cudaMallocManaged

» cudaMallocManaged is a function in the CUDA API that allocates memory that can be accessed

Multicore Architecture &

» Unified Memory Allocation

» When you use cudaMallocManaged, the allocated memory is accessible from both the C h C h
host (CPU) and the device (GPU). a C e O e re n Ce

» This eliminates the need for explicit memory transfers like cudaMemcpy between the host
and device.

» Automatic Data Migration:
» The CUDA runtime automatically migrates data between the host and device as needed.
When the CPU accesses the memory, the data is moved to the host memory, and when the
GPU accesses it, the data is moved to the device memory. This migration is handled through
page faults

» Simplified Programming Model:
» This is particularly useful for applications with irregular memory access patterns

References Hardware determines (parallel) software performance

» Chapters 5, 6, from Parallel Computer Architecture A Hardware/Software Approach, D. E. Culler, J.
P. Singh, and A. Gupta, Morgan Kaufmann Publishers, Inc., ISBN-13: 9781558603431 Why do you need to know about hardware architecture?

» Intel performance analysis guide
https://software.intel.com/sites/products/collateral/hpc/vtune /per formance analysis guid
e.pdf

» In order to write efficient parallel software, you must be aware of the

» Chapters 1, 4, from Introduction to High Performance Computing for Scientists and Engineers hardware deSIgn and constraints.

(Chapman & Hall/CRC Computational Science) Georg Hager and Gerhard Wellein.

> Intel: Optimizing Applications for NUMA » Hardware parallelism is a function of cost and performance tradeoffs.
https://software.intel.com/content/www/us/en/develop/articles/
optimizing-applications-for-numa.html

> Intel: Avoiding and Identifying False Sharing Among Threads > Itis is ultimately the hardware architecture that determines the cost

https://software.intel.com/content/www/us/en/develop/articles/ (execution time) associated with each algorithmic motif e.g. CPU vs GPU
avoiding-and-identifying-false-sharing-among-threads.html

Taxonomy of parallel computing paradigms

A widely used taxonomy for describing the amount of concurrent control and data streams
present in a parallel architecture was proposed by Flynn*.

Single Instruction, Multiple Data (SIMD). A single instruction stream, either on a single
processor (core) or on multiple compute elements, provides parallelism by operating on
multiple data streams concurrently. Example: the SIMD capabilities (vectorization) of modern
superscalar microprocessors

Multiple Instruction, Multiple Data (MIMD). Multiple instruction streams on multiple
processors (cores) operate on different data items concurrently. Shared-memory and
distributed-memory parallel computers are typical examples for the MIMD paradigm.

Single-stream ILP as employed in superscalar, pipelined execution is not included in this
categorization.

*Flynn, Michael J. (December 1966). "Very high-speed computing systems". Proceedings of the IEEE. 54 (12): 1901—
1909. doi:10.1109/PROC.1966.5273.

5

TESAPROHOER0 12002 ALSTRALAN UNNESSITY) CRCOS PROVOER CODE- 00120

Shared-Memory Multiprocessors

» A shared memory multiprocessor (SMMP) is one that offers the
programmer a single physical address space across all processors —
b which is nearly always the case for multicore chips — although a
more accurate term would have been shared-address
multiprocessor.

» Uniform Memory Access (UMA) multiprocessors. Latency and
bandwidth are the same for all processors and all memory
locations. This is also called a symmetric multiprocessor (SMP).
The latency to a word in memory does not depend on which
processor/core asks for it.

» This architecture covers almost all single multicore processor chips,
e.g. 4 or more cores on basic PC or in your mobile phone.

