
Outline: Embarrassingly (aka Naturally) Parallel Problems

● definition

● focus will be in two examples:

■ example #1: computation and visualization of Mandelbrot Set

◆ definition of Mandelbrot set

◆ sequential algorithm

◆ static mapping parallelization

◆ parallel cost analysis of static mapping parallelization

◆ dynamic mapping parallelization (dynamic load balancing)

■ example #2: Monte Carlo methods (applied to numerical integration)

◆ general definition of Monte Carlo methods

◆ application to numerical integration

◆ sequential algorithm for numerical integration

◆ parallelization

Ref: Wilkinson and Allen Ch 3

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 1

https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Monte_Carlo_method

Embarrassingly Parallel Problems (Definition)

● “ideal” computations from the parallelization view point

● they can be divided into completely independent parts for execution by separate

processors (no data dependencies, completely disconnected computational graph)

■ paradigmatic example: Blocks of Independent Computations infrastructure

■ click here for science projects using such infrastructure

● distribution and collection of data are key issues (might be non-trivial and/or costly)

● frequently uses the master/slave approach

Collect Results

Send data

Slaves
Master

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 2

http://boinc.berkeley.edu/
https://boinc.berkeley.edu/projects.php

The Mandelbrot Set (Definition)

● a set of complex numbers (i.e., points in complex plane) that are “quasi-stable”

● a given complex number c (i.e., a position of a point in complex plane) is said to be

quasi-stable if the series given given by the recurrence (with z0 = 0 + 0i)

zk+1 = z2
k + c,

remains bounded in absolute value no matter how large k becomes

● recall that absolute value of zk+1 = ak+1 + bk+1i is given by |zk+1| =
√

a2
k+1 + b2

k+1

● it can be mathematically proven that the Mandelbrot set is enclosed by a circle

centered at (0,0) of radius 2

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 3

The Mandelbrot Set (visually)

the Mandelbrot set is enclosed within the (boundary) black points scattered across the

image

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 4

Computation of the Mandelbrot Set

● in practice, the [real min,real max]× [imag min,imag max] rectangle is split into a
grid of width × height pixels (i.e, an image)

● typically, one uses the [−2,2]× [−2,2] rectangle (to visualize the full set), but not
necessarily if, e.g., the focus is on a given region of the set

● if 0 ≤ x < width and 0 ≤ y < height denote the horizontal and vertical coordinates
of a pixel, resp., then the corresponding point c in the complex plane is given by:

scale width = (real max − real min) / width;
scale height = (imag max − imag min) / height;
c.real = real min + ((float) x ∗ scale width);
c.imag = imag min + ((float) y ∗ scale height);

● for each of pixel of the image, the recurrence

zk+1 = z2
k + c

is executed until |zk+1|> 2 (this indicates that the series will eventually divergence)
or some arbitrary iteration limit is reached

● the output is the # of iterations required to fulfill such a condition

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 5

Computation for a Single Pixel
typedef struct complex { float real , imag ;} complex;
const int MaxIter = 256;

int calc pixel (complex c){
int count = 0;
complex z = {0.0 , 0.0};
float temp , abs val squared ;
do {

temp = z.real ∗ z.real − z.imag ∗ z.imag + c.real
z.imag = 2 ∗ z.real ∗ z.imag + c.imag;
z.real = temp;
abs val squared = z.real ∗ z.real + z.imag ∗ z.imag;
count ++;

} while (abs val squared < 4.0 && count < MaxIter);
return count;

}

● Note 1: if z = az + bzi and c = ac + bci, then z2 + c = (a2
z −b2

z + ac) + (2azbz + bc)i

● Note 2: |zk+1|> 2 if and only if |zk+1|2 > 4 (avoids square root computation)

● To-think: memory-bound or compute-bound computation?

