Semester 1 SELT - survey journey

The Student Experience of Learning & Teaching survey allows students to give feedback on their courses and
teachers. It is voluntary and confidential, and run by the Institutional Research (IR) team.

19 May - Survey opens
Check your email or
Wattle page for available

15 June - Survey closes
IR team perform screening of
comments for welfare concerns

surveys @
€ »
$ (f =7¢ A
d ~27 June
Survey runs for 4 weeks Grades are released to
Please provide constructive and students
respectful feedback (your teacher
can’t identify you)
ﬁu?_tralllan Find out more on the Info for Students webpage:
Ugi\llce)?saity https://services.anu.edu.au/learning-teaching/education-data/student-

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) | CRICOS PROVIDER CODE: 00120C

experience-of-learning-teaching-selt/information-for

7 July

SELT feedback is made available
to teachers and course
convenors to improve future
course delivery

O

SELT - Frequently asked questions

What kind of feedback is helpful?

Think about your experience of the course and
teaching, and what worked or didn’t work for you.

When writing feedback, focus on respectful and
constructive language — if you were a teacher, what
type of feedback would help you improve the class?

Australian Find out more on the Info for Students webpage:
Natlona-l https://services.anu.edu.au/learning-teaching/education-data/student-
University ' e

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) | CRICOS PROVIDER CODE: 00120C

experience-of-learning-teaching-selt/information-for

Can teachers see who left specific feedback?

SELT is confidential, and teachers cannot see, or ask to see,
the identity of a respondent. Unless you self-identify, for
example by using names or describing specific events,
teachers cannot identify you.

If your class has very few enrolments, it may be difficult to
remain completely anonymous.

COMP4300 - Course Update

» Final Exam (40%)
» Wednesday 11/06/2025 at 2:00pm at Copland G31 (Building 24)

» The exam will cover all materials presented in the course e.g. in
labs, lectures and assignments etc

» Course/lecture notes permitted.

» Assignment 2
» Released on 24 April
» Due next Monday 26/05/2025, 11:55PM

PERFORMANCE ANALYSIS WITH THE
ROOFLINE MODEL (CPU & GPU)

Australian
s National
g =" University

0

References

Accelerating HPC Applications with NVIDIA Nsight Compute Roofline
Analysis https://developer.nvidia.com/blog/accelerating-hpc-
applications-with-nsight-compute-roofline-analysis/

C. Yang, T. Kurth, and S. Williams, Hierarchical Roofline analysis for GPUs:
Accelerating performance optimization for the NERSC-9 Perlmutter system,

Concurrency and Computation: Practice and Experience, e5547,
2019. https://doi.org/10.1002/cpe.5547

Analyze CPU Roofline

https://www.intel.com/content/www/us/en/docs/advisor/user-
guide/2024-1/analyze-cpu-roofline.html

https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://developer.nvidia.com/blog/accelerating-hpc-applications-with-nsight-compute-roofline-analysis/
https://doi.org/10.1002/cpe.5547
Analyze%20CPU%20Roofline

Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD) [Assess]

» APOD is a cyclical process

» Initial speedups can be achieved, tested,
f':md deployed with only minimal initial [Deploy] [Para"e“ze]
investment of time

» The cycle can begin again by identifying
further optimization opportunities,
seeing additional speedups

> Allows for incremental deployment of [Optimize J
the even faster versions of the
application into production

APOD design cycle for applications

Code Optimisation

[Assess]
Assess, Parallelize, Optimize, Deploy(APOD)

» By understanding the end-user’s

requirements and constraints and by [Deploy] [Parallelize]
applying Amdahl’s and Gustafson’s laws,
the developer can determine the likely
upper bound of performance

improvement from acceleration of the o
. . pe . . . Optimize
identified portions of the application.

