
TE
QS

A
PR

OV
ID

ER
 ID

:P
RV

12
00

2
(A

US
TR

AL
IA

N
UN

IV
ER

SI
TY

)
CR

IC
OS

PR

OV
ID

ER
 C

OD
E:

 0
01

20
C

MULTICORE ARCHITECTURE &
CACHE COHERENCE

COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

MAY 2024

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Logistics
Ø Attendance to the Lab sessions is highly encouraged. Most of the

practical aspects of the programming models are covered in the Labs.

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

3

Multicore Architecture &
Cache Coherence

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

References
Ø Chapters 5, 6, from Parallel Computer Architecture A Hardware/Software Approach, D. E. Culler, J.

P. Singh, and A. Gupta, Morgan Kaufmann Publishers, Inc., ISBN-13: 9781558603431
Ø Intel performance analysis guide

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guid
e.pdf

Ø Chapters 1, 4, from Introduction to High Performance Computing for Scientists and Engineers
(Chapman & Hall/CRC Computational Science) Georg Hager and Gerhard Wellein.

Ø Intel: Optimizing Applications for NUMA
https://software.intel.com/content/www/us/en/develop/articles/
optimizing-applications-for-numa.html

Ø Intel: Avoiding and Identifying False Sharing Among Threads
https://software.intel.com/content/www/us/en/develop/articles/
avoiding-and-identifying-false-sharing-among-threads.html

4

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
https://software.intel.com/content/www/us/en/develop/articles/optimizing-applications-for-numa.html
https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html
https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Hardware determines (parallel) software performance

Why do you need to know about hardware architecture?

Ø In order to write efficient parallel software, you must be aware of the
hardware design and constraints. Hardware parallelism is a function of
cost and performance tradeoffs

Ø It is is ultimately the hardware architecture that determines the cost
(execution time) associated with each algorithmic motif e.g. CPU vs GPU

5

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Taxonomy of parallel computing paradigms
A widely used taxonomy for describing the amount of concurrent control and data streams
present in a parallel architecture was proposed by Flynn*.

Single Instruction, Multiple Data (SIMD). A single instruction stream, either on a single
processor (core) or on multiple compute elements, provides parallelism by operating on
multiple data streams concurrently. Example: the SIMD capabilities (vectorization) of modern
superscalar microprocessors

Multiple Instruction, Multiple Data (MIMD). Multiple instruction streams on multiple
processors (cores) operate on different data items concurrently. Shared-memory and
distributed-memory parallel computers are typical examples for the MIMD paradigm.

Single-stream ILP as employed in superscalar, pipelined execution is not included in this
categorization.

*Flynn, Michael J. (December 1966). "Very high-speed computing systems". Proceedings of the IEEE. 54 (12): 1901–
1909. doi:10.1109/PROC.1966.5273.

6

https://en.wikipedia.org/wiki/Michael_J._Flynn
https://ieeexplore.ieee.org/document/1447203
https://en.wikipedia.org/wiki/Proceedings_of_the_IEEE
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1109%2FPROC.1966.5273

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared-Memory Multiprocessors
Single address space multiprocessors come in two forms: -

ØUniform Memory Access (UMA) Multiprocessors: Also known as
Symmetric Multiprocessors (SMP), these systems have a memory
architecture in which each processor in the multiprocessor system has
uniform access time to memory.

Ø In other words, latency and bandwidth are the same for all processors
and all memory locations. The latency to a word in memory does not
depend on which processor/core asks for it. This architecture is
common in multicore processor chips, such as those found in basic PCs
or mobile phones.

ØNon-Uniform Memory Access (NUMA) Multiprocessors: In these
systems, memory access time depends on the memory location
relative to a processor.

Ø The architecture is used in multiprocessor systems and aims to
improve system performance by allowing a processor to access its
local memory faster than non-local memory (memory local to another
processor or memory shared between processors)

7

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared-Memory Multiprocessors

ØA shared memory multiprocessor (SMMP) is one that offers the
programmer a single physical address space across all processors –
which is nearly always the case for multicore chips – although a
more accurate term would have been shared-address
multiprocessor.

