
Overview: Classical Parallel Hardware

Review of Single Processor Design

● so we talk the same language

● many things happen in parallel even on a single processor

● identify potential issues that (explicitly) parallel hardware can overcome

● why should we use 2 CPUs instead of doubling the speed on one!

Multiple Processor Design

● Flynn’s taxonomy of parallel computers (SIMD vs MIMD)

● message-passing versus shared-address space programming

● UMA versus NUMA shared-memory computers

● dynamic/static connectivity

● evaluating static networks

● case study: the NCI Gadi supercomputer
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The Processor

Performs (among others):

● floating point operations (flops) - add, mult, division (sqrt maybe!)

● integer and logical operations (and, or, etc.)

● instruction processing (fetch, decoding, etc.)

● our primary focus will be in flops (as per required by most scientific applications)

● main performance metric: flops/sec or just FLOPS

The processor clock orchestrates its operation:

● all ops take a fixed number of clock ticks to complete (latency)

● clock speed is measured in GHz (109 cycles/second) or nsec (10−9 seconds)

■ Apple iPhone 6 ARM A8 1.4GHz (0.71ns), NCI Gadi Intel Xeon Cascade Lake
3.2GHz (0.31ns), IBM zEC12 processor 5.5Ghz (0.18ns)

● clock speed limited by: transistor speed, speed of light, energy consumption, etc.

■ (to our knowledge) IBM zEC12 is fastest commodity processor at 5.5GHz
■ light travels about 1cm in 3.2ns, a chip is a few cm!
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Processor Performance

flops/sec Prefix Occurrence (as of today)
103 kilo (k) very badly written code
106 mega (m) badly written code
109 giga (g) single-core
1012 tera (t) supercomputer node
1015 peta (p) all machines in Top500 (Nov 22, measured)
1018 exa (e) 2022!

How peak flops/sec. is computed?

● Desktop 2.5GHz Quad-Core, 4(core)*4(flops)*2.5GHz ≡ 40 gflops/sec.

● Bunyip cluster Pentium III, 96(nodes)*2(sockets)*1(core)*1(flop)*550MHz ≡ 105

gflops/sec,

● NCI Raijin 3592(nodes)*2(sockets)*8(core)*8(flops)*2.6GHz ≡ 1.19 pflops/sec.

● NCI Gadi 3074(nodes)*2(sockets)*24(core)*16(flops)*3.2GHz ≡ 7.55 pflops/sec.
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Illustrating pipelining with an example: Adding Float64 Numbers

Consider adding two double precision (8 byte) numbers

0 1 11 12 63
± Exponent Significand

Possible steps:

● determine largest exponent

● normalize significand of the smaller exponent to the larger

● add significand

● re normalize the significand and exponent of the result

Let us assume each step take 1 clock tick, i.e., a latency of 4 ticks per addition (flop)
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Illustrating pipelining with an example: Adding Float64 Numbers

Step in Pipeline
Waiting 1 2 3 4 Done

X(6)
X(5)→

X(4)→
X(3)→

X(2)→
X(1)

● X(1) takes 4 clock ticks to appear (startup latency); X(2) appears 1 tick after X(1)

● asymptotically achieves 1 result per tick

● the operation (X) is said to be pipelined: steps in the pipeline are running in parallel

● requires same op consecutively on different (independent) data items

■ good for “vector operations” (note limitations on chaining output data to input)
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Another example: Multiplying Float64 Numbers
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Instruction Pipelining (Single Instruction Issue)

● break instructions into k stages each that are overlapped in time

● eg. (k = 5): stages FI = Fetch Instrn., DI = Decode Instrn., FO = Fetch Operand, EX
= Execute Instrn., WB = Write Back

(branch): FI DI FO EX WB
(guess) FI DI FO EX WB

(guess) FI DI FO EX WB
(guess) FI DI FO EX WB

(sure) FI DI FO EX WB

● Ideally, one gets k-way asymptotic parallelism (speedup)

● However, hard to maximize utilization in practice:

■ Constrained by dependencies among instructions; CPU must ensure result is
the same as if no pipelining!

