Outline: Embarrassingly (aka Naturally) Parallel Problems

@ definition
@ focus will be in two examples:

I example #1: computation and visualization of Mandelbrot Set
@ definition of Mandelbrot set
@ sequential algorithm
@ static mapping parallelization
@ parallel cost analysis of static mapping parallelization
€ dynamic mapping parallelization (dynamic load balancing)
I example #2: Monte Carlo methods (applied to numerical integration)

@ general definition of Monte Carlo methods

@ application to numerical integration

@ sequential algorithm for numerical integration
@ parallelization

Ref: Wilkinson and Allen Ch 3

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <<€ €< » pp» 1

The Mandelbrot Set (Definition)

@ a set of complex numbers (i.e., points in complex plane) that are “quasi-stable”
@ a given complex number c (i.e., a position of a point in complex plane) is said to be
quasi-stable if the series given given by the recurrence (with zg = 0 + 0i)
2
k1 =3 *C,
remains bounded in absolute value no matter how large k becomes

e /2 2
® recall that absolute value of 7,1 = ag,1 +by,qiis given by |zx,q| = /ag, { +b7,

@ it can be mathematically proven that the Mandelbrot set is enclosed by a circle
centered at (0, 0) of radius 2

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <4< <o » pp 3

Embarrassingly Parallel Problems (Definition)

@ “ideal” computations from the parallelization view point

@ they can be divided into completely independent parts for execution by separate
processors (no data dependencies, completely disconnected computational graph)

B paradigmatic example: Blocks of Independent Computations infrastructure

I click here for science projects using such infrastructure
@ distribution and collection of data are key issues (might be non-trivial and/or costly)

@ frequently uses the master/slave approach

Send data

Master

Collect Results

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <4< €< ¢ » pp» 2

The Mandelbrot Set (visually)

imaginary axis
1

real

& x.)';}tx‘\ |
T r'%-ﬁ/ o ads

the Mandelbrot set is enclosed within the (boundary) black points scattered across the
image

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <4< <o » pp» 4

Computation of the Mandelbrot Set

@ in practice, the [real min real max]x [imag min, imag max] rectangle is split into a
grid of width x height pixels (i.e, an image)

@ typically, one uses the [—2,2] x [—2, 2] rectangle (to visualize the full set), but not
necessarily if, e.g., the focus is on a given region of the set

@ if 0 <x <width and 0 < y < height denote the horizontal and vertical coordinates
of a pixel, resp., then the corresponding point ¢ in the complex plane is given by:

scale_width = (real_max - real_min) / width;
scale_height = (imag max - imag min) / height;
c.real = real min + ((float) x * scale_width);

c.imag imag min + ((float) y * scale_height);

@ for each of pixel of the image, the recurrence
Zhat = ZgHC

is executed until |zz,.1| > 2 (this indicates that the series will eventually divergence)
or some arbitrary iteration limit is reached

@ the output is the # of iterations required to fulfill such a condition

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <<€ €< » pp» 5

Sequential Computation of the Full Mandelbrot Image

scale_width (real _max - real min) / width;
scale _height (imag max - imag min) / height;
for (x = 0; x < width; x++)

for (y = 0; y < height; y++){

c.real = real_ min + ((float) x * scale_width);
c.imag = imag min + ((float) y * scale_height);
color = calc_pixel(c);

display(x, y, color);

}

From a parallelization view point:

@ width x height totally independent tasks (naturally parallel computation)
@ computation of each pixel much less amenable to parallelization, though
@ cach task can be of different length (i.e., varying execution time)

@ this property turns load balance among processors a challenge to be addressed

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <4< <o » pp 7

Computation for a Single Pixel

typedef struct complex{float real, imag;} complex;
const int MaxIter = 256;

int calc_pixel (complex c){
int count = 0;
complex z = {0.0, 0.0};
float temp, abs_val_squared;

do {
temp = z.real * z.real - z.imag * z.imag + c.real
Z.imag = 2 x z.real * z.imag + c.imag;
z.real = temp;
abs_val_squared = z.real * z.real + z.imag * z.imag;

count ++;
} while (abs_val_squared < 4.0 && count < MaxIter);
return count;

}

[Nme1:Hz:az+bﬂandc=ac+bd,menz2+c=(agfb§+ad+(&hbz+bdi
® Note 2: |z4,¢| > 2if and only if |z, |? > 4 (avoids square root computation)

@ To-think: memory-bound or compute-bound computation?