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 6

Sequential Computation of the Full Mandelbrot Image

scale width = (real max − real min) / width;
scale height = (imag max − imag min) / height;
for (x = 0; x < width; x++)

for (y = 0; y < height; y++){
c.real = real min + ((float) x ∗ scale width);
c.imag = imag min + ((float) y ∗ scale height);
color = calc pixel (c);
display(x, y, color);

}

From a parallelization view point:

● width × height totally independent tasks (naturally parallel computation)

● computation of each pixel much less amenable to parallelization, though

● each task can be of different length (i.e., varying execution time)

● this property turns load balance among processors a challenge to be addressed

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 7

Static Mapping Parallelization

● static mapping if and only if correspondence among pixels and slave processes is

known a priori (i.e., before the actual execution of the parallel algorithm)

● in order to have sufficient load per process, split image into regions, and a mapping

among whole regions and processes is defined

● for data arranged in two dimensions (like images) one may either split across one

dimension (e.g., by rows or by columns) or both dimensions (by blocks)
Process

Map

Row region (block of rows) for each process

Process

Map

Width

Height

Square block region for each process

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 8

One Possible Implementation of Static Mapping Parallelization

Master process:
row = 0;
block num rows =height /(nproc −1)
for (slave = 1;

slave < nproc;
slave ++) {

send(&row , 1, slave);
row += block num rows ;

}
for (npixel = 0;

npixel < (width ∗ height);
npixel ++) {

recv ({&x,&y,&color }, 3, any proc);
display(x, y, color);

}

Slave process:
const int master = 0;
recv(&firstrow , 1, master);
lastrow = firstrow + height /(nproc −1);
for (x = 0; x < width; x++) {
for (y = firstrow; y < lastrow; y++) {
c.real = real min +

((float) x ∗ scale width);
c.imag = imag min +

((float) y ∗ scale height);
color = calc pixel (c);
send ({&x,&y,&color }, 3, master);
}

}

● partition of image into blocks of consecutive rows (one block per slave)

● master process sends to each slave the identifier of the first row in the slave’s block

● slave return results on a pixel-wise basis (one message exchange per pixel)

● master process visualizes points “on the fly” as soon as results are available

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 9

Discussion (potential improvements)

In the previous implementation ...

● do we actually need the initial data exchange among master and slaves?

● is it reasonable (from the parallel performance point of view) to send results to the

master process on a pixel-wise basis?

● would it be more appropriate instead to send results into groups (e.g., one row at a

time or even the full block of rows in a single message) to reduce the number of

point-to-point messages (i.e., communication start-ups)?

● is it possible to leverage collective communication to communicate results (hint:

what about gather?) instead of individual point-to-point messages?

● is there any guarantee that the workload will be perfectly balanced among

processors?

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 10

Parallel Cost Analysis of Static Mapping Parallelization

Let p,m,n, I denote nproc, height, width, MaxIter, resp., and t f the time/flop:

● sequential algorithm time:

tseq ≤ Imnt f
● parallel communication 1:

tcomm1 = (p−1)(ts + th + tw)

● parallel computation:

tcomp ≤ Imn
p−1t f

● parallel communication 2:

tcomm2 = ts + th + m
p−1ntw

● parallel algorithm time:

tpar ≤ tcomm1 + tcomp + tcomm2

Assumptions:

● initial data exchange among master and

slaves present in the algorithm

● image split into blocks of rows, one block per

slave

● results sent back into blocks of rows (full block

of rows in each message)

● there is no communication contention in the

node where the master process is executed

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 11

Dynamic Mapping Parallelization (aka Dynamic Load Balancing)

● the mapping among parallel tasks (i.e., pixels) and processes is unknown a priori
but determined during the actual execution of the program (i.e.. dynamically)

● the goal is to dynamically load the balance among processors; to this end, the
problem needs to be over-decomposed (i.e., more parallel tasks than processes)

● especially suited for applications with varying (and/or unknown) amount of work per
task, and/or parallel computer with processors operating at different speed

● can be realized using a work-pool approach (aka processor farm); the slaves are
supplied with work on demand as they become idle

(x1,y1)
(x4,y4)

(x3,y3) (x6,y6)

(x5,y5)(x2,y2)
(x7,y7)

Work Pool

Task

request new task
Return results/

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 12

Mandelbrot Set with Work-Pool Approach

Code leverages row-wise partition, with rows dynamically mapped to processes

Master
remaining = 0; row to compute = 0;
for (slave = 1; slave < nproc; slave ++){
send(& row to compute , 1,

slave , compute tag);
remaining ++; row to compute ++;