APOD design cycle for applications

Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD)
[Assess]

» Having identified the hotspots and having
done the basic exercises to set goals and
expectations, the developer needs to
parallelize the code. [Deploy] [Pa,a,,e“ze]

» Depending on the original code, this can
be as simple as calling into an existing
GPU-optimized library such as cuBLAS or
adding a few preprocessor directives as
hints to a parallelizing compiler. [Optimize]

» Some applications’ designs will require
some amount of refactoring to expose APOD design cycle for applications
their inherent parallelism

Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD) []
Assess

» After each round of application
parallelization is complete, the developer

can move to optimizing the
implementation to improve performance [Deploy] [Parallelize]

» Optimizations can be applied at various
levels e.g. from overlapping data transfers
with computation, all the way down to
fine-tuning floating-point operation [Optimize J
seguences

» The available profiling tools are invaluable
for guiding this process

APOD design cycle for applications

CPU and GPU Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD) []
Assess

» Having completed the GPU acceleration of
one or more components of the

application it is possible to compare the
outcome with the original expectations [Deploy] [Parallelize]
developed in the assess step

» The partially parallelized implementation
can be carried through to production as it
allows the user to profit from their [Optimize]
investment as early as possible (the
speedup may be partial but is still
valuable)

APOD design cycle for applications

10

Performance Models

11

We need a quantitative model that defines good performance with reference to the

specific hardware available. Good performance is defined by two fundamental
requirements:

Scalability requirement: Must not be significantly penalized by serialization (Amdahl’s
Law), load imbalance or communication (parallel overhead, synchronization)

Efficiency requirement: Must attain high utilization of the CPU’s compute and/or
bandwidth capabilities

Performance Metrics

o) O(log(N)) o .
5 - N » In order to find such a model let’s start by
Arithmetic Intensit:
<:'spa,se° T cpoora H looking at some simple algorithmic motifs
Mt Methods 32?:5 NF;:g%le . . . o .
Gy | TS BLASH Shmens which are common in scientific computing.
Grids Grids
FoEs ™ Mathode) » Clearly, a first limit for their execution speed

Theoretical Peak Performance (AVX-512 instructions) is the peak floating point operations (FLOPs)
performance of the hardware, measured in
FLOPs/s (Figure: Cascade Lake

[II III https://www.microway.com)

» Another limit is main memory bandwidth,
- , , | which restricts the speed of data transfers
C | [| | from and to the CPU.

GigaFLOPS (floating-point operations / sec)

2 g o | | . » The more FLOPs/s an application performs
= - per unit of data transferred, the more likely
R RO S R NP S 1 SR S P S PP g the code is to reach peak performance.
YN S N I Y Yy
B Intel Xeon Silver Intel Xeon Gold I Intel Xeon Platinum

12
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

https://www.microway.com/

Performance Metrics

g Olog(N)) o
~ R . . o L] e o
<:. T i The key metric is the arithmetic intensity:
Sparse fll%?l:ggls Dense N—v‘body
e FLOP/s (1)
Structured | Structured
Grids Grids Al —_

(Stencils, (Lattice

PDEs) Methods) ByteS/S

Theoretical Peak Performance (AVX-512 instructions)

. where the denominator is the number of Bytes read
from and written to main memory per second.

2500

2000
|

of FLOPs divided by the Bytes transferred to and

II III » The Al can be calculated taking the total number
from main memory during program execution.

1000

| | F N ' » An especially important value is the machine
' o o i balance B,, .the ratio between the peak FLOP
g =° ; rl performance and the memory bandwidth

- _ Peak Performance (FLOF/s)
A Memory bandwidth (Bytes/s)

GigaFLOPS (floating-point operations / sec)
1500
|

B Intel Xeon Silver Intel Xeon Gold I Intel Xeon Platinum

PN ‘

—

)
=

13
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Roofline Model

» This is a simple but very powerful

14

model that ties FLOP performance,

Al and memory performance in a 2D

graph. [William, Waterman, and Patterson,

Communications of the ACM Volume 52,
Number 4 (2009), Pages 65-76]

One good way to find peak memory
performance is to use the STREAM

benchmarks.
For a given code snippet (kernel) one

can find a point on the horizontal axis
by measuring its Al.

The performance of that kernel lies on
the vertical line through that point.