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <4< <o » pp» 6

Static Mapping Parallelization

@ static mapping if and only if correspondence among pixels and slave processes is
known a priori (i.e., before the actual execution of the parallel algorithm)

@ in order to have sufficient load per process, split image into regions, and a mapping
among whole regions and processes is defined

@ for data arranged in two dimensions (like images) one may either split across one
dimension (e.g., by rows or by columns) or both dimensions (by blocks)

Process

Process
Q Width
— O

Map

Map

leight

Square block region for each process
Row region (block of rows) for each process

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <4< €< » pp 8

One Possible Implementation of Static Mapping Parallelization

Master process: Slave process:

row = 03

block_num_rows=height/(nproc-1) const int master = 0; .
for (slave = 1; recv(&firstrow, 1, master);
slave < n,rOC' lastrow = firstrow + height/(nproc-1);
clave++) ? ’ for (x = 0; x < width; x++) {
= i . . ++
send(&row, 1, slave); fzrr:Z1 =fi:z§.r;:£ z < lastrow; y++) {
+= . . —
}row block num.-rows ; ((float) x * scale_width);
- _ c.imag = imag _min +
for (mpixel = 0; .
N - - float * le_h ht);
npixel < (width * height); color = i;lco;iiei(c)?ca °-height):
i +4 - ’
npixel++) { send ({&x,&y,&color}, 3, master);
recv ({&x,&y,&color}, 3, any_proc); }
display(x, y, color);)

@ partition of image into blocks of consecutive rows (one block per slave)
@® master process sends to each slave the identifier of the first row in the slave’s block
@ slave return results on a pixel-wise basis (one message exchange per pixel)

@® master process visualizes points “on the fly” as soon as results are available

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 <<€ €< » pp» 9

Parallel Cost Analysis of Static Mapping Parallelization

Let p,m,n,I denote nproc, height, width, MaxIter, resp., and iy the time/flop:

@ sequential algorithm time:

Assumptions:
tseq S Imntf P

o @ initial data exchange among master and

@ parallel communication 1:
fcomm1 = (P — 1)({ts+ 1 +1w)

@ parallel computation:

Imnt

p—1 f ®

@ parallel communication 2:

slaves present in the algorithm
@ image split into blocks of rows, one block per
slave
results sent back into blocks of rows (full block
of rows in each message)

feomp <

fcomm2 =Is+1Ip + p7T1 nty

. . @ there is no communication contention in the
@ parallel algorithm time:

node where the master process is executed
fpar < fcomm1 +fcomp +fcomm2

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 << €< » »» 11

Discussion (potential improvements)

In the previous implementation ...

@ do we actually need the initial data exchange among master and slaves?

@ is it reasonable (from the parallel performance point of view) to send results to the

master process on a pixel-wise basis?

@ would it be more appropriate instead to send results into groups (e.g., one row at a

time or even the full block of rows in a single message) to reduce the number of
point-to-point messages (i.e., communication start-ups)?

@ is it possible to leverage collective communication to communicate results (hint:

what about gather?) instead of individual point-to-point messages?

@ is there any guarantee that the workload will be perfectly balanced among

processors?

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 << <o » »» 10

Dynamic Mapping Parallelization (aka Dynamic Load Balancing)

@ the mapping among parallel tasks (i.e., pixels) and processes is unknown a priori

but determined during the actual execution of the program (i.e.. dynamically)

@ the goal is to dynamically load the balance among processors; to this end, the

problem needs to be over-decomposed (i.e., more parallel tasks than processes)

@ especially suited for applications with varying (and/or unknown) amount of work per

task, and/or parallel computer with processors operating at different speed

@ can be realized using a work-pool approach (aka processor farm); the slaves are

supplied with work on demand as they become idle

Work Pool
[]

°
(x2,y2) ® (x5y5) PY
x lfyl) o M9 o (7¥7)
(x3,y3) (x6,y6)

‘ask

Return results/
request new task

Q ...