ØUniform Memory Access (UMA) multiprocessors. Latency and
bandwidth are the same for all processors and all memory
locations. This is also called a symmetric multiprocessor (SMP).
The latency to a word in memory does not depend on which
processor/core asks for it.

Ø This architecture covers almost all single multicore processor chips,
e.g. 4 or more cores on basic PC or in your mobile phone.

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared-Memory Multiprocessors

Uniform Memory Access (UMA) multiprocessors.

Ø Bandwidth bottlenecks are bound to occur when the
number of sockets (or Front Side Buses) is larger than a
certain limit. Does not scale due to the blocking nature of
the buses.

Ø Performance is improved using nonblocking networks such as
crossbar switches that establish point-to-point connections
between sockets and memory modules. Does not scale
because nonblocking networks quickly become too
expensive.

9

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared-Memory Multiprocessors

Ø Shared memory multiprocessors (SMMP) come in two
form factors.
Ø cache coherent Non-Uniform Memory Access

(ccNUMA)
Ø Each processor has its own local memory

module that it can access directly with a
distinctive performance advantage. At the same
time, it can also access any memory module
belonging to another processor using a shared
bus (or some other type of interconnect).

Ø a locality domain (LD) or NUMA node is a set
of processor cores together with their locally
connected memory

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared-Memory Multiprocessors
Shared memory multiprocessors (SMMP) come in two styles.

cache coherent Non-Uniform Memory Access (ccNUMA)
Intel SkyLake architecture

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared-Memory Multiprocessors

Ø Shared memory multiprocessors (SMMP) come in two styles.
Ø cache coherent Non-Uniform Memory Access (ccNUMA)

Ø Modern multiprocessor systems mix UMA locality
domains within an overall NUMA architecture

Ø The LDs are linked via a coherent interconnect, which
allows access from any processor to any other
processor’s memory (single address space).

Ø The interconnect provides a high-speed connection.
QuickPath (QPI) current technologies favored by Intel,
were replaced on Skylake by Intel Ultra Path
Interconnect (UPI)

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

13

The Cache Coherence
Problem

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache line design (review)
Cache write hit policies:-

Ø Write-through: This policy writes data to the cache and the main memory at the same time. It ensures consistency
as the main memory always contains the same data as the cache. However, it can be slower because every write to
the cache requires a write to the main memory.

Ø Write-back: In this policy, only the cache location is updated during a write operation. The main memory is updated
only when the word is replaced from the cache. This policy can reduce the number of references to main memory,
thereby improving performance. However, it may lead to inconsistency between the cache and main memory.

Cache write miss policies: -

Ø Write-no-allocate or write-around: This policy bypasses cache entry allocation in case of a cache miss. This policy
helps avoid cache pollution (filling the cache with entries that are not frequently used) but may result in higher
latency for read operations if the recently written data is accessed soon.

Ø Write-allocate: Under this policy, the cache line is loaded into the cache, followed by a write operation. This is done
with the hope that subsequent writes (or even reads) will be made to that location, leading to a hit. In other words,
a cache block is first allocated before performing the write action.

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache line design (review)
Let’s assume our data is int x = 1

When evicting (removing data from the cache)
D =?, V =?

Ø The “D” stands for “Dirty” bit. If D=1, it means that the data in the cache has been modified (is “dirty”) and needs to be written
back to the main memory before eviction. If D=0, the data has not been modified (is “clean”) and can be safely evicted without
a write-back.

Ø The “V” stands for “Valid” bit. If V=1, it means that the data in the cache line is valid. If V=0, then the cache line is either empty
or has been invalidated and should not be read.

15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Parallel caching

What happens if two processors (cores) want to read and write to the
same location in memory (e.g. our int A)?

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Parallel caching
What happens if multiple processors (cores) want to read and write to the same location in
memory (e.g. our int A)?

Ø Reading A should return the last value written to its address by any processor.

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Parallel caching

Ø We have variable A stored in
main memory at address &A; it’s
initial value is A = 0 .

