Overview: Classical Parallel Hardware The Processor

Review of Single Processor Design Performs (among others):

® 50 we talk the same language @ floating point operations (flops) - add, mult, division (sqrt maybe!)

) . , @ integer and logical operations (and, or, etc.)
@® many things happen in parallel even on a single processor)))]
@ instruction processing (fetch, decoding, etc.)

® identify potential issues that (explicitly) parallel hardware can overcome @ our primary focus will be in flops (as per required by most scientific applications)

@ why should we use 2 CPUs instead of doubling the speed on one! @® main performance metric: flops/sec or just FLOPS
Multiple Processor Design The processor clock orchestrates its operation:
@ Flynn’s taxonomy of parallel computers (SIMD vs MIMD) @ all ops take a fixed number of clock ticks to complete (latency)
o message_passing versus shared-address space programming @® clock speed is measured in GHz (1 09 cycles/second) or nsec (1 0_9 seconds)
® UMA versus NUMA shared-memory computers B Apple iPhone 6 ARM A8 1.4GHz (0.71ns), NCI Gadi Intel Xeon Cascade Lake
)) o 3.2GHz (0.31ns), IBM zEC12 processor 5.5Ghz (0.18ns)
@ dynamic/static connectivity o .))
@ clock speed limited by: transistor speed, speed of light, energy consumption, etc.
® evaluating static networks M (to our knowledge) IBM zEC12 is fastest commodity processor at 5.5GHz
@ case study: the NCI Gadi supercomputer M light travels about 1cm in 3.2ns, a chip is a few cm!
COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <4< <o b > 1 COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <4< <P p>
Processor Performance lllustrating pipelining with an example: Adding Float64 Numbers

flops/sec Prefix Occurrence (as of today)

103 kilo (k) very badly written code , , o

108 mega (m) badly written code Consider adding two double precision (8 byte) numbers

10° giga(g) single-core 01 11] 12 63
102 tera (t) supercomputer node + | Exponent Significand

101® peta (p) all machines in Top500 (Nov 22, measured)

108 exa(e) 2022 Possible steps:

How peak flops/sec. is computed? @ determine largest exponent

ize signifi he |
@ Desktop 2.5GHz Quad-Core, 4(core)*4(flops)*2.5GHz = 40 gflops/sec. ® normalize significand of the smaller exponent to the larger

@ Bunyip cluster Pentium lll, 96(nodes)*2(sockets)*1(core)*1(flop)*550MHz = 105
gflops/sec, @ re normalize the significand and exponent of the result

@ add significand

® NCI Raijin 3592(nodes)*2(sockets)*8(core)*8(flops)*2.6GHz = 1.19 pflops/sec. Let us assume each step take 1 clock tick, i.e., a latency of 4 ticks per addition (flop)
@® NCI Gadi 3074(nodes)*2(sockets)*24(core)*16(flops)*3.2GHz = 7.55 pflops/sec.

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <o p» P> 3 COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <o > P>

lllustrating pipelining with an example: Adding Float64 Numbers

Step in Pipeline
Waiting 1 2 3 4 Done
X(6)
X(5)—
X(4)—
X(3)—
X(2)—
X(1)

@ X(1) takes 4 clock ticks to appear (startup latency); X(2) appears 1 tick after X(1)

@ asymptotically achieves 1 result per tick

@ the operation (X) is said to be pipelined: steps in the pipeline are running in parallel
@ requires same op consecutively on different (independent) data items

B good for “vector operations” (note limitations on chaining output data to input)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <o > p» 5

Instruction Pipelining (Single Instruction Issue)

break instructions into k stages each that are overlapped in time

@ cg. (k=5): stages Fl = Fetch Instrn., DI = Decode Instrn., FO = Fetch Operand, EX

= Execute Instrn., WB = Write Back
(branch): [FI [DI [FO [EX [WB
(guess) | FI DI FO EX WB

(guess) | FI DI FO EX WB

(guess) | FI DI FO EX WB

(sure) | FI DI FO EX WwB

Ideally, one gets k-way asymptotic parallelism (speedup)
@ However, hard to maximize utilization in practice:

Il Constrained by dependencies among instructions; CPU must ensure result is
the same as if no pipelining!