Attainable GFLOPs/sec

Peak GFLOPs/s
0 O
0
0

B
Al: FLOPs/Byte Ratio

m

Al = Arithmetic Intensity

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Roofline Model

» For each given Al, the “roofline” is the
maximum FLOP performance achievable by
the code on the specific hardware
architecture used.

Peak Memory BW #Al

Max Attainable GFLOP/s = min {
Peak FLOP Performance

» There are four performance regions: -

» unattainable performance

» bandwidth bound performance
» compute bound performance
» poor performance

» The ridge point has abscissa equal to the
machine balance.

Attainable GFLOPs/sec

Peak GFLOPs/s
O

Bm
Al: FLOPs/Byte Ratio
(Al = Arithmetic Intensity)

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Roofline Model

> Kernels that lie close to the roofline are

making good use of the hardware Peak GFLOPs/s
resources. @ 0
o)
O

» Kernels can have low performance
(GFLOPs/s), but make good use (%
STREAM) of a machine.

Attainable GFLOPs/sec

» Kernels can have a relatively high
performance (GFLOPs/s), but still make
poor use (% Peak GFLOPs/s) of a machine.

B

m

Al: FLOPs/Byte Ratio

Al = Arithmetic Intensity

16
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

(c) Optimization Regions

CPU Code under the Roofline

64 | : : : .
I N S T
peak floating—point performance
. o sating—point balance)
How can your CPU kernel lie in the poor 2 : :
ion? & : 3
performance regionr e 8 SAZT Z T 1.ILP or SIMD
e ! :
s 1
< b
¢
1
i 5
' TLP only]
:
i
!
- i i
> 'D
S 1 £
1/2 - 1 Q 1 1 L Q 1
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

(c) Optimization Regions

T T T T T

CPU Code under the Roofline

64 - 1
N L _ v _ v _
How can you CPU kernel lie in the poor
. P) peak floating—point performance
performance region: Q EErEY re——r—
2 | ;
. B o fe o .
» A likely reason is the lack of some specific & :
.. . D O [T N G S 1. ILP or SIMD
optimizations that enable the programtouse % o
the underlying hardware efficiently. g, LS L0 L

TLP only]

\\
&
&
1 '
Iv— N
L) ©
1 £ =
Q D
1/2 - 1 1 X< 1 1 NG 1
1/8 1/4 1/2 1 2 -3 8 16

Operational Intensity (Flops/Byte)

~—/
N

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

(c) Optimization Regions

T T T T T

CPU Code under the Roofline

64 | .
» Each optimization constitutes a | | |
" ope ” 32 .
performance ceiling” below the
a ppropriate rOOﬂine peak floating—point performance
| @ 2. flgfting—point balance
: L
. . . S -
» The horizontal lines are performance rooflines g8 SsSA S L 1.ILP or SIMD
associated with FLOP performance. §

» The tilted lines are associated with memory £ TLP only]
performance. 2 :
1 l _ e -
'3 @
1 £ =
1/2 [2o% i |Q i i é’ i
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

5
—
V:/

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline

T T T T T T

> The first FLOP performance ceiling is associated with 1 _
Thread Level Parallelism (TLP).
32 1
» In order to achieve reasonable performance on

modern processors one must use all cores in poax floating_polnt performance
paraIIeI %_ 251 itmg-pou'?t balance
» The second FLOP performance ceiling is associated % e

with Instruction Level Parallelism (ILP) and SIMD g :
parallelism. 2 L &AL L h

» Maximize ILP is about hiding completely

functional unit latency: loop unrolling, loop £ TLP only]
fusion, avoid branching in inner loops, etc. &
i
» Need to use SIMD instructions in order to use ! . ~ “
. 'S)
all processors floating point arithmetic units. 1 E £
1/2 - i 1 X i i G i
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

:"
20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline

The final FLOP performance ceiling is associated
with floating point instruction mix.

Peak FLOP performance requires an equal number
of nearly simultaneous additions and
multiplications e.g. (a*x) +b

This balance is necessary typically because the
computer supports a fused multiply-add (FMA)
instruction.

Another reason may be also that FP units have an
equal number of FP adders and FP multipliers.

