
Overview: Classical Parallel Hardware

Review of Single Processor Design

● so we talk the same language

● many things happen in parallel even on a single processor

● identify potential issues that (explicitly) parallel hardware can overcome

● why should we use 2 CPUs instead of doubling the speed on one!

Multiple Processor Design

● Flynn’s taxonomy of parallel computers (SIMD vs MIMD)

● message-passing versus shared-address space programming

● UMA versus NUMA shared-memory computers

● dynamic/static connectivity

● evaluating static networks

● case study: the NCI Gadi supercomputer

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 1

The Processor

Performs (among others):

● floating point operations (flops) - add, mult, division (sqrt maybe!)

● integer and logical operations (and, or, etc.)

● instruction processing (fetch, decoding, etc.)

● our primary focus will be in flops (as per required by most scientific applications)

● main performance metric: flops/sec or just FLOPS

The processor clock orchestrates its operation:

● all ops take a fixed number of clock ticks to complete (latency)

● clock speed is measured in GHz (109 cycles/second) or nsec (10−9 seconds)

■ Apple iPhone 6 ARM A8 1.4GHz (0.71ns), NCI Gadi Intel Xeon Cascade Lake
3.2GHz (0.31ns), IBM zEC12 processor 5.5Ghz (0.18ns)

● clock speed limited by: transistor speed, speed of light, energy consumption, etc.

■ (to our knowledge) IBM zEC12 is fastest commodity processor at 5.5GHz
■ light travels about 1cm in 3.2ns, a chip is a few cm!

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 2

Processor Performance

flops/sec Prefix Occurrence (as of today)
103 kilo (k) very badly written code
106 mega (m) badly written code
109 giga (g) single-core
1012 tera (t) supercomputer node
1015 peta (p) all machines in Top500 (Nov 22, measured)
1018 exa (e) 2022!

How peak flops/sec. is computed?

● Desktop 2.5GHz Quad-Core, 4(core)*4(flops)*2.5GHz ≡ 40 gflops/sec.

● Bunyip cluster Pentium III, 96(nodes)*2(sockets)*1(core)*1(flop)*550MHz ≡ 105

gflops/sec,

● NCI Raijin 3592(nodes)*2(sockets)*8(core)*8(flops)*2.6GHz ≡ 1.19 pflops/sec.

● NCI Gadi 3074(nodes)*2(sockets)*24(core)*16(flops)*3.2GHz ≡ 7.55 pflops/sec.

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 3

Illustrating pipelining with an example: Adding Float64 Numbers

Consider adding two double precision (8 byte) numbers

0 1 11 12 63
± Exponent Significand

Possible steps:

● determine largest exponent

● normalize significand of the smaller exponent to the larger

● add significand

● re normalize the significand and exponent of the result

Let us assume each step take 1 clock tick, i.e., a latency of 4 ticks per addition (flop)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 4

Illustrating pipelining with an example: Adding Float64 Numbers

Step in Pipeline
Waiting 1 2 3 4 Done

X(6)
X(5)→

X(4)→
X(3)→

X(2)→
X(1)

● X(1) takes 4 clock ticks to appear (startup latency); X(2) appears 1 tick after X(1)

● asymptotically achieves 1 result per tick

● the operation (X) is said to be pipelined: steps in the pipeline are running in parallel

● requires same op consecutively on different (independent) data items

■ good for “vector operations” (note limitations on chaining output data to input)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 5

Another example: Multiplying Float64 Numbers

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 6

Instruction Pipelining (Single Instruction Issue)

● break instructions into k stages each that are overlapped in time

● eg. (k = 5): stages FI = Fetch Instrn., DI = Decode Instrn., FO = Fetch Operand, EX
= Execute Instrn., WB = Write Back

(branch): FI DI FO EX WB
(guess) FI DI FO EX WB

(guess) FI DI FO EX WB
(guess) FI DI FO EX WB

(sure) FI DI FO EX WB

● Ideally, one gets k-way asymptotic parallelism (speedup)

● However, hard to maximize utilization in practice:

■ Constrained by dependencies among instructions; CPU must ensure result is
the same as if no pipelining!