B FO & WB stages may involve memory accesses (and may possibly stall the pipeline)

I conditional branch instructions are problematic: the wrong guess may require
flushing succeeding instructions from the pipeline and rolling back

@ tendency to increase # of stages (specially acute during 90s-20s)
examples of #stages: UltraSPARC Il (9) and Il (14), Intel Prescott (31)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <4< <> pp 7

Another example: Multiplying Float64 Numbers

1 2 3 4 5 N N+1 N+2 N+3 N+4
Cycle
Separate B(1) | | B(2)| | B(3)| | B(4)| | B(5) B(N) || {
mant./exp. C(1)| | C(2)| | C(3) |C(4)| cC(5) Cc(N) Wind-down
Multiply B(1)| | B(2)| | B(3) | | B(4) B(N-1)| | B(N)
mantissas c(l)| | c(2)| | c(@3) | c(a) c(n-1)| | C(N)
Add B(1) B(2) B(3) B(N-2)| | B(N-1)| | B(N)
exponents C(1) C(2) C(3) C(N-2)| | C(N-1) C(N)
Normalize A A A
result ARG sy ey ey | RO
Insert | Wind-up | A A A A
sign I LR e (-0 | (-3)] | (8-2) | (v-1)| | B

Figure 1.5: Timeline for a simplified floating-point multiplication pipeline that executes
A(:)=B(:)*C(:).Oneresultis generated on each cycle after a four-cycle wind-up phase.

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <o > P> 6

Superscalar execution (Multiple Instruction Issue)

Simple idea: Increase execution rate by using w > 2 (i.e., multiple) pipelines
w (mutually independent) instructions are (tried to be) piped in parallel at each cycle

Ideally it offers kw-way parallelism (recall k is the number of pipeline stages)

However, a number of extra challenges arise:

B Increased complexity: HW has to be able to resolve dependencies at runtime
before issuing simultaneously several instructions

B Some of the functional units might be shared by the pipelines (aka resource
dependencies)

B As aresult, instructions to be issued together must have an appropriate

‘instruction mix’
< 2 different floating point

e.g. UltraSPARC (w = 4): <1 load/store ; <1 branch
< 2 integer / logical
@® Some remedies: pipeline feedback, branch prediction + speculative execution,
out-of-order execution, compilers (e.g., VLIW processors)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <o > P> 8

Limitations of Instruction-Level Parallelism (ILP)

Actual clock Cycles Per Instruction (CPI) on Intel i7 (Peak is 0.25)

CPU does a lot of (wasted) work that can just not be written back due to branch
mispredictions

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <o > P> 9

Memory Hierarchy

Main Memory \ — large, cheap memory; large latency/small bandwidth
1
— small, expensive memory; lower latency/higher bandwidth
W

\ CPU Registers |

@® memory is partitioned into blocks (cache lines) and mapped to cache lines using a
mapping algorithm (e.g., completely associative, direct, n-way associative)

@ cache lines are typically 16-128 bytes wide; entire cache lines fetched from
memory, not just one element (why?)

@ cache hit (few cycles)/cache miss (large number of cycles)
@ try to structure code to use an entire cache line of data before replacement (e.g.,
blocking strategies in dense matrix-matrix multiplication)

Cache memory is effective because algorithms often use data that:

@ was recently accessed from memory (temporal locality)

@ was close to other recently accessed data (spatial locality)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 q4o > pH 11

Limitations of Memory System Performance
Consider the DAXPY computation:
(i) = y(7) + 1.234 * x(i)
If at its peak the CPU can perform 8 flops/cycle (4 fused mult-add)

@ the memory system must load 8 doubles (x(i) and y(i) — 64 bytes) and store 4
(y(i) — 32 bytes) each clock cycle

B on a 2 GHz system this implies a memory system able to sustain 128 GB/s load
traffic and 64 GB/s store traffic

@ despite advances in memory technology (e.g., DDR5 SDRAM), memory is not able
to pump data at such high rates
Memory latency and bandwidth are critical performance issues

@ caches: reduce latency and provide improved cache to CPU bandwidth

@ multiple memory banks: improve bandwidth (by parallel access)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 q4°op> p> 10

Going (Explicitly) Parallel

@ performance of a single processor is irremediably limited by clock rate
@ clock rate in turn limited by power consumption, transistor switching time, etc.
@ ILP allows multiple instructions at once, but it is limited by dependencies

@® many problems are inherently distributed/exhibit potential parallelism
It's time to go (explicitly) parallel
Parallel Hardware Overview

@ Flynn’s Taxonomy of parallel processors (1966,1972)

B (SISD/SIMD/)SIMD/MIMD

message-passing versus shared-address space programming
UMA versus NUMA shared-memory computers

dynamic/static networks

evaluating cost and performance of static networks
@ case study: NCI's Gadi (2020-)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <> p> 12

SIMD and MIMD in Flynn’s Taxonomy
SIMD: Single Instruction Multiple Data

@ also known as data parallel or vector processors (very popular in the 70s and 80s)
@® nowadays come mainly in the form of SSE co-processing instructions
@ other examples: GPUs; SPEs on Sony’s PS3 IBM CellBE (2006)

@ perform their best with structured (regular) computations (e.g., image processing)