Chipset

Shared-Memory Multiprocessors

Single address space multiprocessors come in two forms: -
Eun Eun
[e

El E| » Uniform Memory Access (UMA) Multiprocessors: Also known as
o || wo Symmetric Multiprocessors (SMP), these systems have a memory
architecture in which each processor in the multiprocessor system has
Chipset uniform access time to memory.
] » In other words, latency and bandwidth are the same for all processors
m and all memory locations. The latency to a word in memory does not
depend on which processor/core asks for it. This architecture is

common in multicore processor chips, such as those found in basic PCs
or mobile phones.

socket/

Processor Processor Processor Processor

» Non-Uniform Memory Access (NUMA) Multiprocessors: In these
systems, memory access time depends on the memory location
relative to a processor.

» The architecture is used in multiprocessor systems and aims to
improve system performance by allowing a processor to access its
local memory faster than non-local memory (memory local to another

(ache (ache (ache (ache

Memory Memory Memory Memory

s processor or memory shared between processors) =
=

TEOSAPACHIDERID V12002 AUSTRALAN UNVERSITY) HCOSPACVOER CODE: 01200

Shared-Memory Multiprocessors

Uniform Memory Access (UMA) multiprocessors.

- » Bandwidth bottlenecks are bound to occur when the
number of sockets (or Front Side Buses) is larger than a

l certain limit. Does not scale due to the blocking nature of
EEEE s

cu| eru| [erv| [eru| [eru] Teru

» Performance is improved using nonblocking networks such as

® ? ® ? e | crossbar switches that establish point-to-point connections
‘ s | between sockets and memory modules. Does not scale
® ? (B J ’ ;
| because nonblocking networks quickly become too
’ ® o ? e expensive.
cececoce
eoocoe =

Shared-Memory Multiprocessors Shared-Memory Multiprocessors

Shared memory multiprocessors (SMMP) come in two styles.
cache coherent Non-Uniform Memory Access (ccNUMA)

» cache coherent Non-Uniform Memory Access Intel Skylake architecture

(ccNUMA)
» Each processor has its own local memory Configuration of a Skylake-SP Node
Processor Processor Processor Processor module that it can access directly with a Physical id= 0 Physical id= 1
distinctive performance advantage. o0 | sras | [orso [15755 20160 | 25765 | [3or0 | 3577
il el | Bl el el | Bl
Cache Cache Cache Cache » At the same time, it can also access any memory e | se |[1ws | 16756 | [Ureapath Yt Uirapath | |2ver | 26 | [37 | serms
el el | el F_:* el el | il
| | | | module belonging to another processor using a v | e | [[pry P | Py P
el el | il el el | il S
shared bus (or some other type of vas | was || 2vms | aarss 416 Gh/s AETEAED
N s | s |G @10.4GT/s s |G ol IS
Memory Memory Memory Memory interconnect). waa | opas |[arse | orse L 2o 20764 | 29769 || 3774 | 39779
. . . ol el | el el il | el S
» Alocality domain (LD) or NUMA node is a set
I I l I of processor cores together with their locally Contrater I controter | | mtertsce. | | | [“ivertace. | | comroter | | comroter
Bus connected memory T 1T

connect
to18

DDR4

Memory @8GT/s
128 GB/s el 128 GB/s
read/write (haif-duplex) read/write (hai-duplex)

Modern Shared-Memory Multiprocessors

» cache coherent Non-Uniform Memory Access (ccNUMA) T h e Ca Ch e Co h e re n ce

» Modern multiprocessor systems mix UMA locality
ﬁ W w ﬁ domains within an overall NUMA architecture
» The LDs are linked via a coherent interconnect, which Pro b I e m
allows access from any processor to any other
processor’s memory (single address space).
@mm m » The interconnect provides a high-speed connection.
I QuickPath (QPI) current technologies favored by Intel,
were replaced on Skylake by Intel Ultra Path
Interconnect Interconnect (UPI)

—L1]
gill
1]

H

Cache line design (review)

Cache write hit policies:-

» Write-through: This policy writes data to the cache and the main memory at the same time. It ensures consistency
as the main memory always contains the same data as the cache. However, it can be slower because every write to
the cache requires a write to the main memory.