■ FO & WB stages may involve memory accesses (and may possibly stall the pipeline)

■ conditional branch instructions are problematic: the wrong guess may require
flushing succeeding instructions from the pipeline and rolling back

● tendency to increase # of stages (specially acute during 90s-20s)

examples of #stages: UltraSPARC II (9) and III (14), Intel Prescott (31)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 7

Superscalar execution (Multiple Instruction Issue)

● Simple idea: Increase execution rate by using w ≥ 2 (i.e., multiple) pipelines

● w (mutually independent) instructions are (tried to be) piped in parallel at each cycle

● Ideally it offers kw-way parallelism (recall k is the number of pipeline stages)

● However, a number of extra challenges arise:

■ Increased complexity: HW has to be able to resolve dependencies at runtime

before issuing simultaneously several instructions

■ Some of the functional units might be shared by the pipelines (aka resource

dependencies)

■ As a result, instructions to be issued together must have an appropriate

‘instruction mix’

e.g. UltraSPARC (w = 4):

≤ 2 different floating point
≤ 1 load / store ; ≤ 1 branch
≤ 2 integer / logical

● Some remedies: pipeline feedback, branch prediction + speculative execution,

out-of-order execution, compilers (e.g., VLIW processors)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 8

Limitations of Instruction-Level Parallelism (ILP)

Actual clock Cycles Per Instruction (CPI) on Intel i7 (Peak is 0.25)

CPU does a lot of (wasted) work that can just not be written back due to branch

mispredictions

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 9

Limitations of Memory System Performance

Consider the DAXPY computation:

y(i) = y(i) + 1.234∗ x(i)

If at its peak the CPU can perform 8 flops/cycle (4 fused mult-add)

● the memory system must load 8 doubles (x(i) and y(i) – 64 bytes) and store 4

(y(i) – 32 bytes) each clock cycle

■ on a 2 GHz system this implies a memory system able to sustain 128 GB/s load

traffic and 64 GB/s store traffic

● despite advances in memory technology (e.g., DDR5 SDRAM), memory is not able

to pump data at such high rates

Memory latency and bandwidth are critical performance issues

● caches: reduce latency and provide improved cache to CPU bandwidth

● multiple memory banks: improve bandwidth (by parallel access)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 10

Memory Hierarchy

Main Memory −→ large, cheap memory; large latency/small bandwidth
↓

Cache −→ small, expensive memory; lower latency/higher bandwidth
↓↓↓↓↓

CPU Registers

● memory is partitioned into blocks (cache lines) and mapped to cache lines using a
mapping algorithm (e.g., completely associative, direct, n-way associative)

● cache lines are typically 16-128 bytes wide; entire cache lines fetched from
memory, not just one element (why?)

● cache hit (few cycles)/cache miss (large number of cycles)

● try to structure code to use an entire cache line of data before replacement (e.g.,
blocking strategies in dense matrix-matrix multiplication)

Cache memory is effective because algorithms often use data that:

● was recently accessed from memory (temporal locality)

● was close to other recently accessed data (spatial locality)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 11

Going (Explicitly) Parallel

● performance of a single processor is irremediably limited by clock rate

● clock rate in turn limited by power consumption, transistor switching time, etc.

● ILP allows multiple instructions at once, but it is limited by dependencies

● many problems are inherently distributed/exhibit potential parallelism

It’s time to go (explicitly) parallel

Parallel Hardware Overview

● Flynn’s Taxonomy of parallel processors (1966,1972)

■ (SISD/SIMD/)SIMD/MIMD

● message-passing versus shared-address space programming

● UMA versus NUMA shared-memory computers

● dynamic/static networks

● evaluating cost and performance of static networks

● case study: NCI’s Gadi (2020–)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 12

SIMD and MIMD in Flynn’s Taxonomy

SIMD: Single Instruction Multiple Data

● also known as data parallel or vector processors (very popular in the 70s and 80s)

● nowadays come mainly in the form of SSE co-processing instructions

● other examples: GPUs; SPEs on Sony’s PS3 IBM CellBE (2006)

● perform their best with structured (regular) computations (e.g., image processing)