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 << <o p» »» 12

Mandelbrot Set with Work-Pool Approach

Code leverages row-wise partition, with rows dynamically mapped to processes

Master
remaining = 0; row_to_compute = 0;
for (slave = 1; slave < nproc; slave++){

send(&row,to,computa, 1,
slave, compute_tag);
remaining++; row_to_compute++;

Slave (me is the slave process id)

dzeiv({&s1ave recv(&y, 1, master, any tag, &source_tag);
> while (source_tag == compute_tag) {
&row_result, rcolor}, c.imag = imag.min +
"1dt?:2é a?Y,proc, for (x = 0; x < width; x++) {
remain::;?—-7 agls c.real = real min + ...
’ = i .
if (row_to_compute<height) { reolor[x] = calc.pixel(c);

send (¢ row_to_compute, 1,
slave,
compute_tag);
remaining++; row_to_compute++;
}
else
send (¢ row_to_compute, 1,
slave,
termination_tag);
display_row(row_result, rcolor);
} while (remaining > 0);

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 << <> »» 13

send ({&me, &y, rcolor}, width+2,
master, result_tag);
recv(&y, 1, master, &source_tag);

Monte Carlo Numerical Integration

@ the definite integral of a function f(x) in the interval [x1,x2] can we computed as:

[pds- g AR
[, T0de=Jm Y S~)

where x1 < x; < xp is a randomly selected point within such interval

@ in practice, we cannot compute infinite terms but a “sufficiently large” N (i.e.,
number of samples); the actual N depends on required accuracy and the function
at hand

@ example: computation of (x —3x)dx
B rand v(x1, x2) computes a pseudo-random number between x1 and x2
B code looks like:

sum = 0.0;
for (i = 0; i < Nj; i++) {
xr = rand_v(xl, x2);
sum += xr * xr - 3.0 x Xxr;
}
area = sum * (x2 - x1) / (float)N;

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 << €< » »» 15

Monte Carlo Methods

@® Monte Carlo Methods refer to a broad range of techniques that use randomly
generated numbers to solve numerical and physical problems

@® example: (inefficient) calculation of 7

B unit radius circle centered at origin within the [—1,1] x [—1, 1] square
I probability of random point in the square to be also within the circle given by:

Total Area =4

Y
area of circle TC(1)2 T

= 2 Area= T

areaof square 4 4 \\ /

M throw N random points within the square and count how many within the circle

1 @ ” H H H A . . 7'[
H if N “large enough”, fraction within circle will approximate 7

@ another example: numerical integration (next slides)

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 << <o p» »» 14

Parallelization of MonteCarlo Integration

@ each iteration is independent of each other (thus naturally parallel)!

@ hard challenge: generate random numbers such that the sequences of numbers
are not statistically correlated among processes (local invocation of sequential
random number generator on each process likely to lead to correlation!)

@ one solution is to have a process devoted to issuing random numbers to the slaves

Master

O

with the master process in charge of
Partial sum .
/ \ random number generation
Request
[i

Shaves O O another approach is to use a parallel

@ in the next slide, we pursue this approach

distributed version of a pseudo-random
Random number / number generator (e.g., available at the
SPRNG library); out of scope for this
Random number process course

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 << <o p» »» 16

A Parallel Code for MonteCarlo Integration

Master:
n=... // # rand numbers in each chunk; Slave (me is the slave process id)
for (i = 1; i<N/mn; i++) {)
. X . n = ... // # rand numbers in each chunk;
for (j = 0; j < mn; j++) 27 0.0s
xr[j]l = rand_v(x1l, x2); sum = e

send (¥me, 1, master, req,tag);

recv(&p.src, 1, any proc, req.tag); recv(xr, n, master, any_tag, &tag);

send (xr, n, p_src, comp_tag); vhile (tag == comp tag) {
4. s L for (i = 0; i < mj; i++)
for (i=1; i<nproc; i++) { sum += xr[il+xrl[i] - 3%xrl[il;

recv(&p_src, 1, any_proc, req_tag);
send (NULL, O, p_src, stop_tag);
!)
sum = 0.0;
reduce_add (&sum, 1, master); reduce_add (¢sum, 1, master);
area = sum * (x2 - x1) / (float)N;

send (¥me, 1, master, req_tag);
recv(xr, n, master, any_tag, &tag);

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 << <> »» 17

