Outline：Parallelization via Partitioning and Divide－and－Conquer
－two（related）parallelization techniques：partitioning and divide－and－conquer
－example 1：addition of（centralized）1D array entries
－parallelization by partitioning
－parallelization by divide－and－conquer
－example 2：numerical integration using quadratures
－problem definition and sequential algorithm
－parallelization by partitioning
－example 3：solving N－body problems
－problem definition
－all－pairs sequential algorithm
－reducing complexity by divide－and－conquer：the Barnes－Hut algorithm
－parallelization challenges
Ref：Wilkinson and Allen Ch 4.

$$
\text { COMP4300/8300 L10: Partitioning and Divide-and-Conquer } 2024 \longleftrightarrow 4
$$

Example 1：Addition of（Centralized）1D Array Entries

－assume we want to sum the n entries of a 1D array under the assumption that the array is initially stored in one of the processes，say process 0
－let us first explore the（data）partitioning approach（aka domain decomposition）
－simple strategy：divide array into p parts of size $\frac{n}{p}$ numbers each
－each part can be processed by a different process and the partial sums have to be combined（i．e．，summed up）to obtain the final result（in the case of the figure，a single process is in charge of performing the final sum）

note that each process needs the data it has to accumulate，but the array is centralized in process 0 ！How can we address this？（next slides）

Partitioning and Divide－and－Conquer

－two related parallelization approaches： partitioning and divide－and－conquer
－in partitioning，the problem is divided into separate parts，and each part is executed separately on different processors

－most partitioning formulations（except for the case of naturally parallel problems） require the results of the parts to be combined to obtain the desired result
－two variants of partitioning：data partitioning（this lecture；see figure）and functional partitioning（much less common）
divide－and－conquer applies partitioning in a recursive manner dividing the problem into smaller and smaller tasks before solving example：finite element meshes of complex the smaller tasks and combining the results multilevel graph partitioning algorithms
COMP4300／8300 L10：Partitioning and Divide－and－Conquer 2024 山ム 4・ゆ 2

First Approach：Master／Slave via Send／Recv to Distribute Data

```
Master:
s = n/(p-1); // size of each part
offset = 0;
for (slave=1; slave<p; slave++) {
    send(&numbers[[offset], s, slave); // send chunk of s numbers to slave
    offset = offset + s;
}
sum = 0;
    for (slave = 1; slave < p; slave++) {
    recv(&part_sum, 1, any_proc); // receive partial sums in any order!
    sum = sum + part_sum; // accumulate partial sums
}
Slave：
\(\mathrm{s}=\mathrm{n} /(\mathrm{p}-1)\)
master \(=0\)
recv（numbers，\(s\) ，master）；／／receive chunk of \(s\) numbers from master
part＿sum＝0；
part sum＝\({ }^{\text {，}}\) i＋＋）
mbers［i］；
send（\＆part＿sum， 1, master）；／／send partial sum to master
```


Second Approach：Master／Slave via Broadcast to Distribute Data

Master：

master $=0$
bcast（numbers，n ，master）$\quad / /$ broadcast the whole array to all slaves
sum $=0$ ；
sum $=0$ ；
for（slave＝1；slave＜p；slave＋＋）\｛
recv（\＆part＿sum，1，any－proc）；／／receive partial sums in any order！ m＝sum＋part＿sum；
／accumulate partial sums
\}
Slave：
master $=0$ ；
numbers $=$ memalloc（ n ）；
bcast（numbers，n ，master）；／／get whole array from master
$\mathrm{s}=\mathrm{n} /(\mathrm{p}-1)$ ；
start $=($ me -1$) * s$ ；
end thestart $=0$ ；
for（i＝start；
part sum＝i $<$ end；i＋＋）
send（\＆part＿sum，1，master）；／／send partial sum to master
The relative merit of this approach versus the previous one depends，among others，on the specifics of the broadcast implementation when unfolded in the underlying network

Divide－and－Conquer

－parallelization approach characterized by recursively applying partitioning to divide a large problem into smaller and smaller subproblems of the same form as the original problem
－recursion is a key concept for divide－and－conquer；it is applied until the tasks cannot be subdivided further or they are＂small enough＂
－divide－and－conquer parallel algorithms can be understood as operating in parallel with tree－like data structures
－when each subdivision creates two parts，a recursive divide－and－conquer formulation forms a binary tree（next slide），although we may have subdivision into $M>2$ parts，leading to M－ary trees

