
Outline: Parallelization via Partitioning and Divide-and-Conquer

● two (related) parallelization techniques: partitioning and divide-and-conquer

● example 1: addition of (centralized) 1D array entries

■ parallelization by partitioning

■ parallelization by divide-and-conquer

● example 2: numerical integration using quadratures

■ problem definition and sequential algorithm

■ parallelization by partitioning

● example 3: solving N-body problems

■ problem definition

■ all-pairs sequential algorithm

■ reducing complexity by divide-and-conquer: the Barnes-Hut algorithm

■ parallelization challenges

Ref: Wilkinson and Allen Ch 4.
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Partitioning and Divide-and-Conquer

● two related parallelization approaches:

partitioning and divide-and-conquer

● in partitioning, the problem is divided into

separate parts, and each part is executed

separately on different processors

● most partitioning formulations (except for

the case of naturally parallel problems)

require the results of the parts to be

combined to obtain the desired result

● two variants of partitioning: data

partitioning (this lecture; see figure) and

functional partitioning (much less common)

● divide-and-conquer applies partitioning in a

recursive manner dividing the problem into

smaller and smaller tasks before solving

the smaller tasks and combining the results

example: finite element meshes of complex
geometries partitioned using
multilevel graph partitioning algorithms
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Example 1: Addition of (Centralized) 1D Array Entries

● assume we want to sum the n entries of a 1D array under the assumption that the

array is initially stored in one of the processes, say process 0

● let us first explore the (data) partitioning approach (aka domain decomposition)

● simple strategy: divide array into p parts of size n
p numbers each

● each part can be processed by a different process and the partial sums have to be

combined (i.e., summed up) to obtain the final result (in the case of the figure, a

single process is in charge of performing the final sum)

Partial Sums

Sum

x((p−1)n/p) ... x(n−1)x(0) ... x((n/p)−1) x(n/p) ... x((2n/p)−1)

● note that each process needs the data

it has to accumulate, but the array is

centralized in process 0! How can we

address this? (next slides)
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First Approach: Master/Slave via Send/Recv to Distribute Data

Master:
s = n/(p −1); // size of each part
offset = 0;
for (slave =1; slave<p; slave ++) {

send(& numbers[offset], s, slave); // send chunk of s numbers to slave
offset = offset + s;

}

sum = 0;
for (slave = 1; slave < p; slave ++) {

recv(& part sum , 1, any proc ); // receive partial sums in any order!
sum = sum + part sum ; // accumulate partial sums

}

Slave:
s = n/(p −1);
master = 0
recv(numbers , s, master ); // receive chunk of s numbers from master
part sum = 0;
for (i = 0; i < s; i++)

part sum = part sum + numbers[i];
send(& part sum , 1, master ); // send partial sum to master
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Second Approach: Master/Slave via Broadcast to Distribute Data

Master:
master = 0
bcast(numbers , n, master) // broadcast the whole array to all slaves
sum = 0;
for (slave = 1; slave < p; slave ++) {

recv(& part sum , 1, any proc ); // receive partial sums in any order!
sum = sum + part sum ; // accumulate partial sums

}

Slave:
master = 0;
numbers = memalloc(n);
bcast(numbers , n, master ); // get whole array from master

s = n/(p −1);
start = (me −1)∗s;
end = start + s;
part sum = 0;
for (i = start; i < end; i++)

part sum = part sum + numbers[i];
send(& part sum , 1, master ); // send partial sum to master

The relative merit of this approach versus the previous one depends, among others, on

the specifics of the broadcast implementation when unfolded in the underlying network
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Third Approach: Scatter + Reduce

// allocate buffer space for the
// local chunk of numbers
s = n/p;
rcv buf = memalloc(s);

// root scatters to all processes their
// respective chunks of size s
root =0;
scatter(numbers , rcv buf , s, root);

part sum = 0;
for (i = 0; i < s; i++)

part sum = part sum + rcv buf [i];

reduce (& part sum , &sum , 1, root , SUM);

● this third approach does NOT follow the master/slave paradigm

● instead, it uses scatter + reduce (collectives) on the whole set of processes

● note that numbers[] array is ONLY consumed at the root process (it might indeed

be a dangling pointer in processes different from the root)

● the final sum is (only) available at the root
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Divide-and-Conquer