Attainable GFlops/s

(c) Optimization Regions

T T T T T T

64

32 I

peak floating—point performance

TLP only]

S
o3
&P ;
1 : .
lv— N
'3 ©
1 £ =
) (]
1/2 - i 1 X< i i 7 i
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

21

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

_— ———
N
=

CPU Code under the Rooflin

>

>

The first memory performance ceiling is associated with
strided access.

In order to reduce main memory traffic, inner loops
must have a unit stride access pattern.

The second is about memory affinity, that is NUMA
effects.

Allocate data and the threads tasked to operate on that
data to the same memory/numa domain pair

Typical 2S Configuration

—>
2nd Generation | ° 2nd Generation
Intel® Xeon® nte Intel® Xeon®
Scalable Processor UPI Scalable Processor
—>
“=-=>

DMdet rt ii DM|x4I I 1 i
ORI 3x16 PCle* 3x16 PCle*
Series Chipset

Integrated Intel” Ethernet
Connection X722

Key DDR4 DIMMs

DDRA or Intel® Optane™ DC
Persistent Memory DIMMs

Attainable GFlops/s

e

(c) Optimization Regions

64 |

32 I

T

T T T T T

peak floating—point performance

f
!
§
b
!
1
i 5
: TLP only]
S : i
H H
[[
|‘_ IC\I
'3 '3
1 £ 1 £
] D
1/2 20} i 1 X i i 1 X i
1/8 1/4 1/2 1 2 4 8 16

Operational Intensity (Flops/Byte)

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

5
—
V:/

CPU Code under the Roofline

» The final memory performance ceiling is associated
with software prefetching.

| # pragma prefetch |

include <immintrin.h>
void mm prefetch (char const* p,
int 1)

» Avoid branching in bottleneck-determining code,
unroll loops, etc.

Attainable GFlops/s

(c) Optimization Regions

T T T T T T

64 |

32 I

peak floating—point performance

2. flgfating—point balance|

S 1. ILP or SIMD

Kernel 1 -
Kernel 2

TLP only]

1/8 1/4 1/2 1 2 4 8
Operational Intensity (Flops/Byte)

23

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

16

=
=
=

GPU Code Optimisation

l Per thread registers and
local memory

GPU Performance optimization
revolves around four basic strategies:

Thread Block

Shared Memory

HH

Thread Block Cluster

Per block Shared memory

» Maximize parallel execution to

achieve maximum utilization

» Optimize memory usage to achieve
maximum memory throughput

» Optimize instruction usage to
achieve maximum instruction
throughput

» Minimize memory thrashing by not
constantly allocating and freeing
memory

Thread Block

Thread Block

I Shared Memory

Shared Memory I*

Grid with Clusters

Thread Block Cluster

Thread Block Cluster

Thread Block

Thread Block

Thread Block

Thread Block

I Shared Memory

Shared Memory I

I Shared Memory

Shared Memory I

Shared memory of all

- thread blocks in a cluster

form Distributed Shared
Memory

Global Memory shared
between all GPU kernels

24

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Code under the Roofline

Typically reasons for low performance are
architecture (and kernel) dependent

Why could the kernel corresponding to red
dots have low performance?

How can we increase performance?

Attainable FLOP/s

Peak GFLOP/s

y e} 50% of Peak

A
7

Arithmetic Intensity (FLOP:Byte)

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Code under the Roofline

1

Peak GFLOP/s

» Expose more parallelism to maximise SM usage
and hide arithmetic latency

> Change grid and block sizes (kernel configuration) 50% of Peak

to increase block-level parallelism
» Unroll loops
» Tuning number of registers per thread

Attainable FLOP/s

» Avoid thread divergence

\ 4

26

GPU Code under the Roofline

> What if we want better
bandwidth utilization?

Attainable GFLOPs/sec

poor pi

unattainable performance

Peak GFLOPs/s

erformance

Bm

Al: FLOPs/Byte Ratio

27

TEQSA PROVIDER ID:

: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 0012(

GPU Code under the Roofline

> What if we want better bandwidth utilization?