■ FO & WB stages may involve memory accesses (and may possibly stall the pipeline)

■ conditional branch instructions are problematic: the wrong guess may require
flushing succeeding instructions from the pipeline and rolling back

● tendency to increase # of stages (specially acute during 90s-20s)

examples of #stages: UltraSPARC II (9) and III (14), Intel Prescott (31)
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Superscalar execution (Multiple Instruction Issue)

● Simple idea: Increase execution rate by using w ≥ 2 (i.e., multiple) pipelines

● w (mutually independent) instructions are (tried to be) piped in parallel at each cycle

● Ideally it offers kw-way parallelism (recall k is the number of pipeline stages)

● However, a number of extra challenges arise:

■ Increased complexity: HW has to be able to resolve dependencies at runtime

before issuing simultaneously several instructions

■ Some of the functional units might be shared by the pipelines (aka resource

dependencies)

■ As a result, instructions to be issued together must have an appropriate

‘instruction mix’

e.g. UltraSPARC (w = 4):





≤ 2 different floating point
≤ 1 load / store ; ≤ 1 branch
≤ 2 integer / logical

● Some remedies: pipeline feedback, branch prediction + speculative execution,

out-of-order execution, compilers (e.g., VLIW processors)
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Limitations of Instruction-Level Parallelism (ILP)

Actual clock Cycles Per Instruction (CPI) on Intel i7 (Peak is 0.25)

CPU does a lot of (wasted) work that can just not be written back due to branch

mispredictions
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Limitations of Memory System Performance

Consider the DAXPY computation:

y(i) = y(i) + 1.234∗ x(i)

If at its peak the CPU can perform 8 flops/cycle (4 fused mult-add)

● the memory system must load 8 doubles (x(i) and y(i) – 64 bytes) and store 4

(y(i) – 32 bytes) each clock cycle

■ on a 2 GHz system this implies a memory system able to sustain 128 GB/s load

traffic and 64 GB/s store traffic

● despite advances in memory technology (e.g., DDR5 SDRAM), memory is not able

to pump data at such high rates

Memory latency and bandwidth are critical performance issues

● caches: reduce latency and provide improved cache to CPU bandwidth

● multiple memory banks: improve bandwidth (by parallel access)
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Memory Hierarchy

Main Memory −→ large, cheap memory; large latency/small bandwidth
↓

Cache −→ small, expensive memory; lower latency/higher bandwidth
↓↓↓↓↓

CPU Registers

● memory is partitioned into blocks (cache lines) and mapped to cache lines using a
mapping algorithm (e.g., completely associative, direct, n-way associative)

● cache lines are typically 16-128 bytes wide; entire cache lines fetched from
memory, not just one element (why?)

● cache hit (few cycles)/cache miss (large number of cycles)

● try to structure code to use an entire cache line of data before replacement (e.g.,
blocking strategies in dense matrix-matrix multiplication)

Cache memory is effective because algorithms often use data that:

● was recently accessed from memory (temporal locality)

● was close to other recently accessed data (spatial locality)
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Going (Explicitly) Parallel

● performance of a single processor is irremediably limited by clock rate

● clock rate in turn limited by power consumption, transistor switching time, etc.

● ILP allows multiple instructions at once, but it is limited by dependencies

● many problems are inherently distributed/exhibit potential parallelism

It’s time to go (explicitly) parallel

Parallel Hardware Overview

● Flynn’s Taxonomy of parallel processors (1966,1972)

■ (SISD/SIMD/)SIMD/MIMD

● message-passing versus shared-address space programming

● UMA versus NUMA shared-memory computers

● dynamic/static networks

● evaluating cost and performance of static networks

● case study: NCI’s Gadi (2020–)
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SIMD and MIMD in Flynn’s Taxonomy

SIMD: Single Instruction Multiple Data

● also known as data parallel or vector processors (very popular in the 70s and 80s)

● nowadays come mainly in the form of SSE co-processing instructions

● other examples: GPUs; SPEs on Sony’s PS3 IBM CellBE (2006)

