Semester 1 SELT - survey journey SELT - Frequently asked questions

The Student Experience of Learning & Teaching survey allows students to give feedback on their courses and
teachers. It is voluntary and confidential, and run by the Institutional Research (IR) team.

What kind of feedback is helpful? Can teachers see who left specific feedback?
19 May - Survey opens 15 June - Survey closes 7uly . . Think about your experience of the course and SELT is confidential, and teachers cannot see, or ask to see,
y IR team perform screening of SELT feedback is made available . L, N N N N
Check your email or to teachers and course teaching, and what worked or didn’t work for you. the identity of a respondent. Unless you self-identify, for
Wattle page for available comments for welfare concerns N f example by using names or describing specific events,
convenors to improve future When writing feedback, focus on respectful and teachers cannot identify you.

surveys ‘%, course delivery constructive language — if you were a teacher, what
I ~ $ = u O type of feedback would help you improve the class? If your class has very few enrolments, it may be difficult to
e Q remain completely anonymous.
~27 June @

Grades are released to

[}

Survey runs for 4 weeks
Please provide constructive and

respectful feedback (your teacher students
can’t identify you)
Australian Find out more on the Info for Students webpage: | Australian Find out more on the Info for Students webpage:

==/ National
=7 University

National
University

https://services.anu.edu.au/learning-teaching/education-data/student-
experience-of-learning-teaching-selt/information-for

https://services.anu.edu.au/learning-teaching/education-data/student-
experience-of-learning-teaching-selt/information-for

TEQSA PROVOER . RVIZEO AUSTAALANUNIVERSTY) | HCOSPACVOER CODE: 1200

COMP4300 - Course Update PERFORMANCE ANALYSIS WITH THE
» Final Exam (40%) ROOFLINE MODEL (CPU & GPU)

» Wednesday 11/06/2025 at 2:00pm at Copland G31 (Building 24)
» The exam will cover all materials presented in the course e.g. in
labs, lectures and assignments etc

» Course/lecture notes permitted.

TECSA ROV . PRV (ALSTRALANLNINERSTY GRCOS

> Assignment 2
» Released on 24 April
» Due next Monday 26/05/2025, 11:55PM

] Australian
== National
<=7 University

References

Accelerating HPC Applications with NVIDIA Nsight Compute Roofline
Analysis https://developer.nvidia.com/blog/accelerating-hpc-

applications-with-nsight-compute-roofline-analysis/

C. Yang, T. Kurth, and S. Williams, Hierarchical Roofline analysis for GPUs:
Accelerating performance optimization for the NERSC-9 Perlmutter system,
Concurrency and Computation: Practice and Experience, e5547,

2019. https://doi.org/10.1002/cpe.5547

Analyze CPU Roofline

https://www.intel.com/content/www/us/en/docs/advisor/user-

guide/2024-1/analyze-cpu-roofline.html

Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD)

» By understanding the end-user’s
requirements and constraints and by
applying Amdahl’s and Gustafson’s laws,
the developer can determine the likely
upper bound of performance
improvement from acceleration of the
identified portions of the application.

Deploy Parallelize

APOD design cycle for applications

Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD)

» APOD is a cyclical process

» Initial speedups can be achieved, tested,
and deployed with only minimal initial
investment of time

» The cycle can begin again by identifying
further optimization opportunities,
seeing additional speedups

» Allows for incremental deployment of
the even faster versions of the
application into production

Deploy Parallelize

APOD design cycle for applications

Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD)

» Having identified the hotspots and having
done the basic exercises to set goals and
expectations, the developer needs to
parallelize the code.

» Depending on the original code, this can
be as simple as calling into an existing
GPU-optimized library such as cuBLAS or
adding a few preprocessor directives as
hints to a parallelizing compiler.