» Write-back: In this policy, only the cache location is updated during a write operation. The main memory is updated
only when the word is replaced from the cache. This policy can reduce the number of references to main memory,
thereby improving performance. However, it may lead to inconsistency between the cache and main memory.

Cache write miss policies: -

» Write-no-allocate or write-around: This policy bypasses cache entry allocation in case of a cache miss. This policy
helps avoid cache pollution (filling the cache with entries that are not frequently used) but may result in higher
latency for read operations if the recently written data is accessed soon.

» Write-allocate: Under this policy, the cache line is loaded into the cache, followed by a write operation. This is done
with the hope that subsequent writes (or even reads) will be made to that location, leading to a hit. In other words,
a cache block is first allocated before performing the write action.

ECSAPROVIOER . RVI200 AUSTRAUAN UNVERSTY) GRCDS PROVIER COOE.0020C

Parallel caching

What happens if two processors (cores) want to read and write to the
same location in memory (e.g. our int A)?

CPU I [A] cPu2 Main
4I_L I_I Memory
Cache E Cache

=

Cache line design (review)

Let’sassume ourdatais int x = 1

DV Ty 10000

Data (64 bytes)

When evicting (removing data from the cache)
D=?V=?

» The “D” stands for “Dirty” bit. If D=1, it means that the data in the cache has been modified (is “dirty”) and needs to be written
back to the main memory before eviction. If D=0, the data has not been modified (is “clean”) and can be safely evicted without
a write-back.

» The “V” stands for “Valid” bit. If V=1, it means that the data in the cache line is valid. If V=0, then the cache line is either empty
or has been invalidated and should not be read.

TEOSAPACHIDERID V12002 AUSTRALAN UNVERSITY) HCOSPACVOER CODE: 01200

Parallel caching

What happens if multiple processors (cores) want to read and write to the same location in
memory (e.g. our int A)?

» Reading A should return the last value written to its address by any processor.

[A] cPut A] cpu 2 Main

I I 7' I Memory
@ Cache K Cache

time Action P1$ pP2$ P3$ P4§ Mem[&A] time Action P1$ P2S P38 P4S Mem[&A]

Alcrut Al cPU2 Main t() 0 Al CPUI Al cPu2 Main tO 0
e . ; i PLloadsA [0]miss 0 _— _— ; 1 PlloadsA [0 miss 0
ty P2loadsA 0 [0]miss 0 t P2loadsA 0 [0]miss 0
e el o e ;
» We have variable A stored in » We have variable A stored in f4 L) ! 0 @ s 0
main memory at address &A; it's main memory at address &2;
initial valueis A= 0. it's initial valueis A= 0.
» We assume write-back cache » We assume write-back cache
policy. Write-back: In this policy, policy.
only the cache location is updated
during a write operation. t1: Processor P1S loads data A into its cache. This is a miss because t3: Processor P15 stores data A. The value in the cache of P15 is
the data A was not initially present in the cache of P15. updated to 1, indicating that the data A has been modified.
t2: Processor P2$ also loads data A into its cache. This is also a miss t4: Processor P3$ loads data A into its cache. This is a miss because
because the data A was not initially present in the cache of P25. the data A was not initially present in the cache of P38.

time Action s p2s p3$ PIS Mem[8A] time Action P1S P2S P3$ P4s Mem[&A]

Al cput A| cpu2 Main tO 0 Al CPUI Al cpu 2 Main tO 0
. . i 0
1] 1] oy t PLloadsA [0]miss 0 1] 1] Nemory t P1loadsA [0]miss
A| Cache A| Cache A A Cache A| Cache A .
t, PloadsA 0 [0]miss 0 t) P2loadsA 0 [0]miss 0
i'—”—'h ta PlstoresA 1 0 0 il—”—'h t3 PlstoresA 1 0 0
t, P3loadsA 1 0 [@miss 0 t P3loadsA 1 0 [0]miss 0
» Weh iable A i » Weh iable A i
> el ave variable A stored in t P3 stores A 1 0) 0 e. ave variable A stored in ts P3 stores A 1 0 D) 0
main memory at address &2; main memory at address &2; ; PloadsA 1 [hi ; 0
i 0ads I
its initial value is A= 0 . te P2loadsA 1 [Ohi 2 0 it's initial value is A= 0 . 6
» We assume write-back cache » We assume write-back cache ty l?jﬁlgiiig s L 2 A
policy. t5: Processor P3$ stores data A. The value in the cache of P3$ is policy.
updated to 2, indicating that the data A has been modified. t7: Processor P1$ loads data B. This is a miss because the data B