● parallelization approach characterized by recursively applying partitioning to divide

a large problem into smaller and smaller subproblems of the same form as the

original problem

● recursion is a key concept for divide-and-conquer; it is applied until the tasks

cannot be subdivided further or they are “small enough”

● divide-and-conquer parallel algorithms can be understood as operating in parallel

with tree-like data structures

● when each subdivision creates two parts, a recursive divide-and-conquer

formulation forms a binary tree (next slide), although we may have subdivision into

M > 2 parts, leading to M-ary trees
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Divide-and-Conquer Addition of 1D Array Entries (Sequential)

sequential divide-and-conquer for the
addition problem may look as follows

// add 1D array of numbers
int add(int ∗s) {

int ∗ s1, ∗ s2;
if (length(s) == 0)

return 0;
elif (length(s) == 1)

return (s[0]);
else {

// continue recursion
divide(s, &s1, &s2);
part sum1 = add(s1);
part sum2 = add(s2);
return ( part sum1 + part sum2 );

}
}

“divide” stage of the process

● the problem is first divided into two parts

● these two parts are each divided into two parts, and so on till leaves are reached

● the basic operations (summation of entries) are performed at the leaves

● accumulation of partial results occurs bottom-top in reverse order
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Divide-and-Conquer Addition of 1D Array Entries (Parallel)
● the recursive subdivision process offers opportunities for parallelism: once a

subdivision is made, both parts can be processed simultaneously

● a smart (static) mapping approach of tasks to processes is the one illustrated in the
figure (p = 8), in which we reuse processes at each tree level

● communication pattern is the same as the one of binary broadcast collective on
hypercube networks (based on binary addresses)

log2(p) stages

● stage 1: P0(000) passes 2nd half

of whole array to P4(100)

● stage 2: P0(000) → P2(010),

P4(100) → P6(110)

● stage 3: P0(000) → P1(001),

P2(010) → P3(011),

P4(100) → P5(101),

P6(110) → P7(111)

● each subarray at the leaves will

have n
p entries
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Divide-and-Conquer Addition of 1D Array Entries (Parallel)

● combination of partial sums operates in reverse manner, i.e., from leaves to root

● communication pattern is the same as the one of binary reduce collective on

hypercube networks (based on binary addresses)

log2(p) stages

● stage 1: P1(001) → P0(000),

P3(011) → P2(010),

P5(101) → P4(100),

● stage 2: P2(010) → P0(000),

P6(110) → P4(100)

● stage 3: P4(100) sends sum of

2nd half of whole array to

P0(000)
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Analysis of Divide-and-Conquer Centralized 1D Array Addition

● sequential algorithm time:

tseq = (n−1)t f
● parallel comm 1 (divide):

tcomm1 = n
2tw + n

4tw + n
8tw + · · · n

ptw =
n(p−1)

p tw
● parallel computation (divide+combine):

tcomp = (n
p + log2(p))t f

● parallel comm 2 (combine):

tcomm2 = log2(p)tw
● parallel algorithm time:

tpar = tcomm1 + tcomm2 + tcomp =(
n(p−1)

p + log2(p)
)

tw + (n
p + log2(p))t f

Assumptions:

● n and p are powers of 2

● ignore message start-up time ts
● neglect the effect of # of links and th
● the network provides enough

parallelism to transfer messages

within each stage in parallel
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M-ary Divide-And-Conquer

● divide-and-conquer can be generalized to M-ary trees, with M > 2

● with M = 4: quadtree; with M = 8: octree

4-ary divide-and-conquer for the
addition problem may look as follows

// add 1D array of numbers
int add(int ∗s) {
if ... // stop recursion
else {

// continue recursion
divide(s, &s1, &s2, &s3, &s4);
part sum1 = add(s1);
part sum2 = add(s2);
part sum3 = add(s3);
part sum4 = add(s4);
return ( part sum1 + part sum2 +

part sum3 + part sum4 );
}

}

First Division

Second Division

Initial Area

use of quadtree for image processing

(2D space subdivision)
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Example 2: Numerical Integration Using Quadratures (definition)

● the goal is to approximate
∫

I f (x) on arbitrary interval I by quadrature formulas

● for convenience, these are typically defined in a ref. interval, e.g., K̂ := [−1,1]