}
do {
recv ({& slave ,

&row result , rcolor },
width+2, any proc ,
result tag);

remaining − −;
if (row to compute<height) {
send(& row to compute , 1,

slave ,
compute tag);

remaining ++; row to compute ++;
}
else
send(& row to compute , 1,

slave ,
termination tag);

display row (row result , rcolor);
} while (remaining > 0);

Slave (me is the slave process id)
recv(&y, 1, master , any tag , & source tag);
while (source tag == compute tag) {
c.imag = imag min + ...
for (x = 0; x < width; x++) {

c.real = real min + ...
rcolor[x] = calc pixel (c);

}
send ({&me, &y, rcolor }, width+2,

master , result tag);
recv(&y, 1, master , & source tag);

}

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 13

Monte Carlo Methods

● Monte Carlo Methods refer to a broad range of techniques that use randomly

generated numbers to solve numerical and physical problems

● example: (inefficient) calculation of π

■ unit radius circle centered at origin within the [−1,1]× [−1,1] square

■ probability of random point in the square to be also within the circle given by:

area of circle
area of square

=
π(1)2

4
=

π

4
2

2

πArea =

Total Area = 4

■ throw N random points within the square and count how many within the circle

■ if N “large enough”, fraction within circle will approximate π
4

● another example: numerical integration (next slides)

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 14

Monte Carlo Numerical Integration

● the definite integral of a function f (x) in the interval [x1,x2] can we computed as:∫ x2

x1
f (x)dx = lim

N→∞

1
N

N

∑
i=1

f (xi)(x2− x1)

where x1 ≤ xi ≤ x2 is a randomly selected point within such interval

● in practice, we cannot compute infinite terms but a “sufficiently large” N (i.e.,
number of samples); the actual N depends on required accuracy and the function
at hand

● example: computation of
∫ x2

x1
(x2−3x)dx

■ rand v(x1, x2) computes a pseudo-random number between x1 and x2

■ code looks like:
sum = 0.0;
for (i = 0; i < N; i++) {

xr = rand v (x1, x2);
sum += xr ∗ xr − 3.0 ∗ xr;

}
area = sum ∗ (x2 − x1) / (float)N;

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 15

Parallelization of MonteCarlo Integration

● each iteration is independent of each other (thus naturally parallel)!

● hard challenge: generate random numbers such that the sequences of numbers

are not statistically correlated among processes (local invocation of sequential

random number generator on each process likely to lead to correlation!)

● one solution is to have a process devoted to issuing random numbers to the slaves

Random number process

Master

Partial sum

Random number

Slaves

Request

● in the next slide, we pursue this approach

with the master process in charge of

random number generation

● another approach is to use a parallel

distributed version of a pseudo-random

number generator (e.g., available at the

SPRNG library); out of scope for this

course

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 16

http://www.sprng.org/

A Parallel Code for MonteCarlo Integration

Master:
n=... // # rand numbers in each chunk;
for (i = 1; i<N/n; i++) {

for (j = 0; j < n; j++)
xr[j] = rand v (x1, x2);

recv(& p src , 1, any proc , req tag);
send(xr, n, p src , comp tag);

}
for (i=1; i<nproc; i++) {

recv(& p src , 1, any proc , req tag);
send(NULL , 0, p src , stop tag);

}
sum = 0.0;
reduce add (&sum , 1, master);
area = sum ∗ (x2 − x1) / (float)N;

Slave (me is the slave process id)
n = ... // # rand numbers in each chunk;
sum = 0.0;
send(&me, 1, master , req tag);
recv(xr, n, master , any tag , &tag);
while (tag == comp tag) {

for (i = 0; i < n; i++)
sum += xr[i]∗xr[i] − 3∗xr[i];

send(&me, 1, master , req tag);
recv(xr, n, master , any tag , &tag);

}
reduce add (&sum , 1, master);

COMP4300/8300 L6: Embarrassingly Parallel Problems 2024 ◀◀ ◀ • ▶ ▶▶ 17