t6: Processor P2S loads data A. This is a hit because the data A is

was not initially present in the cache of P1S. The miss causes
already present in the cache of P2S.

eviction of data A from the cache of P1S$ to make room for data B.

Parallel caching Memory coherence
time Action P1$ P2$ P3s$ P4S Mem[&A]

Al ceut Alcru2 Main ty 0 » A multiprocessor memory system is coherent if: -
l ju: Memory t P1loadsA [0]miss 0
(A] Cache [A] Cache [A] » The results of any execution of a program for a given location X, are such that it is possible to construct a
t P2 loads A 0 @miss 0 hypothetical serial order of all operations (all processors) to X that is consistent with the results of the
i u u h ts P1stores A 1 0 0 execution and in which:
» operations issued by any threads occur in the order in which they were issued to the memory system
b P3loadsA 1 0 (0] miss 0 by that thread;
> This situation is a result of the cache ¢ PIstoresA 1 0 2 0 » the value returned by each read operation is the value returned by the /ast write to that location in
coherence problem in 5 the serial order.
multiprocessor systems t P2loadsA 1 [0]hit 2 0
f P1 loads B miss I 0 9 1 > This definition guarantees two properties: -
» Each processor has its own private [—
cache, and without a mechanism to > write propagation: writes become visible to other threads (note we are not specifying when);
ensure coherence, the view of Can we eliminate this problem by using locks? » write serialization: writes to a location (from the same or different threads) are seen in the same order
memory can become inconsistent by all threads.
across processors
Memory coherence Cache Coherence through Bus Snooping

A multiprocessor memory system is coherent if: -

. . » Multipl ith privat h
1. It preserves the program order: a read at X should provide the last value written to X u . lple pro.cessors WIth private caches
(indicated with $) are placed on a shared bus.
X by any processor. Bus $700p

» All coherence-related activity is broadcast /

to all processor caches through the shared $ / -
chronology of PwX PnX PnX PywX bus ! S
operations to address — ¢ L 9 » Each cache controller “snoops” on the bus \ T | — 4 - \
X watching for relevant transactions and I f':‘n:(";"’”v
updates its state suitably to keep its cache Now il
2. Awrite from P, to X will propagate to all other processors P,, eventually. coherent.

3. Writes to the same address by different processors are serialized.

Cache Coherence through Bus Snooping Cache Coherence through Bus Snooping

» Since cache lines are the granularity of

Multiple processors with private caches allocation in the cache, they are also the

(indicated with $) are placed on a shared bus.

granularity of coherence protocols.
“ ” . » In order to support cache coherence a bus

» Each cache controller “snoops” (monitors) on Bus snoop must be desiened such that: - Bus $n00p

the bus watching for relevant transactions i g : /

and updates its state suitably to keep its cache s) 00 0 > All transactions that appear on the bus $ / O

coherent. Y are visible to all cache controllers. !
» Here relevant transaction means that it T —— » Transactions are visible to all controllers T

involves a memory block of which it has a | E;h&mw in the same order. Cucr

copy in its cache. Mem Y0 deces ‘ V0 deices
> For e-xanr?ple, Py may .take the ac?tlon of) » A cache coherence protocol is a set of rules

!nyal|dat|ng o.r updating one of its cache lines that guarantees that all necessary transactions

if it sees a write from P; that maps to the appear on the bus, in response to memory

same memory block.

operations, and that controllers take the
appropriate actions in response.
o » This is implemented at the hardware level.