» Optimize for obtaining aligned and coalesced memory
transactions

» This may require a redesign of data structures (e.g. AoS to

SoA) and better indexing
» Expose more parallelism to maximise SM usage and hide
memory latency
Array of Structures (AoS) Structure of Arrays (SoA)
struct point3D { struct pointlist3D {
float x; float x[N];
float y; float y([N];
float z; float z[N];
}i i
struct point3D points[N]; struct pointlist3D points;

Attainable GFLOPs/sec

unattainable performance

Peak GFLOPs/s

poor performance

m

Al: FLOPs/Byte Ratio

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

High Performance GPU Code

t i unattainable performance

@ { Peak GFLOPs/s

» Assume your kernels yields the yellow dot
performance.

poor:performance

» Are you happy with this level of
performance...?

Attainable GFLOPs/sec

Bm
Al: FLOPs/Byte Ratio

29
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Increasing Al for GPU Code

1 unattainable performance

@ i Peak GFLOPs/s
. @

» Assume your kernels yields the yellow dot
performance.

» Are you happy with this level of pooriperformance
performance...?

Attainable GFLOPs/sec

> How can we increase Al? | !

Bm
Al: FLOPs/Byte Ratio

v

30

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Increasing Al for GPU Code

* » unattainable performance
Peak GFLOPs/s
. (&)
» Assume your kernels yields the yellow dot A R . o o . M. shrttsrlesivaiir
. >
performance. Are you happy with it? a
9
é 1
. poor:performance
» How can we increase Al? = i
© i
» Increasing the data reuse and reducing the = g
data movement increases Al i.e. reducing £ ;
data movement i ‘
Bm
Al: FLOPs/Byte Ratio
31 =

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Increasing Al for GPU Code

» Assume vyour kernels vyields the vyellow dot :
performance. Are you happy with it? i Peak GFLOPs/s

> How can we increase Al?

» Increasing the data reuse and reducing the data
movement increases Al

» Better caching = Optimize code to be cache
friendly (avoid false sharing on CPU)

» Usage of shared memory on GPU to reduce global
memory transactions

» Also, you may be able to achieve better
performance with a fundamental algorithm

Attainable GFLOPs/sec

B
Al: FLOPs/Byte Ratio

redesign! m

32

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Intel Advisor

Performance Metrics Summary v

> You can use the Intel

Advisor tool to
produce a roofline
plot for CPU

kQ

100 4

«

SdO149

Cores: 10n1socket(s) @ v HY DRAM ¥ H 7 Guidance v

?
SP Vector-FMA Peak: 177.3 GFLOPS R

DP Vector FMA Peak: 88.79 GFLOPS’

DP Vector Add-Peak: 44 39 GFLOPS.

?
. ,,,,,,,, Scalar-Add Peak: 6.87 GFLOPS

0.001 4
0.0001 4
4
1.00e-5 Bound by con Wy e
Memory bound? and memory r Compute bound? |
FLOP/Byte (Arithmetic Intensity)
0.001 0.01 0.1 1 10 100 1000 10000 1.00e+5 1.00e+6 1.00e+7

33

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Intel Advisor

» ldeally, compile your program with icx,
not gcc

> You need full isolation from other users
when profiling

> module load intel-advisor

OMP NUM THREADS=NT advixe-cl --collect
roofline --project-dir ./results dir --
search-dir src:=./ --search-dir bin:=./ --
./testAdvect -P M N

A\

» advixe-—guito launch the GUI

N /_results3 - Intel Advisor

[File O View @ Help

Welcome % | €000 x

@ cipses umes0.7c | [ENIEETTETY [ENTENVSOA -~

Fiter: Al Modules v All Sources v Loops And Functions ~ Al Threads ~

customize View O

1 summary | % Survey & Roofline | ™1 Refinement Reports
> v A Higher instruction set architecture (I1SA) available LR
Consider recompiling your application using a higher ISA.

