@ miss

0
0
0

[0] hit

P3$

[0] miss

2
2

P4$

Mem[&A]

o O O o o o o

t5: Processor P3S stores data A. The value in the cache of P3S is
updated to 2, indicating that the data A has been modified.

t6: Processor P2S loads data A. This is a hit because the data A is
already present in the cache of P2S.

CPU I CPU 2 Main
J_Ii 4|_|7 Memory
Cache Cache

g e e

» We have variable 2 stored in
main memory at address &A;
it's initial valueis A= 0.

» We assume write-back cache
policy.

20

Lo

ty P1loads A [0]miss
ty P2 loads A

ts P1 stores A

ty P3 loads A

te P3 stores A

te P2 loads A

b P1loadsB [B]miss

(causes eviction of A)

P1$

0
1
1
1

[EEN

P2$ P3$ P4$

0

0

[0] miss 0
0 0

0 [0]miss 0

0 2 0

[0] ht 2 0
‘ 0 2 1

t7: Processor P1S loads data B. This is a miss because the data B
was not initially present in the cache of P1S. The miss causes
eviction of data A from the cache of P1S to make room for data B.

time Action P1S P2S P3$ PAS Mem[&A]

CPU I CPU 2 Main to 0
—— 1 iemory ty P1loads A [0]miss 0
Cache Cache
t, P2loadsA 0 [0]miss 0
i u u h ts P1 stores A 1 0 0
ty P3loadsA 1 0 [0]miss 0
» This situation is a result of the cache
: ts P3storesA 1 0 2 0
coherence problem in
multiprocessor systems te P2loadsA 1 [0] ht 2 0
_ _ ty P1loadsB |B|miss | 0 2 1
» Each processor has its own private (s eictoncf A
cache, and without a mechanism to
ensure coherence, the view of Can we eliminate this problem by using locks?

memory can become inconsistent
across processors

21

Memory coherence

» A multiprocessor memory system is coherent if: -

» The results of any execution of a program for a given location X, are such that it is possible to construct a
hypothetical serial order of all operations (all processors) to X that is consistent with the results of the
execution and in which:

» operations issued by any threads occur in the order in which they were issued to the memory system

by that thread;
» the value returned by each read operation is the value returned by the /last write to that location in

the serial order.

» This definition guarantees two properties: -

» write propagation: writes become visible to other threads (note we are not specifying when);

» write serialization: writes to a location (from the same or different threads) are seen in the same order
by all threads.

22
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Memory coherence

A multiprocessor memory system is coherent if: -

1. It preserves the program order: a read at X should provide the last value written to

X by any processor.

chronology of PbwX PnX PnX PwX

operations to address ® 0 0 0 1
X

2. A write from P, to X will propagate to all other processors P, eventually.

3. Writes to the same address by different processors are serialized.

23
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache Coherence through Bus Snooping

>

>

Multiple processors with private caches
(indicated with S) are placed on a shared bus.

All coherence-related activity is broadcast
to all processor caches through the shared

bus.

Each cache controller “snoops” on the bus
watching for relevant transactions and
updates its state suitably to keep its cache
coherent.

-
~

\

Cache-memory
VO devices transaction

24

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache Coherence through Bus Snooping

Multiple processors with private caches
(indicated with S) are placed on a shared bus.

>

Each cache controller “snoops” (monitors) on ° Bus snoop °

the bus watching for relevant transactions '

/
and updates its state suitably to keep its cache $! 00 0 §
coherent. \ i f
Here relevant transaction means that it - ‘L "\
involves a memory block of which it has a 7 frachememo'y
copy in its cache. Mem ‘ s s

For example, P, may take the action of
invalidating or updating one of its cache lines
if it sees a write from P; that maps to the
same memory block.

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache Coherence through Bus Snooping

» Since cache lines are the granularity of
allocation in the cache, they are also the
granularity of coherence protocols.