The Write-Through Invalidation Protocol The Write-Through Invalidation Protocol

States:
Assumptions V (Valid): This state indicates that the data in the cache is valid and matches the
PrRd/— PrWr/BusWr : . " - .
* Write-through, write-no-allocate cache corresponding data in the main memory. i
. i I (Invalid): This state indicates that the data in the cache is invalid, either because it _ Assumptions
« Busis atomic) A) - PrRd/ Prr/BusWr . hrough, " "
» Coherence protocols are represented by a doesn’t match the corresponding data in the main memory or because it has been Write-through, write-no-allocate cache
. . . * Memory operations are atomic explicitly invalidated. + Bus is atomic
collection (state diagram) of state machines and ' 1y op
R A . " : o K * Memory operations are atomic
associated transitions. \ + Proc waits until previous memory operation is Operations (action/response): \
> h h £ hel 'I Jete before issui \ * Proc waits until previous memory operation is
i | complete before issuing a new one '
By state here we mean the state of a cache line PrRd/BusRd ! BusWr/— PrRd/—: This represents a processor read operation. If the data is in the Valid state, | complete before issuing a new one
. I . - ; . ! _
» Actions are denoted as combinations like ' *+ Invalidation happens during bus transaction the read operation is a hit and the data is fetched from the cache. If the dataisinthe FA¥%sRd j Dot * Invlcation happensduring bus transaction
N - K B . |
“PrRd/BusRd” to represent a processor read / (as part of the invalidation broadcast) 'm“‘;?"grztate’ the read operation is a miss and the data is fetched from the main : {as partof the invaldation broadcst)
|ead|ng to a bus read action. / PrWr/BusWr: This represents a processor write operation. In a write-through, write- / B Alsobserved, hen i)
A/B: if Ais observed, then B is generated no-allocate cache, the data is written to both the cache (if it’s in the Valid state) and AVB:f A observed,then B generate
Processor-initiated the main memory. ——— Processor-initiated
- PrRd/BusRd: This represents a processor read operation that results in a miss Prwr/Buswr — T > Bus-snooper-nitiated
Pwr/Buswr — » Bus-snooper-initiated

(because the data is in the Invalid state). The data is fetched from the main memory
and the cache state transitions to Valid.

BusWr/I—: This represents a write operation initiated by another processor (or
device) on the bus. The cache controller snoops the bus, detects that the write
operation affects the data in the cache, and invalidates the cache line

A Write-Through Invalidation Example A Write-Through Invalidation Example

Write-through cache : This policy writes data to the cache and the main memory at the same time. Write-through, write-no-allocate cache
+ Write-no-allocate cache: This policy bypasses cache entry allocation in case of a cache miss.

" . Prid/— Prive/Buswr
i P time Action P1 P2 5 ,?te 5 ,c:‘e Mem[&A]

t1: Processor P1 is reading data, but there is a miss in time Adion PL P2 (1 @ MemA

the cache (C1). A BusRd action is initiated to read the state state t3: Processor P1 writes data, changing its cache state to t [| 0 vl

data from memory. The state of C1 changes to ‘V’) [0 v modified (‘M) and invalidating C2's copy of the data t, PIRdAS [nis U '

(valid), while P2 and C2 remain in the ‘I’ (invalid) : ik s v 0 i (changing its state to ‘I’). A BusWr action updates the Buskd i

i 1 | memory with new content. 1

state. The memory content remains unchanged. Bhd ' y o MAS 0 s VU 0 g ! vt~
! BusWi/— BusRd 1

t2: Processor P2 also attempts to read data and t, PRIAS 0 [ms VOV o Pk g SN 5: Processor P2 attempts another read but encounters]

encounters a miss in the cache (C2). Another BusRd Bushd i a miss since its cache was invalidated at t3. It initiates a b MW L0V : ’,‘
i :

action occurs. Now, both C1 and C2 are in the ‘V’ state, t, PWAs 1 ! BusRd action to get updated data from memory il

indicating that they have valid copies of the data. The Buslr ts PhdAs

memory content still remains unchanged. f Buskd

¢ Prie/BusWr
5

D,

ts PrWr/BusWr

TESAPROHOER0 12002 ALSTRALAN UNNESSITY) CRCOS PROVOER CODE- 00120 TEOSAPACHIDERID V12002 AUSTRALAN UNVERSITY) HCOSPACVOER CODE: 01200