Cores: 24 on 1 socket(s) © v |[¥ Default: FLOAT « |[ili Compare v |+ Guidance v

O o |

1000

CLEEREER

Analysis Types W
[Ssurvey
104 e
> o
[0 Characterization 2
v

01 FLOP/Byte (Arithmetic Intensity)

0.08 0.07 01
Physical Cores: 48 © App Threads: 24 © Self Elapsed Time: 0.243 s Total Elapsed Time: 0.330 s

wulation Source Top Down Code Analytics Assembly @ & Why No
[Memory Access Patterns Source. Total Time | % | Loop/Function Time | % Traits I
s> Te Salactad (Total Time)- ams.
Performance Metrics Summary
L (Y « Cores: 10n1socket(s) @ ~ || 'Y DRAM ~ || * Guidance ~ =
2
3
3 o SP Vector FMA Peak: 177.3 GFL
100 |

® DP Vactor FMA Peak: 88.79 GFL

Scalar Add Peak: 6.87 GFLOPS.

° (@)
0,001
0.0001
v
1.000-5 Bound by cor 5 P
Memory bound” and memory Compute bound
FLOP/Byte (Arithmetic Intensity)
0.001 001 o1 1 10 100 1000 10000 1.000+5 100046 100047

34

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

(s |

23] Survey & Roofline @

k(@ ¢ 4 % Iy v [coes: 19][Y Default: FLOAT CARM (L1+NTS) v | Compare v |[* Guidance ~ | —
.. SP.Vector FMA Peak: 121.71 GFLOPS |
DP Vector FMA Peak: 60.9 GFLOPS;_

. e e e e :
. DP Vector Add Peak: 30.63 GFLOPS

AINYNS

SdOT49

2
Scalar Add Peak: 7.57 GFLOPS

Bound by compute
? ? d
Memory bound” and memory roofs Compute bound”
FLOP/Byte (Arithmetic Intensity)
T T T T T T T T T
0.1 1 10 100 1000 10000 1.00e+5 1.00e+6 1.00e+7

T T
0.001 0.01
Physical Cores: 4 e App Threads: 1 @ self Elapsed Time: 2127 s Total Elapsed Time: 2.685 s

Code Analytics
Loop in main at stride.cop:99 Average Trip Counts: “ 9000 () Data Transfers and Bandwidth - ®
Self Total
2 - 685S ® Per Lcop Per Instance Per lteration Float Al
Scalar Total time L1.GB 2.59 2.88e-04 320e-08 0.09375
2127 Roofline® ® L2 68 g 2073 230e-03 256e-07 0.0117245
A27s Memory Level (| CARM L3 GB 259 2.8%e-04 320e08 0.093798
Self time : RAM. GB
5 2 Integer Seatar Add Peak _ gram. 260 288e-04 321608 0.0935969
> Static Instruction Mix Summary 3 /-”' ‘,fff"’ Seif bandwidth, GBs Utization, % Hardware
¥ Dynamic Instruction Mix Summary e s,ﬁff" ') Peak, GBIs
» Memory 38% (405000000, 5) (D T é,ff./ L1 1218 = =
» Compute 23% (243000000, 3) @D o ,;ff/ L2 9.743 - -
Other 39% (405000000, 5) D i Pt L3 1.218 = =
DRAM 1.220 - -
CPU Total Time
3.31536e-08s | 0.00030s 047
Per lteration | Per Instance ’ GFLOPS: 0.1 @
CARM (L1 + NTS) | |) | GINTOPS: 0.15
25092 G8 259168
0.12 - %
INTOP/Byte (Asithmesc Intersity) _— .
T Code Optimizations
0.018 Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications running
. . on Intel(R) 64,
This loop is mostly memory bound Version: 19.0.0.117 Build 20180804
The performance of the loop is bounded by the L2 bandwidth. Vectorization/Optimization report by Compiler: no messages .