» Some applications’ designs will require
some amount of refactoring to expose
their inherent parallelism

Deploy Parallelize

APOD design cycle for applications

Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD)

» After each round of application
parallelization is complete, the developer
can move to optimizing the
implementation to improve performance

» Optimizations can be applied at various
levels e.g. from overlapping data transfers
with computation, all the way down to
fine-tuning floating-point operation
sequences

» The available profiling tools are invaluable
for guiding this process

Deploy Parallelize

APOD design cycle for applications

Performance Models

We need a quantitative model that defines good performance with reference to the
specific hardware available. Good performance is defined by two fundamental

requirements:

Scalability requirement: Must not be significantly penalized by serialization (Amdahl’s
Law), load imbalance or communication (parallel overhead, synchronization)

Efficiency requirement: Must attain high utilization of the CPU’s compute and/or

bandwidth capabilities

CPU and GPU Code Optimisation

Assess, Parallelize, Optimize, Deploy(APOD)

» Having completed the GPU acceleration of

one or more components of the
application it is possible to compare the
outcome with the original expectations
developed in the assess step

» The partially parallelized implementation
can be carried through to production as it
allows the user to profit from their
investment as early as possible (the
speedup may be partial but is still
valuable)

Parallelize

APOD design cycle for applications

Performance Metrics

o() Ollog(N) ol

N-body
(Particle
Methods)

m ical Peak (Avx-512

2500

GigaFLOPS (floating:point operations / sec)
1000 1500 2000
]
I
|
]

@@@@@ SRR
A A A A A

In order to find such a model let’s start by
looking at some simple algorithmic motifs
which are common in scientific computing.
Clearly, a first limit for their execution speed
is the peak floating point operations (FLOPs)
performance of the hardware, measured in
FLOPs/s (Figure: Cascade Lake
https://www.microway.com)

Another limit is main memory bandwidth,
which restricts the speed of data transfers
from and to the CPU.

The more FLOPs/s an application performs
per unit of data transferred, the more likely
the code is to reach peak performance.

Performance Metrics

o Ollog(N)) o)

Spectral
Methods. v y
(FFTs) it (Particle
MV) (BLAS3)
Structured |Structured Methods)
Grids Grids.

(Stencils, (Lattice

PDEs) Methods)

T ical Peak (AVX-512 i

rpoint operations | sec)
1500

The key metric is the arithmetic intensity:

FLOP/s (1)
Bytes/s

where the denominator is the number of Bytes read
from and written to main memory per second.

» The Al can be calculated taking the total number
of FLOPs divided by the Bytes transferred to and
from main memory during program execution.

» An especially important value is the machine

% R ‘ | balance B,, .the ratio between the peak FLOP
° = ™ performance and the memory bandwidth
-
T S I o B, = _FeakPerformance (FLOF/s)
S A A AN AN Memory bandwidth (Bytes/s)
The Roofline Model
» For each given Al, the “roofline” is the \ nar
maximum FLOP performance achievable by
the code on the specific hardware Peak GFLOPs/s
architecture used. § 4 ° 0
~
N/
Max Attainable GFLOP/s = min {Peak Memory BW Al g 4 \Q%\é/ o ®
Peak FLOP Performance 7 Q\fb S
0] CAN ¢ R
L oriperfc
» There are four performance regions: - kY \\6/9* ° '
8 45
£
» unattainable performance £
» bandwidth bound performance <
» compute bound performance
B

» poor performance

» The ridge point has abscissa equal to the
machine balance.

m

Al: FLOPs/Byte Ratio
(Al = Arithmetic Intensity)

The Roofline Model

» This is a simple but very powerful
model that ties FLOP performance,
Al and memory performance in a 2D
graph. [William, Waterman, and Patterson,

Peak GFLOPs/s

Communications of the ACM Volume 52, g
Number 4 (2009), Pages 65-76] é
» One good way to find peak memory 5
performance is to use the STREAM o
e}
benchmarks. g
. . I
» For a given code snippet (kernel) one %
can find a point on the horizontal axis
by measuring its Al. B
» The performance of that kernel lies on Al: FLOPs/Byte Ratio
the vertical line through that point. Al = Arithmetic Intensity
» Kernels that lie close to the roofline are ‘
making good use of the hardware Peak GFLOPs/s
resources. g ®npute @
kg b/
g N °
» Kernels can have low performance g Q‘A \jo@/ o
(GFLOPs/s), but make good use (% s Q@’c“\ soripestor
STREAM) of a machine. 3 o °
g ()4
5
<

» Kernels can have a relatively high
performance (GFLOPs/s), but still make
poor use (% Peak GFLOPs/s) of a machine.

m

Al: FLOPs/Byte Ratio

Al = Arithmetic Intensity

CPU Code under the Roofline

How can your CPU kernel lie in the poor
performance region?