The MSI Write-Back Invalidation Protocol The MSI Write-Back Invalidation Protocol

Are we happy with write-through caches? Key tasks of the protocol

» Ensuring processor obtains exclusive access for a write
. . . » Locating most recent copy of cache line’s data on a cache miss
The protocol uses three states to distinguish valid blocks that are unmodified (clean)

from those that are modified (dirty): Two processor operations(triggered by local CPU)

» PrRd(read)
» Modified: also called dirty or exclusive means that only this cache has a valid copy > Prwr(write)
of the cache line, and the copy in main memory is stale.

» Shared: the cache line is presented in unmodified state in this cache, main > BusRd: obtain copy of line with no intent to modify

memory is up-to-date, and zero or more caches may also have an up-to-date copy. » BusRdX: obtain copy of line with intent to modify
> Invalid: Not present or invalidated by a bus request. > BusWB: write dirty line out to memory

Three coherence-related bus transactions (from remote caches)

The MSI Write-Back Invalidation Protocol

The protocol uses three states to distinguish valid blocks that are unmodified (clean) from

those that are modified (dirty):

» Modified: also called dirty or exclusive, means that only this cache has a valid copy of the
cache line, and the copy in main memory is stale.

» Shared: the cache line is presented in unmodified state in this cache, main memory is up-
to-date, and zero or more caches may also have an up-to-date copy.

» Invalid: Not present or invalidated by a bus request.

- Corollary rule: Before a shared or invalid copy can be written and placed in the
modified state, all other potential copies must be invalidated via a read-exclusive bus transaction.

Why do we need this rule?

TESAPROHOER0 12002 ALSTRALAN UNNESSITY) CRCOS PROVOER CODE- 00120

MSI Write-Back Invalidation Protocol

PrRd/—

Do you think we can improve this protocol?

MSI requires two interconnect transactions for the common case
of reading an address, then writing to it: -

» Assume that we perform a PrRd/BusRd and only the local
processor has a copy of that memory block (cache line).
> BusRd to move from | to S state

» Then assume that the processor wants to write (PrWr): do we

need to broadcast this information to any of the remote cache
controllers?

» BusRdX to move from S to M state in the local cache,
indicating that this cache now has the most recent
copy of the memory block.

» We need to broadcast to the other processors as they might
have a shared copy of the same memory block, and we need
to ensure that they invalidate their copies to maintain cache
coherence in the local cache, indicating that this cache now
has the most recent copy of the memory block.

Prwr/BusRdX

v
, [l

N '
. BusRdX[Flush
\ '

\ 1
\ i
v I
'
1
'

PrRd/BusRd
PrRd/—
BusRd/—
I
BusRdX/— ,/
R

/

A / B: if action A is observed by cache controller, action B is taken

The MSI Write-Back Invalidation Protocol

»

BusRd: (Bus Read) The cache controller asks for
a copy (cache line) that it does not intend to
modify.

BusRdX: (Bus Read exclusive) The cache
controller asks for an exclusive copy that it
intends to modify. The memory system supplies
the data. All other caches are invalidated.

BusRdX /Flush: (also known as BusWB = Bus
writeback) The processor does not know about
it and does not expect a response. The main
memory is updated with the latest content.