Ø We assume write-back cache
policy. Write-back: In this policy,
only the cache location is updated
during a write operation. t1: Processor P1$ loads data A into its cache. This is a miss because

the data A was not initially present in the cache of P1$.
t2: Processor P2$ also loads data A into its cache. This is also a miss
because the data A was not initially present in the cache of P2$.

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Parallel caching

Ø We have variable A stored in
main memory at address &A;
it’s initial value is A = 0 .

Ø We assume write-back cache
policy.

t3: Processor P1$ stores data A. The value in the cache of P1$ is
updated to 1, indicating that the data A has been modified.
t4: Processor P3$ loads data A into its cache. This is a miss because
the data A was not initially present in the cache of P3$.

19

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Parallel caching

Ø We have variable A stored in
main memory at address &A;
it’s initial value is A = 0 .

Ø We assume write-back cache
policy. t5: Processor P3$ stores data A. The value in the cache of P3$ is

updated to 2, indicating that the data A has been modified.
t6: Processor P2$ loads data A. This is a hit because the data A is
already present in the cache of P2$.

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Parallel caching

Ø We have variable A stored in
main memory at address &A;
it’s initial value is A = 0 .

Ø We assume write-back cache
policy.

t7: Processor P1$ loads data B. This is a miss because the data B
was not initially present in the cache of P1$. The miss causes
eviction of data A from the cache of P1$ to make room for data B.

21

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Parallel caching

Can we eliminate this problem by using locks?

Ø This situation is a result of the cache
coherence problem in
multiprocessor systems

Ø Each processor has its own private
cache, and without a mechanism to
ensure coherence, the view of
memory can become inconsistent
across processors

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Memory coherence
Ø A multiprocessor memory system is coherent if: -

Ø The results of any execution of a program for a given location X , are such that it is possible to construct a
hypothetical serial order of all operations (all processors) to X that is consistent with the results of the
execution and in which:
Ø operations issued by any threads occur in the order in which they were issued to the memory system

by that thread;
Ø the value returned by each read operation is the value returned by the last write to that location in

the serial order.

Ø This definition guarantees two properties: -

Ø write propagation: writes become visible to other threads (note we are not specifying when);
Ø write serialization: writes to a location (from the same or different threads) are seen in the same order

by all threads.

23

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Memory coherence
A multiprocessor memory system is coherent if: -

1. It preserves the program order: a read at X should provide the last value written to
X by any processor.

2. A write from P1 to X will propagate to all other processors Pn, eventually.

3. Writes to the same address by different processors are serialized.

24

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache Coherence through Bus Snooping

Ø Multiple processors with private caches
(indicated with $) are placed on a shared bus.

Ø All coherence-related activity is broadcast
to all processor caches through the shared
bus.

Ø Each cache controller “snoops” on the bus
watching for relevant transactions and
updates its state suitably to keep its cache
coherent.

25

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache Coherence through Bus Snooping
Multiple processors with private caches
(indicated with $) are placed on a shared bus.

Ø Each cache controller “snoops” (monitors) on
the bus watching for relevant transactions
and updates its state suitably to keep its cache
coherent.

Ø Here relevant transaction means that it
involves a memory block of which it has a
copy in its cache.

Ø For example, P1 may take the action of
invalidating or updating one of its cache lines
if it sees a write from P3 that maps to the
same memory block.

26

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Cache Coherence through Bus Snooping
Ø Since cache lines are the granularity of

allocation in the cache, they are also the
granularity of coherence protocols.

Ø In order to support cache coherence a bus
must be designed such that: -
Ø All transactions that appear on the bus

are visible to all cache controllers.
Ø Transactions are visible to all controllers

in the same order.

Ø A cache coherence protocol is a set of rules
that guarantees that all necessary transactions
appear on the bus, in response to memory
operations, and that controllers take the
appropriate actions in response.

Ø This is implemented at the hardware level.
27

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Write-Through Invalidation Protocol

Ø Coherence protocols are represented by a
collection (state diagram) of state machines and
associated transitions.

Ø By state here we mean the state of a cache line
Ø Actions are denoted as combinations like

“PrRd/BusRd” to represent a processor read
leading to a bus read action.