Attainable GFlops/s

64

32

(c) Optimization Regions

peak floating—point performance]

1.ILP or SIMD|

TLP only|

Kernel 2

1 2 4
Operational Intensity (Flops/Byte)

CPU Code under the Roofline

» Each optimization constitutes a
“performance ceiling” below the
appropriate roofline.

» The horizontal lines are performance rooflines
associated with FLOP performance.

» The tilted lines are associated with memory
performance.

Attainable GFlops/s

64

32

(c) Optimization Regions

peak floating—point performancef

1. ILP or SIMD|

TLP only|

Kernel 2

1 2 a 8 16
Operational Intensity (Flops/Byte)

CPU Code under the Roofline

How can you CPU kernel lie in the poor
performance region?

» A likely reason is the lack of some specific
optimizations that enable the program to use
the underlying hardware efficiently.

Attainable GFlops/s

(c) Optimization Regions

64

32

peak floating—point performance]

1262

© 1.ILP or SIMD
'
1
i
f
1
1
! TLP only|
]
i i
1) '
[i
ig ig
1 £ 1 £
2 2
1/4 12 1 2 8 16

4
Operational Intensity (Flops/Byte)

CPU Code under the Roofline

>

The first FLOP performance ceiling is associated with
Thread Level Parallelism (TLP).

» In order to achieve reasonable performance on
modern processors one must use all cores in
parallel.

The second FLOP performance ceiling is associated
with Instruction Level Parallelism (ILP) and SIMD
parallelism.

» Maximize ILP is about hiding completely
functional unit latency: loop unrolling, loop
fusion, avoid branching in inner loops, etc.

» Need to use SIMD instructions in order to use
all processors floating point arithmetic units.

Attainable GFlops/s

(c) Optimization Regions

64

2 r

peak floating—point performancef

1. ILP or SIMD|

TLP only|

Kernel 2

1/4

1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)

CPU Code under the Roofline

(c) Optimization Regions

64 |- 1
» The final FLOP performance ceiling is associated
with floating point instruction mix. 32 .
> Peak FLOP performance requires an equal number poak floatingpoint performance
of nearly simultaneous additions and % // }".“"g'mi".' balance
multiplications e.g. (a*x) +b z !
2 © 1.ILP or SIMD
» This balance is necessary typically because the g ! :
computer supports a fused multiply-add (FMA) = :
instruction. -
1 TLP only]
» Another reason may be also that FP units have an :
equal number of FP adders and FP multipliers. ' |
'3
. L&
1/8 1/4 1/2 1 2 4 8 16
Operational Intensity (Flops/Byte)
: 2

CPU Code under the Roofline

(c) Optimization Regions

» The final memory performance ceiling is associated
with software prefetching.

64 1

32 .

pragma prefetch |

peak floating—point performancef

include <immintrin.h>
void mm prefetch (char const* p,
int i)

1. ILP or SIMD|

Attainable GFlops/s
>
%,
"
3
]
B
B
o
o
2
3
8

> Avoid branching in bottleneck-determining code, TLP oniy)

unroll loops, etc.

Kernel 2

18 1/4 1/2 1 2 a 8 16
Operational Intensity (Flops/Byte)

CPU Code under the Roofline

» The first memory performance ceiling is associated with

strided access.

» In order to reduce main memory traffic, inner loops

must have a unit stride access pattern.

» The second is about memory affinity, that is NUMA

effects.

» Allocate data and the threads tasked to operate on that

data to the same memory/numa domain pair

Typical 25 Configuration

—
Intel”
UpI

-]

omue]

3016PClet

(c) Optimization Regions

64 4

32 4

peak floating—point performance]

° 2. flgfiting—point balance|
2 & i !
2]
©
5}
2 ; i+ 1.ILP or SIMD
e [}
£
=3 1
= i
1
[
i
' TLP only|
'
i
1
T 1
i
1 £
8 2
18 1/4 1/2 1 2 8 16

4
Operational Intensity (Flops/Byte)

GPU Code Optimisation

GPU Performance optimization
revolves around four basic strategies:

» Maximize parallel execution to
achieve maximum utilization

» Optimize memory usage to achieve
maximum memory throughput

» Optimize instruction usage to
achieve maximum instruction

l - Per thread registers and
local memory
Thread Block
‘Shared Memory Per block Shared memory
Thread Block Cluster
Thread Block Thread Block_ Shared mﬂm::‘r
| shared memory Shared emory |- "w‘""““" feis
HHHH e

Grid with Clusters
Thread Block Cluster Thread Block Cluster

Thread Block

Thread Block Thread Block Thread Block

throughput
» Minimize memory thrashing by not

W

Y g

constantly allocating and freeing
memory

Global shared
between all GPU kernels.