MIMD: Multiple Instruction Multiple Data

● examples include: (1) quad-core PC; (2) 2x24-core Xeon CPUs on each Gadi node

CPU CPU CPU CPU

I N T E R C O N N E C T

CPU and

Control

CPU and

Control

CPU and

Control

CPU and

Control

Global

Control Unit

I N T E R C O N N E C T

S I M D M I M D

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 13

MIMD

Most successful model for parallel architectures

● more general purpose than SIMD, can be built out of off-the-shelf components

● extra burden to programmer

Some challenges for MIMD machines

● scheduling: efficient allocation of processors to tasks in a dynamic fashion

● synchronization: prevent processors accessing the same data simultaneously

● interconnect design: processor to memory and processor to processor

interconnects. Also I/O network - often processors dedicated to I/O devices

● overhead: inevitably there is some overhead associated with coordinating activities

between processors, e.g. resolve contention for resources

● partitioning: partitioning a computation/algorithm into concurrent tasks might not be

trivial and require algorithm redesign and/or significant programming efforts

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 14

Logical classification of parallel computers

Regardless of how they are physically organized under the hood, from a programmer’s

perspective, parallel computers can be classified into two broad categories:

● Message-passing (distributed address space) parallel computers

● Shared address space parallel computers

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 15

Address Space Organization: Message Passing

● logically organized as multiple processing nodes, each with its own

exclusive/private address space

● interaction among programs running on different nodes accomplished using

messages

● messages are used to transfer data, work, and synchronization

● typically implemented in practice by so called distributed memory parallel

computers (although not necessarily)

● in these computers, (aggregate) memory bandwidth scales linearly with # of

processing nodes

● example: parallelism between “nodes” on the NCI Gadi system

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 16

Address Space Organization: Shared Address Space

● there is a common data shared address space

● processes interact by modifying objects stored in this shared address space

● most typically implemented by so-called shared-memory computers

● simplest implementation is a flat or uniform memory access (UMA)

● synchronizing concurrent access to shared data objects and processor-processor
communications (to maintain coherence among multiple copies) limits performance

● typically one observes sublinear memory bandwidth with # of processors

● example: QuadCore laptop

I N T E R C O N N E C T

MEMORY MEMORY MEMORY MEMORY

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Cache Cache Cache Cache

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 17

Non-Uniform Memory Access (NUMA)

● all memory is still visible to the programmer (shared address space), but some

memory accesses take longer to access than others

● designed to increase aggregated memory bandwidth with # of processors

● parallel programs should be written such that fast memory accesses are maximized

(collocate data and computation accordingly)

● example: within each Gadi node, each socket (i.e., 24-core CPU) is connected to

its own memory module that is faster to access than the other (remote) one

I N T E R C O N N E C T

MEMORY MEMORY MEMORY MEMORY

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Cache Cache Cache Cache

MEMORY MEMORY MEMORY MEMORY

I N T E R C O N N E C T

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Cache Cache Cache Cache

cached UMA cached NUMA

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 18

Another example of shared-memory MIMD computers

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 19

Dynamic Connectivity: Bus

● simplest/cheapest network: shared medium common to all processors

● its a completely-blocking network: a point-to-point comm. among a processor and a

memory module, or among processors, prevents any other comm.

● limited bandwidth scalability (multiple accesses to memory are serialized)

● effective cache utilization can alleviate demands on the bus bandwidth

MEMORY MEMORY MEMORY MEMORY

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Cache Cache Cache Cache

B U S

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 20

Dynamic Connectivity: Crossbar

● employs a 2D grid of switching nodes (complexity grows as O(p2))

● its a completely non-blocking network: connection among two processors does not

block connection between any other two processors

● not scalable in terms of complexity and cost

Memory

Processor

and

Memory

Processor

and

Memory

Processor

and

Memory

Processor

and

Memory

Processor

and

Memory

Processor

and

Memory

Processor

and

Memory

Processor

and

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 21

Dynamic Connectivity: Multi-staged Networks (e.g. Omega Network)

000

010

100

110

001

011

101

111

Processors
S W I T C H I N G N E T W O R K

O M E G A N E T W O R K

Memory

010

100

001

000

011

101

110

111

(s = 010 (src), t = 111 (dst), s⊕ t = 101)

● consists of log2(p) stages, p/2 switches per stage (p = 8 in the figure)

● switches can be configured in two modes: pass-through or crossover

● s and t are binary representations of source and destination

■ processed from most to least significant bit (i.e., left to right)
■ route through if current bits of s and t are the same; otherwise, crossover

● partially blocking network (e.g. consider comms 000-111 and 110-100 at once)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 22

Static Connectivity: Complete, Mesh, Tree

Completely connected (becomes very complex!)