MIMD: Multiple Instruction Multiple Data

® cxamples include: (1) quad-core PC; (2) 2x24-core Xeon CPUs on each Gadi node

Global
Control Unit

CPU and CPU and CPU and CPU and
Control Control Control Control

‘ INTERCONNECT ‘ ‘ INTERCONNECT ‘
SIMD MIMD
COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <4< o> >p 13

Logical classification of parallel computers

Regardless of how they are physically organized under the hood, from a programmer’s
perspective, parallel computers can be classified into two broad categories:

@® Message-passing (distributed address space) parallel computers

@ Shared address space parallel computers

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 q4o > pH 15

MIMD

Most successful model for parallel architectures

@® more general purpose than SIMD, can be built out of off-the-shelf components

@ extra burden to programmer
Some challenges for MIMD machines

@ scheduling: efficient allocation of processors to tasks in a dynamic fashion
@ synchronization: prevent processors accessing the same data simultaneously

@ interconnect design: processor to memory and processor to processor
interconnects. Also I/0 network - often processors dedicated to I/O devices

@ overhead: inevitably there is some overhead associated with coordinating activities
between processors, e.g. resolve contention for resources

@ partitioning: partitioning a computation/algorithm into concurrent tasks might not be
trivial and require algorithm redesign and/or significant programming efforts

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 q4°op> p> 14

Address Space Organization: Message Passing

@ logically organized as multiple processing nodes, each with its own
exclusive/private address space

@ interaction among programs running on different nodes accomplished using
messages

messages are used to transfer data, work, and synchronization

@ typically implemented in practice by so called distributed memory parallel
computers (although not necessarily)

@ in these computers, (aggregate) memory bandwidth scales linearly with # of
processing nodes

@ example: parallelism between “nodes” on the NCI Gadi system

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <> p> 16

Address Space Organization: Shared Address Space

there is a common data shared address space
processes interact by modifying objects stored in this shared address space
most typically implemented by so-called shared-memory computers

simplest implementation is a flat or uniform memory access (UMA)

synchronizing concurrent access to shared data objects and processor-processor
communications (to maintain coherence among multiple copies) limits performance

typically one observes sublinear memory bandwidth with # of processors
@ example: QuadCore laptop

‘ MEMORY ‘ ‘ MEMORY ‘ ‘ MEMORY ‘ ‘ MEMORY ‘
\ \ \ \
{ INTERCONNECT }
\ \ \ \
‘ Cache ‘ ‘ Cache ‘ ‘ Cache ‘ ‘ Cache ‘
[] [] [] []
‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘
COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <4< <o P> 17

Another example of shared-memory MIMD computers

High-Speed
cPU CPU U T oPU
H B | &= H
mutticore-UMA multicore-NUMA
COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 q4o > p» 19

Non-Uniform Memory Access (NUMA)

@ all memory is still visible to the programmer (shared address space), but some
memory accesses take longer to access than others

designed to increase aggregated memory bandwidth with # of processors

@ parallel programs should be written such that fast memory accesses are maximized
(collocate data and computation accordingly)

@ example: within each Gadi node, each socket (i.e., 24-core CPU) is connected to
its own memory module that is faster to access than the other (remote) one

‘ MEMORY ‘ ‘ MEMORY ‘ ‘ MEMORY ‘ ‘ MEMORY ‘ [INTERCONNECT }
{ ‘ lNTERCONNEC'l“ ‘ } ‘ MEM‘ORY ‘ ‘ MEM‘ORY ‘ ‘ MEM‘ORY ‘ ‘ MEM‘ORY ‘
[[[[[[[[
L L VL e L Pl T L T L e]
‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘
cached UMA cached NUMA
COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 q4°op> p> 18

Dynamic Connectivity: Bus

simplest/cheapest network: shared medium common to all processors

@ its a completely-blocking network: a point-to-point comm. among a processor and a
memory module, or among processors, prevents any other comm.

limited bandwidth scalability (multiple accesses to memory are serialized)

@ cffective cache utilization can alleviate demands on the bus bandwidth

‘ MEMORY ‘ ‘ MEMORY ‘ ‘ MEMORY ‘ ‘ MEMORY ‘
\ \ \ \
{ BUS }
\ \ \ \
‘ Cache ‘ ‘ Cache ‘ ‘ Cache ‘ ‘ Cache ‘
1] 1] 1] 1]
‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘ ‘ PROCESSOR ‘

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <> p> 20

Dynamic Connectivity: Crossbar Dynamic Connectivity: Multi-staged Networks (e.g. Omega Network)

Processors SWITCHING NETWORK Memory

000 000
@® employs a 2D grid of switching nodes (complexity grows as 0(p2)) oot .
@ its a completely non-blocking network: connection among two processors does not 0K oo

o1l

block connection between any other two processors (s =010 (src), r = 111 (dst), s 7 = 101)