GPU Code under the Roofline

Peak GFLOP/s
» Typically reasons for low performance are » v
architecture (and kernel) dependent o L
() dep 9 @ 1 50%of Peak
TN . i
» Why could the kernel corresponding to red 2
©
dots have low performance? £
2
<
» How can we increase performance?
Arithmetic Intensity (FLOP:Byte)

GPU Code under the Roofline

unattainable performance

Peak GFLOPs/s

» What if we want better
bandwidth utilization?

Attainable GFLOPs/sec

Al: FLOPs/Byte Ratio

GPU Code under the Roofline

» Expose more parallelism to maximise SM usage
and hide arithmetic latency

Peak GFLOP/s

» Change grid and block sizes (kernel configuration)
to increase block-level parallelism

» Unroll loops

» Tuning number of registers per thread

50% of Peak

Attainable FLOP/s

» Avoid thread divergence

GPU Code under the Roofline

» What if we want better bandwidth utilization?
» Optimize for obtaining aligned and coalesced memory
transactions
» This may require a redesign of data structures (e.g. AoS to

nattainable performance

Peak GFLOPs/s

SoA) and better indexing g .
¢ phrformance
» Expose more parallelism to maximise SM usage and hide 5
memory latency 2
g
z
Array of Structures (AoS) Structure of Arrays (SoA) "
Al: FLOPs/Byte Ratio
struct point3D { struct pointlist3D {
float x; float x[N];
float y; float y[N];
float z; float z[N];

bi bi

struct point3D points[N]; struct pointlist3D points;

High Performance GPU Code

unattainable performance
Peak GFLOPs/s
» Assume your kernels yields the yellow dot g
g
performance. K
g X2
O | e f
. . poor:performance
» Are you happy with this level of ‘%‘: }96}“
performance...? k- e
£

Bm
Al: FLOPs/Byte Ratio

Increasing Al for GPU Code

unattainable performance
Peak GFLOPs/s
. o ']o

» Assume your kernels yields the yellow dot 2
performance. Are you happy with it? g
-

w @

) E & pooriperformance
» How can we increase Al? =
©
» Increasing the data reuse and reducing the £
data movement increases Al i.e. reducing £
data movement

Bm
Al: FLOPs/Byte Ratio

Increasing Al for GPU Code

unattainable performance
Peak GFLOPs/s
) " a
» Assume your kernels yields the yellow dot b
w
erformance. a +
p S &
o A
[C) N 2>
. . D&% pooriperformance
» Are you happy with this level of 2 @@\,
performance...? 2 P
©
%
» How can we increase Al?

B
Al: FLOPs/Byte Ratio

Increasing Al for GPU Code

. unattainable performance
» Assume vyour kernels yields the vyellow dot P

performance. Are you happy with it? Peak GFLOPs/s

» How can we increase Al? @

» Increasing the data reuse and reducing the data
movement increases Al

» Better caching - Optimize code to be cache
friendly (avoid false sharing on CPU)

» Usage of shared memory on GPU to reduce global
memory transactions

» Also, you may be able to achieve better
performance with a fundamental algorithm
redesign!

pooriperformance

Attainable GFLOPs/sec

Bm
Al: FLOPs/Byte Ratio

Roofline Analysis with Intel Advisor

Performance Metrics Summary »

LY Cores: 10n1socket(s) © + || 'Y DRAM » | * Guidance ~

100 *

. (2]

» You can use the Intel

Advisor tool to

produce a roofline

plot for CPU

1008
o ; P w o w0 wwes tes tome
»
INTEL ADVISOR BETA

ST % survey & Roofine [T REREMERRGGERE
Gores 19~ | Y Defaut FLOAT GARM (Li-NTS) ~ || Compare || * Guidnce -

ra di v

saou0

FLOPByte (e

v
'