● in general, any quadrature formula obeys the following general definition:
∫ 1

−1
f (x)dx ≈

m

∑
l=1

ωl f (ξl)

where ξl ∈ [−1,1] are called quadrature nodes (and are all distinct), and the real

numbers ωl are called quadrature weights

● ξl and ωl are judiciously chosen such that approximation fulfills certain properties,

typically that polynomials up to a certain degree can be integrated exactly

● by a change of variables, we can transform the formula above on any interval [a,b]:
∫ b

a
f (x)dx ≈

m

∑
l=1

1
2

δωl f (c +
1
2

δξl)

where c := 1
2(a + b) and δ := b−a

COMP4300/8300 L10: Partitioning and Divide-and-Conquer 2024 ◀◀ ◀ • ▶ ▶▶ 13

Numerical Integration Using Quadratures (trapezoidal rule)

● among all possible quadrature formulas, we are going to use the trapezoidal rule

● this rule is defined as m = 2, ξ1 = −1, ξ2 = 1, ω1 = ω2 = 1

● if we replace these values in the above formula, then we obtain:
∫ b

a
f (x)dx ≈ 1

2
(b−a)( f (a) + f (b))

● the trapezoidal is able to integrate exactly polynomials of up to degree 1 (i.e., linear

functions)

● it actually belongs to a general class of quadratures referred to as

Gauss-Lobatto-Legendre quadratures

● how can we reduce the approximation error for more complicated functions (e.g.,

trigonometric functions)? (next slide)
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Numerical Integration Using Quadratures (sequential algorithm)

● we split I into n fixed-size subintervals (note there are also variants which built

varying-size intervals dynamically/recursively using some optimization criterion)

● thus, definite integral over I decomposed as sum of integrals over each subinterval

● we use trapezoidal rule to approximate integrals over subintervals

● the larger the n, the better the approximation

printf(" Enter the number
s u b i n t e r v a l s \ n ");

scanf(" % d " ,&n);
d = (b −a)/n;
area = 0.0;

x = a;

for (i = 0; i < n; i++) {
area = area + f(x) + f(x+d);

x=x+d;

}
area =0.5∗ area ∗d

f(x)

xba p q

δ

n = 4

COMP4300/8300 L10: Partitioning and Divide-and-Conquer 2024 ◀◀ ◀ • ▶ ▶▶ 15

Numerical Integration Using Quadratures (parallel algorithm)

me= process rank id ();
p= num ranks ();
root =0;

if (me == root) {
printf(" Enter number of

s u b i n t e r v a l s \ n ");
scanf(" % d " ,&n);

}
bcast(&n, 1, root);
region length = (b−a)/p;
x = a + me∗ region length ;
d = (b−a)/n;
part area = 0.0;
for (i = 0; i < n/p; i++) {

part area += f(x) + f(x+d);
x = x + d;

}
reduce (& part area , &area , 1, root , SUM);
if (me == root) {

area =0.5∗ area ∗d;
printf(" Area under the

curve is % e \ n ", area);
}

● data partitioning parallelization

● each process approximates the

integral over a different region

within the [a,b] interval

● partial sums are finally combined

(i.e., summed up using) reduce
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Example #3: Solving N-body Problems (problem definition)

● a general class of problems which aim at describing the dynamics (instantaneous

positions/velocities) of N particles under forces which these exert on each other

● for conciseness, we restrict to gravitational N-body problems, i.e., the forces among

the particles are determined by Newton’s law of universal gravitation

● however, the same concept applies to other fields, e.g., electrically charged

particles, molecular dynamics, fluid dynamics, etc.

● N-body problems are mathematically modelled by systems of differential equations.

However, analytical solutions for these are not easy to determine (if possible) for

N > 3, so that computational methods have to be used

● N-body problems computer simulations can greatly benefit from

divide-and-conquer (e.g. recursive space subdivision in the Barnes-Hut algorithm )
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N-body Simulation Snapshot

Source: https://philippos.info/nbody/
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Newton’s Law of Universal Gravitation (refresher)

● assume we have two bodies identified as i, j, with i, j = 1 . . .N, masses mi and m j
resp., and position vectors xi and x j, resp., then the gravitational force that j exerts

on i is given by:

Fi j = G
mim j

||xi j||2
xi j

||xi j||
where G is the gravitational constant, and xi j = x j −xi

● thus, if we know the mass of the bodies, and their position vectors, then we can

compute the resultant of forces on each body, i.e., Fi = ∑ j ̸=i Fi j

● given Fi and mi, we can compute the acceleration (instantaneous change in

velocity) caused by the resultant force on each body i = 1, . . . ,N, using Newton’s

second law

COMP4300/8300 L10: Partitioning and Divide-and-Conquer 2024 ◀◀ ◀ • ▶ ▶▶ 19

Discretization; Updating Approximate Velocities and Positions

● as usual, we discretize (split) time simulation interval [0,T ] into M subintervals of

length δt

● our aim is to approximate the position vectors and velocities at the start of each

time subinterval

● let us denote by vn
i and xn

i the approximate velocity and position vector of the i-th
body at the start of subinterval n

● assuming that the force Fi (and thus acceleration) is constant through the whole

time subinterval n (clearly not true!), then vn+1
i approximated by

vn+1
i = vn

i +
Fi
mi

δt

● analogously, the position vector can be approximated as:

xn+1
i = xn

i + vn
i δt

● for “small enough” δt, discretization gives a reasonable approximation to the actual

physical phenomena
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Sequential Algorithm (All-Pairs)
dt = T/M
for (t=0;t<M;t++) // loop over time subintervals
{

for (i=0;i<N;i++) { // loop over N bodies
Initialize Fi to zero
for (j=0;j<N;j++) { // loop over N bodies

compute Fij // force that j exerts on i
Fi += Fij

}
vi new = vi + Fi∗dt/mi // update velocity
xi new = xi + vi∗dt // update position

}
for (i=0;i<N;i++) // loop over N bodies
{

vi = vi new
xi = xi new

}
}

● known as “all-pairs” algorithm in the literature

● number of operations can be cut in half by only calculating Fi j, for i = 1, . . .N and
j = 1, . . . i−1 (note that Fi j = −F ji)

● in any case, O(N2) complexity!

● can we do better? (i.e., reduce the order of complexity)
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Barnes-Hut Algorithm (Overview)

● proposed by Barnes & Hut in 1986

● basic idea: clustering (see figure)

● builds a quadtree (2D) or octtree (3D) by

recursive space subdivision (i.e.,

divide-and-conquer)

● tree traversals are used to both compute

masses/centre of masses of clusters and

forces among particles and clusters

● reduces complexity from O(N2) to

O(N log(N))

Center of Mass

r Distant Cluster of Bodies

the forces exerted by several bodies that are
clustered together but are located at large r
from another body can be approximated by
the force exerted by a clustered body located
at the center of mass of the cluster
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Barnes-Hut Algorithm (Tree Construction in 2D)

● assumes a 2D space with fixed boundaries and embeds it within one square

● if more than one body, divide the square into 4 subsquares

● subsquares with more than 1 body are recursively divided into 4 again, while

subsquares with no bodies in them are not subdivided by tagged as void

● continue until all leaves have only one particle (or none)

● the tree is used to cluster the bodies together when computing the forces (we have

as many potential clusters as intermediate nodes in the tree)
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Barnes-Hut Algorithm (Computation of Forces)

masses and centre of masses of (potential)
clusters:

for each level ℓ, from fine to coarse:
set to zero the masses of all void cells on level ℓ
for each non-void cell c on level ℓ:

if c has children:
compute the total mass and center of mass
for cell c by considering its children

else:
set the total mass and center of mass
for cell c to the mass and position of only body

actual computation of forces:

for each particle p:
for each cell c on the top level

if c is “far enough away” (see fig) from p:
use the total mass and center of mass of c;

otherwise consider the children of c

body in red is “far enough away” from

cluster in green if L
D ≤ θ, with θ < 1

user-prescribed parameter
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Barnes-Hut Algorithm (Parallelization Challenges)

● message-passing parallelization of Barnes-Hut Algorithm is challenging

● first, the problem is irregular, the bodies might not distributed uniformly across

space, challenging load balancing

● second, the irregularity dynamically varies in time as the bodies interact with each

other, so that dynamic load rebalancing is in general needed to keep the number of

bodies per process balanced

● third, for scalable parallelization, all stages have to be parallelized and the tree has

to be partitioned/distributed into the different processes (such that no single

process can hold the whole tree)

● due to scope/time constraints, this course does not cover how to tackle all these

challenges. However, the interested (and intrepid) reader might find a detailed

parallelization approach in this very nice paper:

Scalable parallel formulations of the Barnes–Hut method for n-body simulations,

Parallel Computing, 23(5-6), pp. 797-822, 1998. Publisher: Elsevier.
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