100
101

@ not scalable in terms of complexity and cost

Processor
and
Memory

Processor 110

111

and
Memory

and
Memory

and
Memory

Processor ‘

Processor ‘

Processor OMEGA NETWORK
and
Memory

@ consists of logs(p) stages, p/2 switches per stage (p = 8 in the figure)

Processor
and

Memory @ switches can be configured in two modes: pass-through or crossover
e @ s andr are binary representations of source and destination

Memory

Proceor B processed from most to least significant bit (i.e., left to right)

Memory

B route through if current bits of s and ¢ are the same; otherwise, crossover

@ partially blocking network (e.g. consider comms 000-111 and 110-100 at once)

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <44 <o b > 21 COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <4op> >> 22
Static Connectivity: Complete, Mesh, Tree Static Connectivity: Hypercube
|
Completely connected (becomes very complex!) 0 o o
0000 0010 100 1010
d=4,p=16
0101 0111 1101 1111
0001 p 1011

Linear array/ring, mesh/2d torus @ two (and exactly two) processing nodes along each dimension, d = logs(p)

dimensions (thus p = 2d processing nodes)
C?% @ the number of connections per processor grows as log,(p)
@ ¢jﬁ @ recursive construction: d-hypercube built by connecting two d — 1-hypercubes
@ two processing nodes directly connected IF ONLY IF their labels differ by one bit

Static (all nodes are processors) and dynamic trees (intermediate nodes are switches) @ the number of links in the shortest path between two processors labeled s and 7 is
the number of bits that are on (i.e., =1) in the binary representation of s ¢ (bitwise
XOR) operation (e.g. 3 for 101 ©010 and 2 for 011 101)

Switches @® examples: Intel iPSC Hypercube, NCube, SGI Origin, Cray T3D, TOFU

Processors

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 q4o > pH 23 COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <> p> 24

Evaluating Static Interconnection Networks #1

Diameter

@ the maximum distance between any two processors in the network

@ directly determines communication time (latency)
Connectivity

@ the multiplicity of paths between any two processors

@ a high connectivity is desirable as it minimizes contention (also enhances
fault-tolerance)

@ arc connectivity of the network: the minimum number of arcs that must be removed
for the network to break it into two disconnected networks

| 1 for linear arrays and binary trees
| 2 for rings and 2D meshes

M 4 fora 2D torus

M d for d-dimensional hypercubes

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <4< o> >p 25

Summary: Static Interconnection Characteristics

Bisection Arc Cost
Network Diameter width connectivity (no. of links)
Completely-connected 1 p?/4 p—1 plp—1)/2
Binary Tree 2logs((p+1)/2) 1 1 p—1
Linear array p—1 1 1 p—1
Ring Lp/2] 2 2 p
2D Mesh 2(,p—1) VP 2 2(p—+/P)
2D Torus 2|/p/2] 2,/p 4 2p
Hypercube logo p p/2 logo p (ploga p)/2

Note: the Binary Tree suffers from a bottleneck: all traffic between the left and right
sub-trees must pass through the root. The fat tree interconnect alleviates this.

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <44 <o > >p 27

Evaluating Static Interconnection Networks #2

Channel width

@ the number of bits that can be communicated simultaneously over a link connecting
two processors

Bisection width and bandwidth

@ bisection width is the minimum number of communication links that have to be
removed to partition the network into two equal halves

@ bisection bandwidth is the minimum volume of communication allowed between two
halves of the network with equal numbers of processors

Cost

@ many criteria can be used; we will use the number of communication links or wires
required by the network

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 q4°op> p> 26

NCI's Gadi: A Petascale Supercomputer
@ 184K cores (dual socket, 24 core Intel Platinum Xeon 8274 (Cascade Lake), 3.2
GHz) in 4243 compute nodes
@® 192 GB memory per node (815 TB total)
@® Mellanox Infiniband HDR interconnect (100Gbs, ~ 60 km cables)

@ interconnects: mesh (cores), full (sockets),
Dragonfly+ (nodes)

~ 22 PB Lustre parallel filesystem

power: 1.5 MW max. load

cooling systems: 100 tonnes of water

24th fastest in the world in debut (June 2020) — 9.3
PFLOPS

B (probably) fastest file-system in the s.

hemisphere
B custom Linux kernel (CentOS 8)
I highly customised PBS Pro scheduler

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 44 <> p> 28

Further Reading: Parallel Hardware

@® The Free Lunch Is Over!

® Ch 1, 2.1-2.4 of Introduction to Parallel Computing
@® Ch 1, 2 of Principles of Parallel Programming

COMP4300/8300 L2-3: Classical Parallel Hardware 2024 <4< o> >p 29