● perform their best with structured (regular) computations (e.g., image processing)

MIMD: Multiple Instruction Multiple Data

● examples include: (1) quad-core PC; (2) 2x24-core Xeon CPUs on each Gadi node

CPU CPU CPU CPU

I N T E R C O N N E C T

CPU and

Control

CPU and

Control

CPU and

Control

CPU and

Control

Global

Control Unit

I N T E R C O N N E C T

S I M D M I M D
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MIMD

Most successful model for parallel architectures

● more general purpose than SIMD, can be built out of off-the-shelf components

● extra burden to programmer

Some challenges for MIMD machines

● scheduling: efficient allocation of processors to tasks in a dynamic fashion

● synchronization: prevent processors accessing the same data simultaneously

● interconnect design: processor to memory and processor to processor

interconnects. Also I/O network - often processors dedicated to I/O devices

● overhead: inevitably there is some overhead associated with coordinating activities

between processors, e.g. resolve contention for resources

● partitioning: partitioning a computation/algorithm into concurrent tasks might not be

trivial and require algorithm redesign and/or significant programming efforts
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Logical classification of parallel computers

Regardless of how they are physically organized under the hood, from a programmer’s

perspective, parallel computers can be classified into two broad categories:

● Message-passing (distributed address space) parallel computers

● Shared address space parallel computers
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Address Space Organization: Message Passing

● logically organized as multiple processing nodes, each with its own

exclusive/private address space

● interaction among programs running on different nodes accomplished using

messages

● messages are used to transfer data, work, and synchronization

● typically implemented in practice by so called distributed memory parallel

computers (although not necessarily)

● in these computers, (aggregate) memory bandwidth scales linearly with # of

processing nodes

● example: parallelism between “nodes” on the NCI Gadi system
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Address Space Organization: Shared Address Space

● there is a common data shared address space

● processes interact by modifying objects stored in this shared address space

● most typically implemented by so-called shared-memory computers

● simplest implementation is a flat or uniform memory access (UMA)

● synchronizing concurrent access to shared data objects and processor-processor
communications (to maintain coherence among multiple copies) limits performance

● typically one observes sublinear memory bandwidth with # of processors

● example: QuadCore laptop

I N T E R C O N N E C T

MEMORY MEMORY MEMORY MEMORY

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Cache Cache Cache Cache
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Non-Uniform Memory Access (NUMA)

● all memory is still visible to the programmer (shared address space), but some

memory accesses take longer to access than others

● designed to increase aggregated memory bandwidth with # of processors

● parallel programs should be written such that fast memory accesses are maximized

(collocate data and computation accordingly)

● example: within each Gadi node, each socket (i.e., 24-core CPU) is connected to

its own memory module that is faster to access than the other (remote) one

I N T E R C O N N E C T

MEMORY MEMORY MEMORY MEMORY

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Cache Cache Cache Cache

MEMORY MEMORY MEMORY MEMORY

I N T E R C O N N E C T

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Cache Cache Cache Cache

cached UMA cached NUMA
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Another example of shared-memory MIMD computers

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 19

Dynamic Connectivity: Bus

● simplest/cheapest network: shared medium common to all processors

● its a completely-blocking network: a point-to-point comm. among a processor and a

memory module, or among processors, prevents any other comm.

● limited bandwidth scalability (multiple accesses to memory are serialized)

● effective cache utilization can alleviate demands on the bus bandwidth

MEMORY MEMORY MEMORY MEMORY

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Cache Cache Cache Cache

B U S
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Dynamic Connectivity: Crossbar

● employs a 2D grid of switching nodes (complexity grows as O(p2))

● its a completely non-blocking network: connection among two processors does not

block connection between any other two processors

● not scalable in terms of complexity and cost
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Dynamic Connectivity: Multi-staged Networks (e.g. Omega Network)

000

010

100

110

001

011

101

111

Processors
S W I T C H I N G   N E T W O R K

O M E G A   N E T W O R K

Memory

010

100

001

000

011

101

110

111

(s = 010 (src), t = 111 (dst), s⊕ t = 101)

● consists of log2(p) stages, p/2 switches per stage (p = 8 in the figure)

● switches can be configured in two modes: pass-through or crossover

● s and t are binary representations of source and destination

■ processed from most to least significant bit (i.e., left to right)
■ route through if current bits of s and t are the same; otherwise, crossover

● partially blocking network (e.g. consider comms 000-111 and 110-100 at once)
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Static Connectivity: Complete, Mesh, Tree

Completely connected (becomes very complex!)

