
TE
QS

A
PR

OV
ID

ER
 ID

:P
RV

12
00

2(
AU

ST
RA

LIA
N

UN
IV

ER
SIT

Y)
 C

RI
CO

S
PR

OV
ID

ER
 C

OD
E:

 00
12

0C

PERFORMANCE ANALYSIS WITH THE
ROOFLINE MODEL (CPU & GPU)

COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

MAY 2024

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) | CRICOS PROVIDER CODE: 00120C

Semester 1 SELT - survey journey

Find out more on the Info for Students webpage:
https://services.anu.edu.au/learning-teaching/education-data/student-
experience-of-learning-teaching-selt/information-for

Survey runs for 4 weeks
Please provide constructive and
respectful feedback (your teacher
can’t identify you)

16 June - Survey closes
IR team perform screening of
comments for welfare concerns

27 June
Grades are released to
students

8 July
SELT feedback is made available
to teachers and course
convenors to improve future
course delivery

20 May – Survey opens
Check your email or
Wattle page for available
surveys

The Student Experience of Learning & Teaching survey allows students to give feedback on their courses and
teachers. It is voluntary and confidential, and run by the Institutional Research (IR) team.

2

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) | CRICOS PROVIDER CODE: 00120C

SELT - Frequently asked questions

Can teachers see who left specific feedback?

SELT is confidential, and teachers cannot see, or ask to see,
the identity of a respondent. Unless you self-identify, for
example by using names or describing specific events,
teachers cannot identify you.

If your class has very few enrolments, it may be difficult to
remain completely anonymous.

What kind of feedback is helpful?

Think about your experience of the course and
teaching, and what worked or didn’t work for you.

When writing feedback, focus on respectful and
constructive language – if you were a teacher, what
type of feedback would help you improve the class?

Find out more on the Info for Students webpage:
https://services.anu.edu.au/learning-teaching/education-data/student-
experience-of-learning-teaching-selt/information-for

3
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

4

References
Accelerating HPC Applications with NVIDIA Nsight Compute Roofline
Analysis https://developer.nvidia.com/blog/accelerating-hpc-
applications-with-nsight-compute-roofline-analysis/

C. Yang, T. Kurth, and S. Williams, Hierarchical Roofline analysis for GPUs:
Accelerating performance optimization for the NERSC-9 Perlmutter system,
Concurrency and Computation: Practice and Experience, e5547,
2019. https://doi.org/10.1002/cpe.5547

Analyze CPU Roofline
https://www.intel.com/content/www/us/en/docs/advisor/user-
guide/2024-1/analyze-cpu-roofline.html

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU and GPU Code Optimisation

APOD design cycle for applications

Assess, Parallelize, Optimize, Deploy(APOD)

Ø Having completed the GPU acceleration of
one or more components of the
application it is possible to compare the
outcome with the original expectations
developed in the assess step

Ø The partially parallelized implementation
can be carried through to production as it
allows the user to profit from their
investment as early as possible (the
speedup may be partial but is still
valuable)

5
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Code Optimisation

APOD design cycle for applications

Assess, Parallelize, Optimize, Deploy(APOD)

Ø APOD is a cyclical process
Ø initial speedups can be achieved, tested,

and deployed with only minimal initial
investment of time

Ø the cycle can begin again by identifying
further optimization opportunities,
seeing additional speedups

Ø Incremental deployment of the even
faster versions of the application into
production

6

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Code Optimisation

APOD design cycle for applications

Assess, Parallelize, Optimize, Deploy(APOD)

Ø By understanding the end-user’s
requirements and constraints and by
applying Amdahl’s and Gustafson’s laws,
the developer can determine the upper
bound of performance improvement from
acceleration of the identified portions of
the application.

7
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Code Optimisation

APOD design cycle for applications

Assess, Parallelize, Optimize, Deploy(APOD)

Ø Having identified the hotspots and having
done the basic exercises to set goals and
expectations, the developer needs to
parallelize the code.

Ø Depending on the original code, this can
be as simple as calling into an existing
GPU-optimized library such as cuBLAS or
adding a few preprocessor directives as
hints to a parallelizing compiler.

Ø Some applications’ designs will require
some amount of refactoring to expose
their inherent parallelism

8

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Code Optimisation

APOD design cycle for applications

Assess, Parallelize, Optimize, Deploy(APOD)

Ø After each round of application
parallelization is complete, the developer
can move to optimizing the
implementation to improve performance

Ø Optimizations can be applied at various
levels, from overlapping data transfers
with computation all the way down to
fine-tuning floating-point operation
sequences

Ø The available profiling tools are invaluable
for guiding this process

9
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Performance Models
We need a quantitative model that defines good performance with reference to the
specific hardware available.

Good performance is defined by two fundamental requirements:

Ø Must not be significantly penalized by serialization (Amdahl’s Law), load
imbalance or communication (parallel overhead, synchronization) (scalability
requirement)

Ø Must attain high utilization of the CPU’s compute and/or bandwidth
capabilities (efficiency requirement)

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Performance Metrics
Ø In order to find such a model let’s start

looking at some simple algorithmic motifs
which are common in scientific computing.