» In order to support cache coherence a bus G °
. Bus snoop
must be designed such that: - 2
. /
» All transactions that appear on the bus ; ,
o , "0 0 $
are visible to all cache controllers. \ v, -
» Transactions are visible to all controllers g ‘L "\
in the same order. /£ Cache-memory
M f VO devices transaction

» A cache coherence protocol is a set of rules
that guarantees that all necessary transactions
appear on the bus, in response to memory
operations, and that controllers take the
appropriate actions in response.

» This is implemented at the hardware level.

26 =

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Write-Through Invalidation Protocol

» Coherence protocols are represented by a

>
>

collection (state diagram) of state machines and
associated transitions.

By state here we mean the state of a cache line

Actions are denoted as combinations like
“PrRd/BusRd” to represent a processor read
leading to a bus read action.

Assumptions

Pifd/— RIS * Write-through, write-no-allocate cache

* Bus is atomic

] * Memory operations are atomic
: * Proc waits until previous memory operation is
|

i complete before issuing a new one

PrRd/BusRd | BusWr/— . . .

| * Invalidation happens during bus transaction

|

1

1

(as part of the invalidation broadcast)

A/B: if A is observed, then B is generated

— Processor-initiated
PrwWr/Buswr ~ T » Bus-snooper-initiated

27

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Write-Through Invalidation Protocol

States:

V (Valid): This state indicates that the data in the cache is valid and matches the
corresponding data in the main memory.

I (Invalid): This state indicates that the data in the cache is invalid, either because it PrRd/— PrWH/BUsWr Assumptions
doesn’t match the corresponding data in the main memory or because it has been * Write-through, write-no-allocate cache

explicitly invalidated. * Bus is atomic

o . (action/|) * Memory operations are atomic
perations (action/response):
* Proc waits until previous memory operation is

PrRd/—: This represents a processor read operation. If the data is in the Valid state, complete before issuing a new one

the read operation is a hit and the data is fetched from the cache. If the data is in the PrRd/Buskd BuswWr/— » Tnwalidation happens during bus iransaction
Invalid state, the read operation is a miss and the data is fetched from the main o

(as part of the invalidation broadcast)
memory. ‘ . ‘ ‘ ‘ !
PrWr/BusWr: This represents a processor write operation. In a write-through, write- R s s, Bren B g
no-allocate cache, the data is written to both the cache (if it’s in the Valid state) and yBi hih s ohuervsd, then B sganerete
the main memory. —— Processor-initiated
PrRd/BusRd: This represents a processor read operation that results in a miss Prwr/Buswr — T » Bus-snooper-initiated

(because the data is in the Invalid state). The data is fetched from the main memory
and the cache state transitions to Valid.

BusWr/l—: This represents a write operation initiated by another processor (or
device) on the bus. The cache controller snoops the bus, detects that the write
operation affects the data in the cache, and invalidates the cache line

)

)

@

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Write-Through Invalidation Example

Write-through cache : This policy writes data to the cache and the main memory at the same time.
+ Write-no-allocate cache: This policy bypasses cache entry allocation in case of a cache miss.

t1: Processor P1 is reading data, but there is a miss in
the cache (C1). A BusRd action is initiated to read the
data from memory. The state of C1 changes to ‘V’
(valid), while P2 and C2 remain in the ‘I’ (invalid)
state. The memory content remains unchanged.

t2: Processor P2 also attempts to read data and
encounters a miss in the cache (C2). Another BusRd
action occurs. Now, both C1 and C2 are in the ‘V’ state,
indicating that they have valid copies of the data. The
memory content still remains unchanged.

