COURSE REVIEW

COMP4300/8300 PARALLEL SYSTEMS

PROF. JOHN TAYLOR

MAY 2024

Australian
National
University

Semester 1 SELT is live!

Join us for

free food and prizes
21 - 24 May
11.00am - 2.00pm
CSIT Lab entrance or lawn

(weather dependent)

20 May — Survey opens
Check your email or Wattle page
for available surveys

O
B

-~ D
o)

/Q .E SELT feedback is made available to

D, teachers and course convenors to

h)
\0 16 June - Survey closes improve future course delivery
IR team perform screening of comments

for welfare concerns

E

Survey runs for 4 weeks
Please provide constructive and respectful

* AUStralia n feedback (your teacher can’t identify you)
~—=.| National
" . .
=7 University

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) | CRICOS PROVIDER CODE: 00120C

SELT - Frequently asked questions

What kind of feedback is helpful?

Think about your experience of the course and
teaching, and what worked or didn’t work for you.

When writing feedback, focus on respectful and
constructive language — if you were a teacher, what
type of feedback would help you improve the class?

Australian Find out more on the Info for Students webpage:

https://services.anu.edu.au/learning-teaching/education-data/student-
experience-of-learning-teaching-selt/information-for

National
University

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) | CRICOS PROVIDER CODE: 00120C

Can teachers see who left specific feedback?

SELT is confidential, and teachers cannot see, or ask to see,
the identity of a respondent. Unless you self-identify, for
example by using names or describing specific events,
teachers cannot identify you.

If your class has very few enrolments, it may be difficult to
remain completely anonymous.

Assignment 2 & Final Exam

» Assignment 2 is worth 25% of your final mark and is due this Sunday 26/05/2024, 11:55PM

>

Once again, the report has a large relative weight in the final mark, and should be well-
written. Submissions without a report will get a very low mark.

Final Exam will be held on 11/06/2024,9:00AM-12:15PM, Copland Building G29/G30

The Final Exam (FE) is worth 40% of the final mark, however remember that the MSE is
redeemable so the mark will be assigned as max(MSE*10/100+FE*40/100, FE*50/100)

Final Exam

» Three-hour pen-and-paper open-book exam with a 15-minute reading time

A\

Multiple choice questions with content spanning all main course topics — 25 marks

» Three sections—each worth 25 marks— with more specific questions requiring more detailed answers and/or
problem solving

» Distributed Memory Parallel Systems Architecture and Programming

» Shared Memory Parallel Systems Architecture and Programming

» GPU Architecture and Programming

» Each of last the three sections will contain 3-6 questions on its specific topic

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Final Exam Preparations

» All examples in this presentation are taken from past exam papers which are accessible on
Wattle.

» Exercising on the past final exams is a very good training for the final exam.

» Of course, the exam will not contain any topic that has not been discussed this year.

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Final Exam Preparations — Key topics

» Part I: Classical Parallel Hardware (Flynn Taxonomy, UMA and NUMA Architectures,
Distributed- and Shared-Memory Systems)

» Part I: Instruction Level Parallelism (Superscalarity, Pipelining, Out-of-order execution)
» Part |: Dynamic and Static Connectivity Networks
» Part |I: Message Passing and MPI (Point-to-Point Communications, Blocking and Non-Blocking

Communication, Collectives, Datatypes)

» Part |: Strong and Weak Scaling, Parallel Speedup and Efficiency
» Part I: Network Routing, Communication Cost, Performance Modelling Part I:
Synchronous Computations

» Part |: Pipelining and Divide & Conquer Parallelization

Final Exam Preparations — Key Topics

» Part ll: Motivation for Shared Memory Parallel Computers (Dennard Scaling, Moore’s
Law, Limitations of ILP)

A\

Part Il: Process versus Thread Parallelism

A\

Part II: Pthreads, Thread Memory and Execution Models

Part |I: Thread Synchronization (state diagrams, critical section, semaphores,
mutexes & locks)

A\

A\

Part Il: The OpenMP Programming Model

A\

Part Il: Simultaneous Multi-Threading, Single Instruction Multiple Data Part II:
GPU Execution Model

Part Il: GPU Memory Model
Part Il: The CUDA Programming Model

Part |I: Snooping-Based Cache Coherence

YV V V VY

Part IlI: Roofline

Distributed Memory Parallel Systems Architecture
and Programming (DMEM)

» Determine performance/cost of DMEM algorithms on a given network topology
» Implement and/or optimize DMEM algorithms using MPI

» Explain semantics of, or amend, a presented MPI code

DMEM: Examples

(b) Explain what the following MPI program is doing, and state the output that is
printed if the code is run using 7 MPI processes:

int main (int argc, char *argv[]) {

int token, NP, myrank;
MPI_Status status;
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &NP);
MPI_Comm_rank (MPI_COMM_WORLD, &myrank);
if (myrank !'= 0) {
MPI_Recv(&token, 1, MPI_INT, myrank - 1, O, MPI_COMM_WORLD, &status);
} else {
token = -1;
}
token += 2;
MPI_Send(&token, 1, MPI_INT, (myrank + 1) % NP, O, MPI_COMM_WORLD);
if (myrank == 0) {
MPI_Recv(&token, 1, MPI_INT, NP - 1, 0, MPI_COMM_WORLD, &status);
}
printf("rank and token %d %d \n",myrank, token);
MPI_Finalize();

10

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

DMEM: Examples

Consider the following algorithm which runs p processors, where p is a power of two and where i (0 <= i < p) is
the id of the executing process:

int x[m];

for (d = p/2; d > 8 d J=12) {
if (i % (2*d) == 0)
send(x, m, i+d);
else if (i % (2*d) == d)
recv(x, m, i-d);

Let t s be the message startup time, t w be the transmission cost per unit word, and t_h be the per-hop
transmission link latency. Derive expressions for the parallel execution time under a ring topology for both store-
forward (SF) routing and cut-through (CT) routing. Give a simple approximate expression for the time reduction
ratio of CT over SF, listing any assumptions made.