Third Approach：Scatter＋Reduce

／／allocate buffer space for the
／／local chunk of numbers
$\mathrm{s}=\mathrm{n} / \mathrm{p}$ ；
rcv＿buf $=$ memalloc（s）；
／／root scatters to all processes their
／／respective chunks of size s
root＝0；
scatter（numbers，rcv＿buf，s，root）；
part＿sum $=0$ ；

part＿sum＝part＿sum＋rcv＿buf［i］；
reduce（\＆part＿sum，\＆sum， 1, root，SUM）；
this third approach does NOT follow the master／slave paradigm
－instead，it uses scatter＋reduce（collectives）on the whole set of processes
－note that numbers［］array is ONLY consumed at the root process（it might indeed be a dangling pointer in processes different from the root）
－the final sum is（only）available at the root
COMP4300／8300 L10：Partitioning and Divide－and－Conquer 2024 «4 «・ゆ 6

Divide－and－Conquer Addition of 1D Array Entries（Sequential）
sequential divide－and－conquer for the addition problem may look as follows
／／add 1D array of numbers
int add（int＊s）
int＊s1，＊s2；
if（length（s）
return 0；
elif（length（s）＝＝1）
elseturn
else \｛
／／continue recursion divide（s，\＆s1，\＆s2）； part＿sum1＝add（s1）； return（part sum1＋ \} return (part_sum1 + part_sum2);

＂divide＂stage of the process
\} ${ }^{\}}$
the problem is first divided into two parts
－these two parts are each divided into two parts，and so on till leaves are reached
the basic operations（summation of entries）are performed at the leaves
－accumulation of partial results occurs bottom－top in reverse order

Divide－and－Conquer Addition of 1D Array Entries（Parallel）

－the recursive subdivision process offers opportunities for parallelism：once a subdivision is made，both parts can be processed simultaneously
－a smart（static）mapping approach of tasks to processes is the one illustrated in the figure（ $p=8$ ），in which we reuse processes at each tree level
－communication pattern is the same as the one of binary broadcast collective on hypercube networks（based on binary addresses）

$\log _{2}(p)$ stages
－stage 1：$P_{0}(000)$ passes 2 nd half of whole array to $P_{4}(100)$
－stage 2：$P_{0}(000) \rightarrow P_{2}(010)$ ， $P_{4}(100) \rightarrow P_{6}(110)$
－stage 3：$P_{0}(000) \rightarrow P_{1}(001)$ ， $P_{2}(010) \rightarrow P_{3}(011)$ ， $P_{4}(100) \rightarrow P_{5}(101)$ ，

$$
P_{6}(110) \rightarrow P_{7}(111)
$$

each subarray at the leaves will have $\frac{n}{p}$ entries

Analysis of Divide－and－Conquer Centralized 1D Array Addition

－sequential algorithm time：
$t_{\text {seq }}=(n-1) t_{f}$
－parallel comm 1 （divide）：
$t_{\text {comm } 1}=\frac{n}{2} t_{w}+\frac{n}{4} t_{w}+\frac{n}{8} t_{w}+\cdots \frac{n}{p} t_{w}=$ $\frac{n(p-1)}{p} t_{w}$
－parallel computation（divide＋combine）：
$t_{\text {comp }}=\left(\frac{n}{p}+\log _{2}(p)\right) t_{f}$
－parallel comm 2 （combine）：
$t_{\text {comm2 }}=\log _{2}(p) t_{w}$
－parallel algorithm time：
$t_{\text {par }}=t_{\text {comm } 1}+t_{\text {comm } 2}+t_{\text {comp }}=$
$\left(\frac{n(p-1)}{p}+\log _{2}(p)\right) t_{w}+\left(\frac{n}{p}+\log _{2}(p)\right) t_{f}$

Divide－and－Conquer Addition of 1D Array Entries（Parallel）

－combination of partial sums operates in reverse manner，i．e．，from leaves to root
－communication pattern is the same as the one of binary reduce collective on hypercube networks（based on binary addresses）

$\log _{2}(p)$ stages
stage 1：$P_{1}(001) \rightarrow P_{0}(000)$ ，
$P_{3}(011) \rightarrow P_{2}(010)$ ，
$P_{5}(101) \rightarrow P_{4}(100)$ ，
－stage 2：$P_{2}(010) \rightarrow P_{0}(000)$ ，
$P_{6}(110) \rightarrow P_{4}(100)$
－stage 3：$P_{4}(100)$ sends sum of 2nd half of whole array to P_{0}（000）

M－ary Divide－And－Conquer

－divide－and－conquer can be generalized to M－ary trees，with $M>2$
－with $M=4$ ：quadtree；with $M=8$ ：octree
4－ary divide－and－conquer for the addition problem may look as follows
／／add 1 D array of numbers
int add（int＊s）\｛
if ．．．／／stop recursion
else \｛
divide（sue recursion
divide（s，\＆s1，\＆s2，\＆s3，\＆s4）；
part＿sum1 $=$ add（s1）
part＿sum2 $=$ add（s2）
part＿sum3 $=\operatorname{add}($ s3）；
part＿sum4 $=\operatorname{add}(s 4)$ ；
return（part＿sum1＋part＿sum2＋
part＿sum3＋part＿sum4）；

use of quadtree for image processing
（2D space subdivision）
$\}^{\}}$

Example 2: Numerical Integration Using Quadratures (definition)