29

time

Action

PIRAA- (0] miss

BusRd

P2Rd A~
BusRd

PIWr A
BusWr

P1

0

P2

[0]miss

(1
state

PrRd/- PrWr/BusWr
2 Mem[A]

state

\

\

|

|

‘l

|

v 0 PrRd/Buskd |: BusWr/—

|

|

I

1

I
/

PrWr/BusWr

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Write-Through Invalidation Example

Write-through, write-no-allocate cache

t3: Processor P1 writes data, changing its cache state to
modified (‘M’) and invalidating C2’s copy of the data

(changing its state to ‘I’). A BusWr action updates the
memory with new content.

t5: Processor P2 attempts another read but encounters

30

a miss since its cache was invalidated at t3. It initiates a
BusRd action to get updated data from memory

time

Mon PR Q MemfsA) PrRd/~
state state

PIRAA- [0 miss Voo 0
BusRd

PRAAS 0 [O)miss V.V 0
BusRd

PIWrA- 1 0 V 1
BusWr

P2Rd A~
BusRd

PrRd/Buskd

PrWWr/BusWr

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

PrWr/BusWr

BusWr/—

The MSI Write-Back Invalidation Protocol

Are we happy with write-through caches?

The protocol uses three states to distinguish valid blocks that are unmodified (clean)
from those that are modified (dirty):

» Modified: also called dirty or exclusive means that only this cache has a valid copy
of the cache line, and the copy in main memory is stale.

» Shared: the cache line is presented in unmodified state in this cache, main
memory is up-to-date, and zero or more caches may also have an up-to-date copy.

» Invalid: Not present or invalidated by a bus request.

31

The MSI Write-Back Invalidation Protocol

Key tasks of the protocol
» Ensuring processor obtains exclusive access for a write
» Locating most recent copy of cache line’s data on a cache miss

Two processor operations(triggered by local CPU)
» PrRd(read)
» PrWr(write)

Three coherence-related bus transactions (from remote caches)
» BusRd: obtain copy of line with no intent to modify
» BusRdX: obtain copy of line with intent to modify
» BusWB: write dirty line out to memory

32

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVE

RSITY) CRICOS PROVIDER CODE: 0012(

The MSI Write-Back Invalidation Protocol

The protocol uses three states to distinguish valid blocks that are unmodified (clean) from
those that are modified (dirty):

» Modified: also called dirty or exclusive, means that only this cache has a valid copy of the
cache line, and the copy in main memory is stale.

» Shared: the cache line is presented in unmodified state in this cache, main memory is up-
to-date, and zero or more caches may also have an up-to-date copy.

» Invalid: Not present or invalidated by a bus request.

‘ Corollary rule: Before a shared or invalid copy can be written and placed in the
modified state, all other potential copies must be invalidated via a read-exclusive bus transaction.

Why do we need this rule?

33

34

The MSI Write-Back Invalidation Protocol

PrRd/—
» BusRd: (Bus Read) The cache controller asks for

a copy (cache line) that it does not intend to
modify.

» BusRdX: (Bus Read exclusive) The cache
controller asks for an exclusive copy that it
intends to modify. The memory system supplies
the data. All other caches are invalidated.

PrRd/BusRd

» BusRdX /Flush: (also known as BusWB = Bus
writeback) The processor does not know about
it and does not expect a response. The main
memory is updated with the latest content.

A / B: if action A is observed by cache controller, action B is taken

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

35

MSI Write-Back Invalidation Protocol

PrRd/—
Do you think we can improve this protocol? PrWr/— A
MSI requires two interconnect transactions for the common case s
of reading an address, then writing to it: - \\\\\
\ AY

» Assume that we perform a PrRd/BusRd and only the local
processor has a copy of that memory block (cache line).
» BusRd to move from | to S state

\
\

BusRd/Flush \
/

\

» Then assume that the processor wants to write (PrWr): do we ‘ \

need to broadcast this information to any of the remote cache

?
controllers? PrRd/BusRd \ p

» BusRdX to move from S to M state in the local cache,
indicating that this cache now has the most recent
copy of the memory block.