Linear array/ring, mesh/2d torus

Static (all nodes are processors) and dynamic trees (intermediate nodes are switches)

Processors

Switches

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 23

Static Connectivity: Hypercube

0100

0101

0001

0000

1100

1000

1101

1001

1110

1010

1011

1111

0110

0010

0111

0011

d = 4, p = 16

● two (and exactly two) processing nodes along each dimension, d = log2(p)

dimensions (thus p = 2d processing nodes)

● the number of connections per processor grows as log2(p)

● recursive construction: d-hypercube built by connecting two d −1-hypercubes

● two processing nodes directly connected IF ONLY IF their labels differ by one bit

● the number of links in the shortest path between two processors labeled s and t is

the number of bits that are on (i.e., =1) in the binary representation of s⊕ t (bitwise

XOR) operation (e.g. 3 for 101⊕010 and 2 for 011⊕101)

● examples: Intel iPSC Hypercube, NCube, SGI Origin, Cray T3D, TOFU

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 24

Evaluating Static Interconnection Networks #1

Diameter

● the maximum distance between any two processors in the network

● directly determines communication time (latency)

Connectivity

● the multiplicity of paths between any two processors

● a high connectivity is desirable as it minimizes contention (also enhances

fault-tolerance)

● arc connectivity of the network: the minimum number of arcs that must be removed

for the network to break it into two disconnected networks

■ 1 for linear arrays and binary trees

■ 2 for rings and 2D meshes

■ 4 for a 2D torus

■ d for d-dimensional hypercubes

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 25

Evaluating Static Interconnection Networks #2

Channel width

● the number of bits that can be communicated simultaneously over a link connecting

two processors

Bisection width and bandwidth

● bisection width is the minimum number of communication links that have to be

removed to partition the network into two equal halves

● bisection bandwidth is the minimum volume of communication allowed between two

halves of the network with equal numbers of processors

Cost

● many criteria can be used; we will use the number of communication links or wires

required by the network

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 26

Summary: Static Interconnection Characteristics

Bisection Arc Cost
Network Diameter width connectivity (no. of links)
Completely-connected 1 p2/4 p−1 p(p−1)/2
Binary Tree 2 log2((p + 1)/2) 1 1 p−1
Linear array p−1 1 1 p−1
Ring ⌊p/2⌋ 2 2 p
2D Mesh 2(

√
p−1)

√
p 2 2(p−√

p)
2D Torus 2⌊√p/2⌋ 2

√
p 4 2p

Hypercube log2 p p/2 log2 p (p log2 p)/2

Note: the Binary Tree suffers from a bottleneck: all traffic between the left and right

sub-trees must pass through the root. The fat tree interconnect alleviates this.

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 27

NCI’s Gadi: A Petascale Supercomputer

● 184K cores (dual socket, 24 core Intel Platinum Xeon 8274 (Cascade Lake), 3.2

GHz) in 4243 compute nodes

● 192 GB memory per node (815 TB total)

● Mellanox Infiniband HDR interconnect (100Gbs, ≈ 60 km cables)

● interconnects: mesh (cores), full (sockets),

Dragonfly+ (nodes)

● ≈ 22 PB Lustre parallel filesystem

● power: 1.5 MW max. load

● cooling systems: 100 tonnes of water

● 24th fastest in the world in debut (June 2020) – 9.3

PFLOPS

■ (probably) fastest file-system in the s.

hemisphere

■ custom Linux kernel (CentOS 8)

■ highly customised PBS Pro scheduler

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 28

Further Reading: Parallel Hardware

● The Free Lunch Is Over!

● Ch 1, 2.1-2.4 of Introduction to Parallel Computing

● Ch 1, 2 of Principles of Parallel Programming

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 ◀◀ ◀ • ▶ ▶▶ 29