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Write-Through Invalidation Protocol
States:

V (Valid): This state indicates that the data in the cache is valid and matches the
corresponding data in the main memory.
I (Invalid): This state indicates that the data in the cache is invalid, either because it
doesn’t match the corresponding data in the main memory or because it has been
explicitly invalidated.

Operations (action/response):

PrRd/—: This represents a processor read operation. If the data is in the Valid state,
the read operation is a hit and the data is fetched from the cache. If the data is in the
Invalid state, the read operation is a miss and the data is fetched from the main
memory.
PrWr/BusWr: This represents a processor write operation. In a write-through, write-
no-allocate cache, the data is written to both the cache (if it’s in the Valid state) and
the main memory.
PrRd/BusRd: This represents a processor read operation that results in a miss
(because the data is in the Invalid state). The data is fetched from the main memory
and the cache state transitions to Valid.
BusWr/I—: This represents a write operation initiated by another processor (or
device) on the bus. The cache controller snoops the bus, detects that the write
operation affects the data in the cache, and invalidates the cache line

29

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Write-Through Invalidation Example
Write-through cache : This policy writes data to the cache and the main memory at the same time.
+ Write-no-allocate cache: This policy bypasses cache entry allocation in case of a cache miss.

t1: Processor P1 is reading data, but there is a miss in
the cache (C1). A BusRd action is initiated to read the
data from memory. The state of C1 changes to ‘V’
(valid), while P2 and C2 remain in the ‘I’ (invalid)
state. The memory content remains unchanged.

t2: Processor P2 also attempts to read data and
encounters a miss in the cache (C2). Another BusRd
action occurs. Now, both C1 and C2 are in the ‘V’ state,
indicating that they have valid copies of the data. The
memory content still remains unchanged.

30

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

A Write-Through Invalidation Example
Write-through, write-no-allocate cache

t3: Processor P1 writes data, changing its cache state to
modified (‘M’) and invalidating C2’s copy of the data
(changing its state to ‘I’). A BusWr action updates the
memory with new content.

t5: Processor P2 attempts another read but encounters
a miss since its cache was invalidated at t3. It initiates a
BusRd action to get updated data from memory

31

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The MSI Write-Back Invalidation Protocol

The protocol uses three states to distinguish valid blocks that are unmodified (clean)
from those that are modified (dirty):

Ø Modified: also called dirty or exclusive means that only this cache has a valid copy
of the cache line, and the copy in main memory is stale.

Ø Shared: the cache line is presented in unmodified state in this cache, main
memory is up-to-date, and zero or more caches may also have an up-to-date copy.

Ø Invalid: Not present or invalidated by a bus request.

Are we happy with write-through caches?

32

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The MSI Write-Back Invalidation Protocol

Key tasks of the protocol
Ø Ensuring processor obtains exclusive access for a write
Ø Locating most recent copy of cache line’s data on a cache miss

Two processor operations(triggered by local CPU)
Ø PrRd(read)
Ø PrWr(write)

Three coherence-related bus transactions (from remote caches)
Ø BusRd: obtain copy of line with no intent to modify
Ø BusRdX: obtain copy of line with intent to modify
Ø BusWB: write dirty line out to memory

33

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The MSI Write-Back Invalidation Protocol
The protocol uses three states to distinguish valid blocks that are unmodified (clean) from
those that are modified (dirty):

Ø Modified: also called dirty or exclusive, means that only this cache has a valid copy of the
cache line, and the copy in main memory is stale.

Ø Shared: the cache line is presented in unmodified state in this cache, main memory is up-
to-date, and zero or more caches may also have an up-to-date copy.

Ø Invalid: Not present or invalidated by a bus request.

 Corollary rule: Before a shared or invalid copy can be written and placed in the
modified state, all other potential copies must be invalidated via a read-exclusive bus transaction.

Why do we need this rule?

34

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The MSI Write-Back Invalidation Protocol
Ø BusRd: (Bus Read) The cache controller asks for

a copy (cache line) that it does not intend to
modify.

Ø BusRdX: (Bus Read exclusive) The cache
controller asks for an exclusive copy that it
intends to modify. The memory system supplies
the data. All other caches are invalidated.