‘You can switch to the Recommendations tab to see opfimization
recommendations in the Roofline Conclusions section.
v COS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute

X/ NVIDIA Nsight Compute

File Connection Debug Profile Tools Window Help

) Connect Baselines
dh advProfile3.ncu-rep X

Page: Details v Result: 2- 888-advect2DUpdateAdvectFiel *+ 7 = | AddBaseline ~ ApplyRules | @ Occupancy Calculator | Copyas Image ~

Result Time Cycles Regs GPU SM Frequency CC Process @Oo00e0
Current 888 - advect2DUpdateA.. 100.51usecond 127,041 32 0-Tesla V100-SXM .26 cycle/nsecond 7.0 [1684128] testAdvect

SM: Pipe Tensor Cycles Active [% 0 L2:DA

» You can use NVIDIA Nsight Compute to Floating Pont Operations Roofline
produce a roofline plot for GPU

Performance [FLOP/s]
(1=1e+12)

10 100 1,000 10,000
Arithmetic Intensity [FLOP/byte]

Floating Point Operations Roofline (Double Precision)

37

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute

Kernel_A is an instruction
throughput bound kernel:
with each thread we do
10000 double precision
adds, for an arithmetic
intensity of 10000 / 8
(bytes per double
precision word) = 1250.

__global void kernel A(double* A, int N, int M)
{
double d = 0.0;
int idx = threadIldx.x + blockIdx.x * blockDim.x;

if (idx < N) {
#fpragma unroll (100)
for (int 7 = 0; j < M; ++3) {
d += A[idx];

38

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute

Kernel_B is identical to
kernel A, except that we
artificially throttle
occupancy on the GPU by
allocating 96 kB of shared
memory per thread block,
which means that only
one thread block can be
resident on an SM at any
one time, for an
occupancy of 1/32 =
3.125%.

__global void kernel A(double* A, int N, int M)
{
double d = 0.0;
int idx = threadIldx.x + blockIdx.x * blockDim.x;

if (idx < N) {
#fpragma unroll (100)
for (int 3 = 0;
d += A[idx];

j < M; ++73) A

cudaFuncSetAttribute (kernel B,
cudaFuncAttributeMaxDynamicSharedMemorySize, 96 * 1024);
kernel B<<<numBlocks, threadsPerBlock, 96 * 1024>>>(A,N,M);

39

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute

Kernel_C is primarily
memory-bandwidth bound --
we just do a single double
precision add, combined with
a load and a store (for an
arithmetic intensity of 1 / 16
=.0625). The memory access
pattern is strided -- we load
every element of B exactly
once and store every element
of A exactly once, but any
given warp is accessing
memory locations 32 bytes
apart between each thread

__global wvoid kernel C(double* A, const double* B, int N)

{
int idx = threadIdx.x + blockIdx.x * blockDim.x;

// Strided memory access: warp 0 accesses (0,stride, 2*stride,
.), warp 1 accesses
// (1, stride + 1, 2*stride + 1, ...).
const int stride = 16;
int strided idx = threadIdx.x * stride + blockIdx.x % stride +
(blockIdx.x / stride) * stride * blockDim.x;

if (strided idx < N) {
A[idx] = Blstrided idx] + B[strided idx];

40

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute

X NVIDIA Nsight Compute

File Connection Debug Profile Tools Window Help
=) Connect
@ advProfile3.ncu-rep X
Details - 88 2DUpdat ~ |V~ AddBaseline |~ | ApplyRules | Occupancy Calculator | Copyasimage ~
Result Cycles Regs GPU SM Frequency CC Process ©@o0e
nd 127,041 0-Tesla 268 1.26 cy ond 7.0 [1684128] testAdvect

Arithmetic Intensity [FLOP/byte]
Floating Point Operations Roofline (Double Precision)

10-

-0

—

| 4
==

=1e+12)

Perfo(rmance [FLOP/s]

» module load cuda

1 10 1,000
Arithmetic Intensity [FLOP/byte]
Floating Point Operations Roofline (Half Precision)

» ncu —--set full -o ProfileOutput
<application> PR

Current 883 - advect2DUpdateA.. 100.51 u; 7041 32 0-Te v ond 7.0 [16841

SM: Pipe T

» ncu-ui to launch the GUI

Performance [FLOP/s]
)

wr

10 100 1 10,000
Arithmetic Intenstty [FLOP/byte]

Floating Point Operations Roofline (Double Precision)

0

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DEMO

Roofline Analysis with NVIDIA Nsight Compute