Ø Clearly, a first limit for their execution speed
is the peak floating point operations (FLOPs)
performance of the hardware, measured in
FLOPs/s (Figure: Cascade Lake
https://www.microway.com)

Ø Another limit is main memory bandwidth,
which restricts the speed of data transfers
from and to the CPU.

Ø The more FLOPs/s an application performs
per unit of data transferred, the more likely
the code is to reach peak performance.

11
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Performance Metrics
The key metric is the arithmetic intensity:

AI =
FLOP/s

Bytes/s
(1)

where the denominator is the number of Bytes read
from and written to main memory per second.

Ø The AI can be calculated taking the total number
of FLOPs divided by the Bytes transferred from
and to main memory during program execution.

Ø An especially important value is the machine
balance Bm : the ratio between the peak FLOP
performance and the memory bandwidth

Bm = Peak Performance (FLOP/s)
Memory bandwidth (Bytes/s)

(2)

12

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Roofline Model
Ø This is a simple but very powerful

model that ties FLOP performance,
AI and memory performance in a 2D
graph. [William, Waterman, and Patterson,
Communications of the ACM Volume 52,
Number 4 (2009), Pages 65-76]

Ø One good way to find peak memory
performance is to use the STREAM
benchmarks.

Ø For a given code snippet (kernel) one
can find a point on the horizontal axis
by measuring its AI.

Ø The performance of that kernel lies on
the vertical line through that point. AI = Arithmetic Intensity

13
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Roofline Model

(AI = Arithmetic Intensity)

Ø For each given AI, the “roofline” is the
maximum FLOP performance achievable by
the code on the specific hardware
architecture used.

Max Attainable GFLOP/s = min Peak Memory BW∗AI
Peak FLOP Performance

Ø There are four performance regions: -

Ø unattainable performance
Ø bandwidth bound performance
Ø compute bound performance
Ø poor performance

Ø The ridge point has abscissa equal to the machine
balance.

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

The Roofline Model

AI = Arithmetic Intensity

Ø Kernels that lie close to the roofline are
making good use of the hardware
resources.

Ø Kernels can have low performance
(GFLOPs/s), but make good use (%
STREAM) of a machine.

Ø Kernels can have a relatively high
performance (GFLOPs/s), but still make
poor use (% Peak GFLOPs/s) of a machine.

15
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline

How can your kernel lie in the poor performance
region?

16

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline

How can you kernel lie in the poor performance
region?

Ø A likely reason is the lack of some specific
optimizations that enable the program to use
the underlying hardware efficiently.

17
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline

Ø Each optimization constitutes a
“performance ceiling” below the
appropriate roofline.

Ø The horizontal lines are performance rooflines
associated with FLOP performance.

Ø The tilted lines are associated with memory
performance.

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline
Ø The first FLOP performance ceiling is associated with

Thread Level Parallelism (TLP).
Ø In order to achieve reasonable performance on

modern processors one must use all cores in parallel.
Ø The second FLOP performance ceiling is associated

with Instruction Level Parallelism (ILP) and SIMD
parallelism.

Ø Maximize ILP is about hiding completely functional
unit latency: loop unrolling, loop fusion, avoid
branching in inner loops, etc.

Ø Need to use SIMD instructions in order to use all
processors floating point arithmetic units.

19
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline

Ø The final FLOP performance ceiling is associated
with floating point instruction mix.

Ø Peak FLOP performance requires an equal number
of nearly simultaneous additions and
multiplications.

Ø This balance is necessary typically because the
computer supports a fused multiply-add (FMA)
instruction.

Ø Another reason may be also that FP units have an
equal number of FP adders and FP multipliers.

20

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline
Ø The first memory performance ceiling is associated with

strided access.
Ø In order to reduce main memory traffic, inner loops

must have a unit stride access pattern.
Ø The second is about memory affinity, that is NUMA

effects.
Ø Allocate data and the threads tasked to operate on that

data to the same memory/numa domain pair

21
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

CPU Code under the Roofline
Ø The final memory performance ceiling is associated

with software prefetching.

pragma prefetch

include <immintrin.h>
void _mm_prefetch (char const* p,

int i)

Ø Avoid branching in bottleneck-determining code,
unroll loops, etc.

22

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Code Optimisation
GPU Performance optimization
revolves around four basic strategies:

Ø Maximize parallel execution to
achieve maximum utilization

Ø Optimize memory usage to achieve
maximum memory throughput

Ø Optimize instruction usage to
achieve maximum instruction
throughput

Ø Minimize memory thrashing by not
constantly allocating and freeing
memory

23
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Code under the Roofline

Ø Typically reasons for low performance are
architecture (and kernel) dependent

Ø Why could the kernel corresponding to red
dots have low performance?

Ø How can we increase performance?