0001 001 01 i 10 100 1000 10000 100005 100845 100007
Physical Cores: 4 © Agp Thveads: 1 © _ Self lapsed Time: 2127 s Tota Elapsed Time: 2.685 5
Source | TopDown | Code Anaitics | Assembly | ¥ Recommendations | & Why NoVectorzaton?
Loop inmain atstce cop 99 Average Trip Counts: 9000 © Data Transfers and Bandwidth
sef (10 Towl
2.685s Plop P e Foss
alime 11,68 250 286004 320008 009375
Roofline @ e 2073 230003 256007 00117205
24275 15,68 250 286204 320008 0093788
i Memory evel (1) Cain
seftime prav c8
260 288004 321e08 00835969
Setowowen,8s wmmens oo
501 u 1218 = =
% (243000000, 2 90743
39% (405000000, 1218
oRAM 1220
GFLOPS: 0.11 @
GINTOPS: 0.15
Code Oy

‘Compiler: ntekR) G- Inel(R) 64 Compier for applications running
") 6

on Intel(R) 64,
“This loop is mosty memory bound Version: 19.0.0.117 Buid 20180804
“The performanc of the 100p s bounded by the L2 banduidtn.
You can v to the Recommendations ab o see aplinizaton
recommendaions n the Roofline Conclusions secton

Vectorization/Optimization report by Compier: no messages

< 05 PROVORRCODE G120

Roofline Analysis with Intel Advisor

» ldeally, compile your program with icx,
not gcc

> You need full isolation from other users
when profiling

» module load intel-advisor

» OMP NUM THREADS=NT advixe-cl --collect
roofline --project-dir ./results dir --
search-dir src:=./ --search-dir bin:=./ --
./testAdvect -P M N

» advixe-guito launch the GUI "

3
TEQSA ROVIOE . RVIZE0 AUSTAALANUNIVERSTY) GRS PAOVIOER CO0E COL2C

Roofline Analysis with Nvidia Nsight Compute

A\ NVIDIA Nsight Compute

Floating Point Operations Roofline

» You can use NVIDIA Nsight Compute to
produce a roofline plot for GPU

Artenetc ensty FLOP el
Floating Point Operations Roofline (Double Precision)

Roofline Analysis with Nvidia Nsight Compute

Kernel_A is an instruction
throughput bound kernel:
with each thread we do
10000 double precision
adds, for an arithmetic
intensity of 10000/ 8
(bytes per double
precision word) = 1250.

__global void kernel A(double* A, int N, int M)

double d = 0.0;
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < N) {
#pragma unroll (100)
for (int j = 0; Jj < M; ++3) {
d += A[idx];
}
Alidx] = d;
}

Roofline Analysis with Nvidia Nsight Compute

Kernel_C is primarily
memory-bandwidth bound --
we just do a single double
precision add, combined with
a load and a store (for an
arithmetic intensity of 1/ 16
=.0625). The memory access
pattern is strided -- we load
every element of B exactly
once and store every element
of A exactly once, but any
given warp is accessing
memory locations 32 bytes
apart between each thread

Roofline Analysis with Nvidia Nsight Compute

Kernel_B is identical to
kernel_A, except that we
artificially throttle
occupancy on the GPU by
allocating 96 kB of shared
memory per thread block,
which means that only
one thread block can be
resident on an SM at any
one time, for an
occupancy of 1/32 =
3.125%.

__global void kernel A(double* A, int N, int M)
{
double d = 0.0;
int idx = threadIdx.x + blockIdx.x * blockDim.x;

if (idx < N) {
#pragma unroll (100)
for (int j = 0; j < M; ++3) {
d += A[idx];
}
Alidx] = d;
}

cudaFuncSetAttribute (kernel B,
cudaFuncAttributeMaxDynamicSharedMemorySize, 96 * 1024);
kernel B<<<numBlocks, threadsPerBlock, 96 * 1024>>>(A,N,M);

__global__ void kernel C(double* A, const double* B, int N)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;

// Strided memory access: warp 0 accesses (0,stride, 2*stride,
..), warp 1 accesses

// (1, stride + 1, 2*stride + 1, ...).

const int stride = 16;

int strided_idx = threadIdx.x * stride + blockIdx.x % stride +
(blockIdx.x / stride) * stride * blockDim.x;

if (strided_idx < N) {
A[idx] = B[strided_idx] + B[strided_idx];
}

» module load cuda

» ncu --set full -o ProfileOutput
<application>
» ncu-ui to launch the GUI

DEMO

Roofline Analysis with NVIDIA Nsight Compute