Numerical Integration Using Quadratures (trapezoidal rule)

- the goal is to approximate $\int_{I} f(x)$ on arbitrary interval I by quadrature formulas
- for convenience, these are typically defined in a ref. interval, e.g., $\hat{K}:=[-1,1]$
- in general, any quadrature formula obeys the following general definition:

$$
\int_{-1}^{1} f(x) \mathrm{d} x \approx \sum_{l=1}^{m} \omega_{l} f\left(\xi_{l}\right)
$$

where $\xi_{l} \in[-1,1]$ are called quadrature nodes (and are all distinct), and the real numbers ω_{l} are called quadrature weights

- ξ_{l} and ω_{l} are judiciously chosen such that approximation fulfills certain properties, typically that polynomials up to a certain degree can be integrated exactly
- by a change of variables, we can transform the formula above on any interval $[a, b]$:

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{l=1}^{m} \frac{1}{2} \delta \omega_{l} f\left(c+\frac{1}{2} \delta \xi_{l}\right)
$$

where $c:=\frac{1}{2}(a+b)$ and $\delta:=b-a$

Numerical Integration Using Quadratures (sequential algorithm)

- we split I into n fixed-size subintervals (note there are also variants which built varying-size intervals dynamically/recursively using some optimization criterion)
- thus, definite integral over I decomposed as sum of integrals over each subinterval
- we use trapezoidal rule to approximate integrals over subintervals
- the larger the n, the better the approximation
printf("Enter the number
printf("Enter the number
subintervals\n");
subintervals\n");
scanf("%d",\&n);
scanf("%d",\&n);
d = (b-a)/n;
d = (b-a)/n;
area = 0.0;
area = 0.0;
x = a;
x = a;
for (i = 0; i < n; i++) {
for (i = 0; i < n; i++) {
area = area +f(x) +f(x+d);
area = area +f(x) +f(x+d);
x=x+d;
x=x+d;
}
}
area=0.5*area *d
area=0.5*area *d

COMP4300/8300 L10: Partitioning and Divide-and-Conquer 2024

- among all possible quadrature formulas, we are going to use the trapezoidal rule
- this rule is defined as $m=2, \xi_{1}=-1, \xi_{2}=1, \omega_{1}=\omega_{2}=1$
- if we replace these values in the above formula, then we obtain:

$$
\int_{a}^{b} f(x) \mathrm{d} x \approx \frac{1}{2}(b-a)(f(a)+f(b))
$$

- the trapezoidal is able to integrate exactly polynomials of up to degree 1 (i.e., linear functions)
- it actually belongs to a general class of quadratures referred to as Gauss-Lobatto-Legendre quadratures
- how can we reduce the approximation error for more complicated functions (e.g., trigonometric functions)? (next slide)

COMP4300/8300 L10: Partitioning and Divide-and-Conquer 2024

Numerical Integration Using Quadratures (parallel algorithm)

```
me=process_rank_id();
p=num_ranks();
root=0;
if (me == root)
    printf("Enter number of
        scanf("subintervals\n")
scanf("%d",&n);
bcast(&n, 1, root);
region_length = (b-a)/p;
x = a + me*region_length;
d = (b-a)/n;
part_area = 0.0
    part area += f(x) + i++) {
    part_area += f(x) + f(x+d)
    x = x + d;
reduce(&part_area, &area, 1, root, SUM)
if (me == root) {
    area=0.5*area*d;
    printf("Area under the
}
```

Example \#3: Solving N-body Problems (problem definition)

- a general class of problems which aim at describing the dynamics (instantaneous positions/velocities) of N particles under forces which these exert on each other
- for conciseness, we restrict to gravitational N-body problems, i.e., the forces among the particles are determined by Newton's law of universal gravitation
- however, the same concept applies to other fields, e.g., electrically charged particles, molecular dynamics, fluid dynamics, etc.
- N-body problems are mathematically modelled by systems of differential equations. However, analytical solutions for these are not easy to determine (if possible) for $N>3$, so that computational methods have to be used
- N-body problems computer simulations can greatly benefit from divide-and-conquer (e.g. recursive space subdivision in the Barnes-Hut algorithm)

Newton's Law of Universal Gravitation (refresher)

- assume we have two bodies identified as i, j, with $i, j=1 \ldots N$, masses m_{i} and m_{j} resp., and position vectors \mathbf{x}_{i} and \mathbf{x}_{j}, resp., then the gravitational force that j exerts on i is given by:

$$
\mathbf{F}_{i j}=G \frac{m_{i} m_{j}}{\left\|\mathbf{x}_{i j}\right\|^{2}} \frac{\mathbf{x}_{i j}}{\left\|\mathbf{x}_{i j}\right\|}
$$

where G is the gravitational constant, and $\mathbf{x}_{i j}=\mathbf{x}_{j}-\mathbf{x}_{i}$