24

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Code under the Roofline

Ø Expose more parallelism to maximise SM usage
and hide arithmetic latency

Ø Change grid and block sizes (kernel configuration)
to increase block-level parallelism

Ø Unroll loops
Ø Tuning number of registers per thread

Ø Avoid thread divergence

25
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Code under the Roofline

ba
nd

width
bo

un
d

una
ttai

nab
le per

form
anc

e

Peak
BW×AI

unattainable performance

Peak GFLOPs/s
compute bound

At
ta

ina
ble

GF
LO

Ps
/se

c

Bm
AI: FLOPs/Byte Ratio

poor performance

Ø What if we want better
bandwidth utilization?

26

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Code under the Roofline

ba
nd

width
bo

un
d

una
ttai

nab
le per

form
anc

e

Peak
BW×AI

unattainable performance

Peak GFLOPs/s
compute bound

At
ta

ina
ble

GF
LO

Ps
/se

c

Bm
AI: FLOPs/Byte Ratio

poor performance

Ø What if we want better bandwidth utilization?
Ø Optimize for obtaining aligned and coalesced

memory transactions

Ø This may require a redesign of data structures
(e.g. AoS to SoA) and better indexing

Ø Expose more parallelism to maximise SM
usage and hide memory latency

27
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

High Performance GPU Code

Ø Assume your kernels yields the yellow dot
performance.

Ø Are you happy with this level of
performance…?

28

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Increasing AI for GPU Code

Ø Assume your kernels yields the yellow dot
performance.

Ø Are you happy with this level of
performance…?

Ø How can we increase AI?

29
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Increasing AI for GPU Code

Ø Assume your kernels yields the yellow dot
performance. Are you happy with it?

Ø How can we increase AI?
Ø Increasing the data reuse and reducing the

data movement increases AI i.e. reducing
data movement

30

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Increasing AI for GPU Code

Ø Assume your kernels yields the yellow dot
performance. Are you happy with it?

Ø How can we increase AI?
Ø Increasing the data reuse and reducing the data

movement increases AI
Ø Better caching → Optimize code to be cache

friendly (avoid false sharing on CPU)
Ø Usage of shared memory on GPU to reduce global

memory transactions
Ø Also, you may be able to achieve better

performance with a fundamental algorithm
redesign!

31
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Intel Advisor

Ø You can use the Intel
Advisor tool to
produce a roofline
plot for CPU

32

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Intel Advisor
Ø Ideally, compile your program with icx,
 not gcc
Ø You need full isolation from other users

when profiling
Ø module load intel-advisor
Ø OMP NUM THREADS=NT advixe-cl --collect

roofline --project-dir ./results dir --
search-dir src:=./ --search-dir bin:=./ --
./testAdvect -P M N

Ø advixe-guito launch the GUI

33
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

34

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute

Ø You can use NVIDIA Nsight Compute to
produce a roofline plot for GPU

36
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute

__global__ void kernel_A(double* A, int N, int M)
{
 double d = 0.0;
 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < N) {
#pragma unroll(100)
 for (int j = 0; j < M; ++j) {
 d += A[idx];
 }
 A[idx] = d;
 }
}

Kernel_A is an instruction
throughput bound kernel:
with each thread we do
10000 double precision
adds, for an arithmetic
intensity of 10000 / 8
(bytes per double
precision word) = 1250.

37

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute
__global__ void kernel_A(double* A, int N, int M)
{
 double d = 0.0;
 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 if (idx < N) {
#pragma unroll(100)
 for (int j = 0; j < M; ++j) {
 d += A[idx];
 }
 A[idx] = d;
 }
}

Kernel_B is identical to
kernel_A, except that we
artificially throttle
occupancy on the GPU by
allocating 96 kB of shared
memory per thread block,
which means that only
one thread block can be
resident on an SM at any
one time, for an
occupancy of 1/32 =
3.125%. cudaFuncSetAttribute(kernel_B,

cudaFuncAttributeMaxDynamicSharedMemorySize, 96 * 1024);
kernel_B<<<numBlocks, threadsPerBlock, 96 * 1024>>>(A,N,M);

38
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute
__global__ void kernel_C(double* A, const double* B, int N)
{
 int idx = threadIdx.x + blockIdx.x * blockDim.x;

 // Strided memory access: warp 0 accesses (0,stride, 2*stride,
...), warp 1 accesses
 // (1, stride + 1, 2*stride + 1, ...).
 const int stride = 16;
 int strided_idx = threadIdx.x * stride + blockIdx.x % stride +
(blockIdx.x / stride) * stride * blockDim.x;

 if (strided_idx < N) {
 A[idx] = B[strided_idx] + B[strided_idx];
 }
}

Kernel_C is primarily
memory-bandwidth bound --
we just do a single double
precision add, combined with
a load and a store (for an
arithmetic intensity of 1 / 16
= .0625). The memory access
pattern is strided -- we load
every element of B exactly
once and store every element
of A exactly once, but any
given warp is accessing
memory locations 32 bytes
apart between each thread

39

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Roofline Analysis with Nvidia Nsight Compute

Ø module load cuda
Ø ncu --set full -o ProfileOutput

<application>

Ø ncu-ui to launch the GUI

40
TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DEMO

Roofline Analysis with NVIDIA Nsight Compute

41