PrRd/—
PrWr/—

A
4
#7%,
/
’
’

Prwr/BusRdX

N

\\ BusRdX/Flush
\

i
i
v 1
i

A/ B:if action A is observed by cache controller, action B is taken

An MSI Example

t

time Action P1 P2 P3 C1 (v} €3 Mem[&A]
state state state
PIRAA- [0]miss - S - - 0
BusRd
P3RdA-> 0 =] S = 5 0
BusRd miss
P3WrA-» 0 - 1 - M 0
BusRdX
PIRAA- [Dmiss - 1 5 = S 1
BusRd
PRIA-> 1 [Omiss 1 S § S 1
BusRd
A

TEOSAPACHIDERID V12002 AUSTRALAN UNVERSITY) HCOSPACVOER CODE: 01200

1
'
H \
1

Prwr/BusRdX

\

\

\

Bust/"FIush M
/

N '
. BusRdX/Flush
\ i

\ i
v i
i

PrRd/BusRd

0}

PrRd/— ' ;
BusRd/— H K

;S
BusRdX/— .,/
A

.

‘.

S

ot

/ B: if action A is observed by cache controller, action B is taken

) —

The MESI Protocol - More Complex Snooping Protocols

M and | have the same semantics as before.

Modern multiprocessors tend to implement slightly more complex protocols than MESI
.) \‘\‘ sus\ﬁ’wyﬂush
Exclusive (E) or exclusive-clean state means that st > 5-stage MOESI, MESIF, which for example include the possibility of cache-to-cache
only one cache (this cache) has a copy of the S transfers.

cache line and it has not been modified (main PrWrBusRdx

) BusRd/ \\/
memory is up-to-date). PrRA/— Flush A

/

» Directory-based cache-coherence protocols that significantly reduce the overhead
s/ and serialization associated with bus transactions.

Bisray/ | » Instead of broadcasting coherence traffic to all L2’s, only send coherence

Fuh 0 messages to L2’s that contain the line

Shared (S) now means that potentially two or
more processors have this block in their cache in
an unmodified state.

PrRd/{BusRd(S)

PrRd/—
BusRd/Flush

A/ B:if action A is observed by cache controller, action B is taken

& —

3 =z

Flaws of Cache Coherence Protocols (so far) False Sharing
. - . » Condition where two processors write to Threado Thread 1
AIIhmodern wﬁlt;procti;so;s (spsufllcilly CPUs, GPUs do not) implement cache different addresses, but addresses map to the rea hrea
coherence. What are the drawbacks? same cache line CPU 0 CPU 1
» More complicated caches and interconnects (e.g. bus). » Cache line “ping-pongs” between caches of I I -
writing processors, generating significant Cache Line y Cacheline
> Increased bus traffic (what are the implication? Remember Amdahl’s law ...) communication due to coherence protocol

(high serialization overhead)

L\ cache
|

» This can significantly impinge on performance, especially for large core
counts.

» No inherent communication, this is entirely
artifactual communication (cachelines > 4B)

» Cache line thrashing via false sharing.

» False sharing can severely affect parallel
performance.

Memory

Managing False Sharing

. . . . Padding
You can use array padding to avoid false sharing of a cache line
o
Cache line Data (64 bytes) *‘DM Tag i
‘DM Tag ‘ T — "D‘V‘ Tag o
»‘D‘V‘ Tag n=

float a[NTHREADS] = {0.0};
pragma omp parallel for «

for (int i = 0; 1 < NTHREADS ; i++) {
for (int j = 0; j < BigN; j++) { N .
a[i] += (float) rand (); for (int i =

ali1(00] +

; S
b

for (int j =

size t FL CLINE WORDS
float a[NTHREADS][FL_CLINE WORDS] =
pragma omp parallel for

; 1 < NTHREADS ;

= 64/ sizeof (float);
{0.0};

it+) |

j < BigN; j++) {

(float) rand ();

» FL_CLINE_WORDS gives the number of floats that can fit into a cache line.
» The2Darray a [NTHREADS] [FL_CLINE WORDS]ensures that each row of the array can

fit into a single cache line

» The #pragma omp parallel fordirective is used to parallelize the outer loop. This

means that the iterations of the outer loop will be distributed among the available threaﬁlL