- thus, if we know the mass of the bodies, and their position vectors, then we can compute the resultant of forces on each body, i.e., $\mathbf{F}_{i}=\sum_{j \neq i} \mathbf{F}_{i j}$
- given \mathbf{F}_{i} and m_{i}, we can compute the acceleration (instantaneous change in velocity) caused by the resultant force on each body $i=1, \ldots, N$, using Newton's second law

Source: https://philippos.info/nbody/

Discretization; Updating Approximate Velocities and Positions

- as usual, we discretize (split) time simulation interval $[0, T]$ into M subintervals of length δt
- our aim is to approximate the position vectors and velocities at the start of each time subinterval
- let us denote by \mathbf{v}_{i}^{n} and \mathbf{x}_{i}^{n} the approximate velocity and position vector of the i-th body at the start of subinterval n
- assuming that the force \mathbf{F}_{i} (and thus acceleration) is constant through the whole time subinterval n (clearly not true!), then \mathbf{v}_{i}^{n+1} approximated by

$$
\mathbf{v}_{i}^{n+1}=\mathbf{v}_{i}^{n}+\frac{\mathbf{F}_{i}}{m_{i}} \delta t
$$

analogously, the position vector can be approximated as:

$$
\mathbf{x}_{i}^{n+1}=\mathbf{x}_{i}^{n}+\mathbf{v}_{i}^{n} \delta t
$$

- for "small enough" δt, discretization gives a reasonable approximation to the actual physical phenomena

Sequential Algorithm（All－Pairs）

```
dt = T/M
for (t=0;t<M;t++)
{or (i=0;i<N;i++) {
        Initialize Fi to zero
        for (j=0;j<N;j++) {
            compute Fij
                Fi += Fij
        }
        vi_new = vi + Fi*dt/mi
        xi_new = xi + vi*dt
    }
    for (i=0;i<N;i++)
        vi = vi_new
        xi = xi_new
}}\mp@subsup{}}{}{\textrm{x}
／／loop over \(N\) bodies
／／loop over \(N\) bodies
／／force that \(j\) exerts on \(i\)
／／update velocity
／／update position
／／loop over \(N\) bodies
```

- known as "all-pairs" algorithm in the literature
－number of operations can be cut in half by only calculating $\mathbf{F}_{i j}$ ，for $i=1, \ldots N$ and $j=1, \ldots i-1$（note that $\mathbf{F}_{i j}=-\mathbf{F}_{j i}$ ）
－in any case，$O\left(N^{2}\right)$ complexity！
can we do better？（i．e．，reduce the order of complexity）

Barnes－Hut Algorithm（Tree Construction in 2D）

－assumes a 2D space with fixed boundaries and embeds it within one square
－if more than one body，divide the square into 4 subsquares
－subsquares with more than 1 body are recursively divided into 4 again，while subsquares with no bodies in them are not subdivided by tagged as void
－continue until all leaves have only one particle（or none）
－the tree is used to cluster the bodies together when computing the forces（we have as many potential clusters as intermediate nodes in the tree）

known as＂all－pairs＂algorithm in the literature

Barnes－Hut Algorithm（Computation of Forces）

masses and centre of masses of（potential） clusters：
for each level ℓ ，from fine to coarse：
set to zero the masses of all void cells on level ℓ
for each non－void cell c on level ℓ ：
if c has children：
compute the total mass and center of mass for cell c by considering its children
else：
set the total mass and center of mass for cell c to the mass and position of only body
actual computation of forces：
for each particle p ：
for each cell c on the top level

body in red is＂far enough away＂from cluster in green if $\frac{L}{D} \leq \theta$ ，with $\theta<1$ user－prescribed parameter
if c is＂far enough away＂（see fig）from p ：
use the total mass and center of mass of c ；
otherwise consider the children of c

Barnes-Hut Algorithm (Parallelization Challenges)

- message-passing parallelization of Barnes-Hut Algorithm is challenging
- first, the problem is irregular, the bodies might not distributed uniformly across space, challenging load balancing
- second, the irregularity dynamically varies in time as the bodies interact with each other, so that dynamic load rebalancing is in general needed to keep the number of bodies per process balanced
- third, for scalable parallelization, all stages have to be parallelized and the tree has to be partitioned/distributed into the different processes (such that no single process can hold the whole tree)
- due to scope/time constraints, this course does not cover how to tackle all these challenges. However, the interested (and intrepid) reader might find a detailed parallelization approach in this very nice paper:
Scalable parallel formulations of the Barnes-Hut method for n-body simulations,
Parallel Computing, 23(5-6), pp. 797-822, 1998. Publisher: Elsevier.