» We need to broadcast to the other processors as they might

have a shared copy of the same memory block, and we need ,;,"'

to ensure that they invalidate their copies to maintain cache

coherence in the local cache, indicating that this cache now

has the most recent copy of the memory block. A / B: if action A is observed by cache controller, action B is taken

=
S

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

time Action P1 P2

PrWr/—
P3 c1 C2 (3 Mem[&A]
state state state > A
t, PIRAA- [0]miss - S = = 0
BusRd

PrWr/Bus ': \\\
t, P3RdA-» O - [0] S - S 0 BusRd/Flush
BusRd miss /,’ '
t3 P3WrA-» 0 = 1 = M 0 . Bustx}’FIush
BusRdX ‘ \ ;
PrRd/BusRd \ '
ts PIRAA- [miss - 1 S - S 1 PrRd/— ! !
BusRd BusRd/— : P
t PRAA-» 1 miss 1 S S S 1
BusRd

1 7/
BusRdX/— ,’
7
/

36

A / B: if action A is observed by cache controller, action B is taken

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The MESI Protocol

M and | have the same semantics as before.

\
) BusRdX/Flush
\

\
\

Exclusive (E) or exclusive-clean state means that N, S N
only one cache (this cache) has a copy of the ; :
cache line and it has not been modified (main PrWr/BusRdX \ %
memory is up-to-date).

[N
BUSRd/ \\[' \I
Flush "\ !
Vi \ I
)

1

1 1
BusRdX/Flush ;

Shared (S) now means that potentially two or \ ,
BusRdX/ | K
Flush ! ’

more processors have this block in their cache in
an unmodified state. BusRd/Flush | S

/
I /

A / B: if action A is observed by cache controller, action B is taken

| o3

=

37 w
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

More Complex Snooping Protocols

Modern multiprocessors tend to implement slightly more complex protocols than MESI

» 5-stage MOESI, MESIF, which for example include the possibility of cache-to-cache

transfers.
» Directory-based cache-coherence protocols that significantly reduce the overhead

and serialization associated with bus transactions.
» Instead of broadcasting coherence traffic to all L2’s, only send coherence

messages to L2’s that contain the line

38

Flaws of Cache Coherence Protocols (so far)

All modern multiprocessors (specifically CPUs, GPUs do not) implement cache
coherence. What are the drawbacks?

» More complicated caches and interconnects (e.g. bus).

» Increased bus traffic (what are the implication? Remember Amdahl’s law ...)

» This can significantly impinge on performance, especially for large core
counts.

» Cache line thrashing via false sharing.

39

False Sharing

» Condition where two processors write to
different addresses, but addresses map to the
same cache line

» Cache line “ping-pongs” between caches of
writing processors, generating significant
communication due to coherence protocol
(high serialization overhead)

» No inherent communication, this is entirely
artifactual communication (cachelines > 4B)

» False sharing can severely affect parallel
performance.

Thread 0

CPUO

Thread 1

CPU 1

Cache Line

Cache Line
H EEEEEN

A Cache

e

Memory

40

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Managing False Sharing

. . . . Padding
You can use array padding to avoid false sharing of a cache line
a
Cache line Data (64 bytes) >'3 V) Tag N
D V| Tag = »D|v| Tag e b |y
\ A 15
D|\V| Tag L L
float a[NTHREADS] = { 0.0 }; . .
4 pragma omp parallel for size t FL CLINE WORDS = 64/ sizeof (float);
for (int § = 0; § < BigN; j++) { # pragma omp parallel for
ali] += (float) rand (); for (int 1 = 0; i < NTHREADS ; i++) {
} for (int 7 = 0; j < BigN; j++) {
} al1][0] 4= (float) rand ();
}
}
» FL CLINE WORDS givesthe number of floats that can fit into a cache line.
» The 2D array a [NTHREADS] [FL_CLINE WORDS]ensures that each row of the array can
fit into a single cache line
» The #pragma omp parallel fordirective is used to parallelize the outer loop. This

0

means that the iterations of the outer loop will be distributed among the available threa%

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