11

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

Shared Memory Parallel Systems Architecture
and Programming (SHMEM)

» Implement and/or optimize SHMEM algorithms using OpenMP
» Explain semantics of, or amend, a presented OpenMP code

» Discuss shared memory processor architecture, execution and memory
models

SHMEM examples

» Implement and/or optimize SHMEM algorithms using OpenMP
» Explain semantics of, or amend, a presented OpenMP code

» Discuss shared memory processor architecture, execution and memory
models

13

TEQSA PROVIDI

ER ID: PRV12002 (AUSTRALIAN

UNIVERSITY) CRICOS PROVIDER CODE: 00120C

SHMEM examples

(a) Parallelize the following code using openMP pragmas. Assume that the target ma-
chine has a cache line size of 128B, that the size of an int is 4B, and the arrays contain
ints. Be sure to explicitly specify the “schedule” options that should be used, even
if you want to use the default options. For each please rewrite as much code as
necessary to make your intent clear. If necessary you can assume that the variable
P represents the number of processors to be used. Assume that N is large (in the
tens of thousands or more). You must explicitly list all variables within the range of
a parallel pragma that are private using the private() directive.

(i) for (i=0;i<N;i++){
for (j=0;j<N;j++){
if (ALi*N+j1< BLi*N+j1)A[i*N+j]=B[i*N+j];
1}
(i) crol = 1;
for (i=1;i<N;i++){
C[il = C[i-11;
for (j=0;j<N;j++){
C[i] *= A[i*N+j] + B[i*N+jl;
1
(iii) typedef struct element
{ int value;
struct element *next;
} Element;
Element *D[N]; // array of pointers to linked lists of varying length
int C[N];

for (i=0;i<N;i++){
C[i] = computeAverageValueOfAllListElements(D[i]);
}

14

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

SHMEM examples

S S
\\ ~ ~
\ N
P1 P2 Bus us Cc1 C2 mem[&X] Y N
processor cache cache transaction snooper state state “ N
action Qiss{hit, T(iss{hit, (protigssor transaction \ N
value value action
initiated) A Bust)&/FIush
PrWr/BusRdX) '
No-Op N/A N/A - - I 0 BusRdJFlush
\
— B : \
P1Rd X miss, 0 N/A BusRd(S") v N 1 ‘\
PrWr/BusRdX o \
s \ i
P1Wr X =4 BusRd/—\ !
7
,' 7\ !
7 \ 1
P2Rd X L 1
P ' !
7’ 1 !
— Y* t - 3 i 1
PAWr X = X*2 PrRd/BusRd(S) L BusR¢X/ ;
\ I ’
Y 1
P2Wr X = X-3 [!
BusRdX/— | b
1 / ’
1) ,l
1 7
1 ,' /'
I 54
LS -,
el %
15

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Architecture and Programming

» Implement and/or optimize GPU algorithms using CUDA
» Explain semantics of, or amend, a presented CUDA code

» Discuss GPU architecture, execution and memory models

16

GPU Examples

The following code implements the heat diffusion stencil on an M by N column-major matrix t.

iter = 0;
do {
itert++;
for (§ = 1; § < N-1; j++)
for (1 =1; 1 < M-1; i++)
tI[J*N+i] = 0.25% (L[J*N+i+l] + t[j*N+i-1]+
B[(J+1) *N+L]+£ [(-1) *N+i]) ;

A

mxdiff = 0.0;
for (j = 1; § < N-1; j+4)
for (1 = 1; 1 < M-1; i+4) {
tdiff = fabs((double) (t[j*N+i] - t1[j*N+i]));
mxdiff = (mxdiff < tdiff)? tdiff: mxdiff;
}
for (1 = 0; i < M*N; i++) t[i] = tl[i];
} while (mxdiff > converge && iter < Max iter);

Write a CUDA kernel to implement the first loop nest, which will work for any (legal) two-dimensional
block and thread sizes. For full marks, it should enable contiguous memory accesses within a thread
block, but no further optimizations are required.

17

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

GPU Examples

The following code implements the heat diffusion stencil on an M by N column-major matrix t.

iter = 0;
do {
iter++;

for (3 = 1; 3 < N-1; J++)
for (i = 1; 1 < M-1; i++)

[

E1[J*N+i] = 0.25% (£[§*N+i+1) + t[J*N+i-1]+
E[(J+1)AN+L] 4+t [(3-1) *N+1]) ;
mxdiff = 0.0;
for (3 = 1; j < N-1; j++)

for (1 = 1; i < M-1; i++) {
tdiff = fabs((double) (t[j*N+i] - tl[j*N+il));
mxdiff = (mxdiff < tdiff)? tdiff: mxdiff;
}
for (i = 0; 1 < M*N; i++) t[i] = Z1[i];
} while (mxdiff > converge && iter < Max iter);

Describe at least 2 ways how you would optimize your kernel to give better performance, and
comment on the expected effectiveness of each way. What would be the main limiting factor to

performance in this example?

18

TEQSA PROVIDER ID: PRV12002 (AUSTRALIAN UNIVERSITY) CRICOS PROVIDER CODE: 00120C