Linear array/ring, mesh/2d torus

Static (all nodes are processors) and dynamic trees (intermediate nodes are switches)

Processors

Switches
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Static Connectivity: Hypercube

0100
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0010
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0011

d = 4, p = 16

● two (and exactly two) processing nodes along each dimension, d = log2(p)

dimensions (thus p = 2d processing nodes)

● the number of connections per processor grows as log2(p)

● recursive construction: d-hypercube built by connecting two d −1-hypercubes

● two processing nodes directly connected IF ONLY IF their labels differ by one bit

● the number of links in the shortest path between two processors labeled s and t is

the number of bits that are on (i.e., =1) in the binary representation of s⊕ t (bitwise

XOR) operation (e.g. 3 for 101⊕010 and 2 for 011⊕101)

● examples: Intel iPSC Hypercube, NCube, SGI Origin, Cray T3D, TOFU
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Evaluating Static Interconnection Networks #1

Diameter

● the maximum distance between any two processors in the network

● directly determines communication time (latency)

Connectivity

● the multiplicity of paths between any two processors

● a high connectivity is desirable as it minimizes contention (also enhances

fault-tolerance)

● arc connectivity of the network: the minimum number of arcs that must be removed

for the network to break it into two disconnected networks

■ 1 for linear arrays and binary trees

■ 2 for rings and 2D meshes

■ 4 for a 2D torus

■ d for d-dimensional hypercubes
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Evaluating Static Interconnection Networks #2

Channel width

● the number of bits that can be communicated simultaneously over a link connecting

two processors

Bisection width and bandwidth

● bisection width is the minimum number of communication links that have to be

removed to partition the network into two equal halves

● bisection bandwidth is the minimum volume of communication allowed between two

halves of the network with equal numbers of processors

Cost

● many criteria can be used; we will use the number of communication links or wires

required by the network
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Summary: Static Interconnection Characteristics

Bisection Arc Cost
Network Diameter width connectivity (no. of links)
Completely-connected 1 p2/4 p−1 p(p−1)/2
Binary Tree 2 log2((p + 1)/2) 1 1 p−1
Linear array p−1 1 1 p−1
Ring ⌊p/2⌋ 2 2 p
2D Mesh 2(

√
p−1)

√
p 2 2(p−√

p)
2D Torus 2⌊√p/2⌋ 2

√
p 4 2p

Hypercube log2 p p/2 log2 p (p log2 p)/2

Note: the Binary Tree suffers from a bottleneck: all traffic between the left and right

sub-trees must pass through the root. The fat tree interconnect alleviates this.
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NCI’s Gadi: A Petascale Supercomputer

● 184K cores (dual socket, 24 core Intel Platinum Xeon 8274 (Cascade Lake), 3.2

GHz) in 4243 compute nodes

● 192 GB memory per node (815 TB total)

● Mellanox Infiniband HDR interconnect (100Gbs, ≈ 60 km cables)

● interconnects: mesh (cores), full (sockets),

Dragonfly+ (nodes)

● ≈ 22 PB Lustre parallel filesystem

● power: 1.5 MW max. load

● cooling systems: 100 tonnes of water

● 24th fastest in the world in debut (June 2020) – 9.3

PFLOPS

■ (probably) fastest file-system in the s.

hemisphere

■ custom Linux kernel (CentOS 8)

■ highly customised PBS Pro scheduler
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Further Reading: Parallel Hardware

● The Free Lunch Is Over!

● Ch 1, 2.1-2.4 of Introduction to Parallel Computing

● Ch 1, 2 of Principles of Parallel Programming
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