Ø BusRdX /Flush: (also known as BusWB = Bus
writeback) The processor does not know about
it and does not expect a response. The main
memory is updated with the latest content.

A / B: if action A is observed by cache controller, action B is taken

35

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

An MSI Example

A / B: if action A is observed by cache controller, action B is taken

36

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

MSI Write-Back Invalidation Protocol

A / B: if action A is observed by cache controller, action B is taken

Do you think we can improve this protocol?

MSI requires two interconnect transactions for the common case
of reading an address, then writing to it: -

Ø Assume that we perform a PrRd/BusRd and only the local
processor has a copy of that memory block (cache line).

Ø BusRd to move from I to S state
Ø Then assume that the processor wants to write (PrWr): do we

need to broadcast this information to any of the remote cache
controllers?

Ø BusRdX to move from S to M state in the local cache,
indicating that this cache now has the most recent
copy of the memory block.

Ø We need to broadcast to the other processors as they might
have a shared copy of the same memory block, and we need
to ensure that they invalidate their copies to maintain cache
coherence. in the local cache, indicating that this cache now
has the most recent copy of the memory block.

37

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The MESI Protocol
M and I have the same semantics as before.

Exclusive (E) or exclusive-clean state means that
only one cache (this cache) has a copy of the
cache line and it has not been modified (main
memory is up-to-date).

Shared (S) now means that potentially two or
more processors have this block in their cache in
an unmodified state.

A / B: if action A is observed by cache controller, action B is taken

38

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

More Complex Snooping Protocols
Modern multiprocessors tend to implement slightly more complex protocols than MESI

Ø 5-stage MOESI, MESIF, which for example include the possibility of cache-to-cache
transfers.

Ø Directory-based cache-coherence protocols that significantly reduce the overhead
and serialization associated with bus transactions.
Ø Instead of broadcasting coherence traffic to all L2’s, only send coherence

messages to L2’s that contain the line

39

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Flaws of Cache Coherence Protocols (so far)
All modern multiprocessors (specifically CPUs, GPUs do not) implement cache
coherence. What are the drawbacks?

Ø More complicated caches and interconnects (e.g. bus).

Ø Increased bus traffic (what are the implication? Remember Amdahl’s law ...)
Ø This can significantly impinge on performance, especially for large core

counts.

Ø Cache line thrashing via false sharing.

40

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

False Sharing
Ø Condition where two processors write to

different addresses, but addresses map to the
same cache line

Ø Cache line “ping-pongs” between caches of
writing processors, generating significant
communication due to coherence protocol
(high serialization overhead)

Ø No inherent communication, this is entirely
artifactual communication (cachelines > 4B)

Ø False sharing can severely affect parallel
performance.

41

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Managing False Sharing
Data (64 bytes)Cache line

a[i]
Thread
`i’

a[i+1]
Thread
`i+1’

a[i+15]
Thread
`i+15’

float a[NTHREADS] = { 0 . 0 };
pragma omp parallel for
for (int i = 0; i < NTHREADS ; i++) {
for (int j = 0; j < BigN ; j++) {
a[i] += (float) rand ();

}
}

D V Tag …

size_t FL_CLINE_WORDS = 64/ sizeof (float);
float a[NTHREADS][FL_CLINE_WORDS] = { 0 . 0 };
pragma omp parallel for
for (int i = 0; i < NTHREADS ; i++) {
 for (int j = 0; j < BigN ; j++) {

a[i][0] += (float) rand ();
}

}

D V Tag
a

Thre
i]
ad ì’ …

D V Tag
a[i+
Thre

1]
ad ì+ 1’ …

D V Tag Th
a[i+
read

15]
ì+1 5’ …

Padding

42

Ø FL_CLINE_WORDS gives the number of floats that can fit into a cache line.
Ø The 2D array a[NTHREADS][FL_CLINE_WORDS]ensures that each row of the array can

fit into a single cache line
Ø The #pragma omp parallel for directive is used to parallelize the outer loop. This

means that the iterations of the outer loop will be distributed among the available threads.

You can use array padding to avoid false sharing of a cache line

