
Welcome to COMP4300/8300

Parallel Systems

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 1

Teaching staff, communication, website, and week 1 checklist

● Course Convenor: Prof. Dirk Pattinson

● Lecturers:

■ Dr. Alberto F. Martin (1st half of semester)
■ Prof. John Taylor (2nd half of semester)

● Tutors: Elise Palethorpe, Ryan Stocks, Calum Snowdon

● Communication with teaching staff handled via Ed Discussion
(do not send course-related e-mails to our personal ANU accounts please!)

● Course webpage at https://comp.anu.edu.au/courses/comp4300
(we will use Wattle only for mid-sem exam, lecture recordings and marking)

● Week 1 checklist

■ Go to this page and follow the steps there
■ Labs start in week 2 Register before the end of week 1 via MyTimeTable
■ Account at NCI/Gadi needed (account creation instructions)
■ Read carefully course policy on the appropriate usage of allocated computed

time available (available here)

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 2

https://comp.anu.edu.au/people/dirk-pattinson/
https://amartinhuertas.github.io/
https://comp.anu.edu.au/people/john-taylor/
https://edstem.org/au/courses/15538/
https://comp.anu.edu.au/courses/comp4300
https://comp.anu.edu.au/courses/comp4300/#week-1-checklist
https://comp.anu.edu.au/courses/comp4300/labs/
https://www.anu.edu.au/students/program-administration/timetabling/student-access-and-support-for-mytimetable
https://edstem.org/au/courses/15538/discussion/1747578
https://edstem.org/au/courses/15538/discussion/1747579

Course Assessment

The total workload for this (6 units) course is around 150 hours (12 hours per semester

week). For S1 2024, the following assessment scheme:

● Assignments – 50% of final mark

■ There will be two assignments, each worth 25% of the final mark (50% in total)

■ These assignments will contain a significant parallel programming component

plus a report where you will have to answer practical and theoretical questions

relevant to the course content

● Mid-Semester Exam – 10% of final mark – Redeemable

■ 1-hour exam held in Tue, wk6 (lecture time) worths 10% of final mark

■ Remote/electronic multiple-choice exam in Wattle

● Final Exam – 40% of final mark

■ This will be a 3 hour written exam held at the end of the semester during the

normal examination period

■ This exam is worth 40% of the final course mark

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 3

Software and minimum IT requirements (I)

You will need satisfactory Internet connection to be able to access to:

● course website (lecture slides etc.)

● GitLab (Labs; Assignments submission)

■ Some familiarity with Git/GitLab (clone, commit, push, pull, etc.) assumed

■ You will need a private/public key installed in your GitLab account to be able to

work with Git repos (instructions here)

■ Click here for a set of best practices and instructions on the workflow to be

used for the assignments

● Wattle (mid-sem, marking, and lecture recordings)

● Ed Discussion

● NCI Gadi documentation

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 4

https://comp.anu.edu.au/courses/comp4300
https://gitlab.cecs.anu.edu.au
https://docs.gitlab.com/ee/user/ssh.html
https://comp.anu.edu.au/courses/comp4300/assignments_workflow/
https://wattlecourses.anu.edu.au
https://opus.nci.org.au/display/Help/Gadi+User+Guide

Software and minimum IT requirements (II)

You will also need:

● An SSH client to access gadi.nci.org.au with your NCI account (if it gets as far

as asking for a username/password outgoing SSH is not being blocked)

● Later, will need access to a GPU server (stugpu2.anu.edu.au via partch.anu.edu.au)

● For code development, you may use a remote terminal editor (advanced users) or a

graphical editor, in particular VSCode with the Remote Development extension

highly recommended for beginners. Click here for instructions.

● For Windows users, Moba XTerm highly recommended to access Gadi

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 5

https://comp.anu.edu.au/courses/comp4300/editing_files_on_gadi_with_vscode/
https://mobaxterm.mobatek.net/

Course recommended texts + extra materials

● The course does not strictly follow any particular text book

● However, most of the concepts treated in the course are covered in the materials

available at resources section of web page

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 6

https://comp.anu.edu.au/courses/comp4300/resources/

Health Warning

● it’s a 4000/8000-level course, it’s supposed to:

■ be more challenging than a 3000-level course

■ you will be exposed to bleeding edge technologies

■ be less well structured

■ have a greater expectation for your self-directed understanding/independence

■ have more student participation

■ and why not ... be fun as well

● it assumes you have done some background in concurrency (e.g. COMP2310);

also in computer organization

● it requires strong programming skills – in C!

● attendance at lectures/labs strongly recommended (even though not assessed)

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 7

Today’s lecture main take-away message

To extract all the computational performance from today’s (even commodity)
microprocessors there is no alternative but to EXPLICITLY manage parallelism in our

programs!

UltraSPARC T2 (2007)
(Niagara-2)
multicore chip layout

(courtesy of T. Okazaki, Flickr)

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 8

Lecture Overview

● parallel computing concepts and scales

● sample application area: computational science and engineering (CSE)

● the role of Moore’s Law and Dennard’s Scaling Law in the exponential growth of

computing performance

● end of Dennard’s scaling Law (mid 2000s) and multicore revolution

● the Top 500 supercomputers and challenges for the future of computing

● why parallel programming is hard

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 9

Parallel Computing: Concept and Rationale

The idea:
Split computation into tasks that can be executed simultaneously on different processors

Motivation:

● Speed, Speed, Speed · · · at a cost-effective price

■ if we didn’t want it to go faster we wouldn’t bother with the hassles of parallel

programming!

● reduce the time to solution to acceptable levels (e.g., under real-time constraints)

■ no point in taking 1 week to predict tomorrow’s weather!

■ simulations that take months are NOT useful in a design environment

● tackle larger-scale (i.e., with higher computational demands) problems

● keep power consumption and heat dissipation under control

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 10

Parallelization

Split program up and run parts simultaneously on different processors

● on p computers, the time to solution should (ideally!) be reduced by 1
p

● parallel programming: the art of writing the parallel code

● parallel computer: the hardware on which we run our parallel code

This course will discuss both!

Beyond raw compute performance, other motivations may include

● enabling more accurate simulations in the same time (finer grids)

● providing access to huge aggregate memories

● providing more and/or better input/output capacity

● hiding latency

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 11

Scales of Parallelism

● within a CPU/core: pipelined instruction execution, multiple instruction issue

(superscalar), other forms of instruction level parallelism, SIMD units*

● within a chip: multiple cores*, hardware multithreading*, accelerator units* (with

multiple cores), transactional memory*

● within a node: multiple sockets* (CPU chips), interleaved memory access (multiple

DRAM chips), disk block striping / RAID (multiple disks)

● within a SAN (system area network): multiple nodes* (clusters, typical

supercomputers), parallel filesystems

● within the internet: grid/cloud computing*

*requires significant parallel programming effort

What programming paradigms are typically applied to each feature?

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 12

Application Area - Computational Science & Engineering (CSE)

Third pillar of scientific discovery

● Integrates applied mathematics, computer science, and branches of

science/engineering in a single discipline (e.g., computational geophysics)

● Leverages computational models, algorithms, data, software and HPC (i.e.

supercomputers) to tackle grand-challenges in science and engineering

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 13

Application Area - R&D in CSE

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 14

Application Area - Synergy among CSE and HPC

● We already find ourselves in the Exascale era (O(1018) FLOPs/s peak)

● Frontier: 1st Exascale supercomputer (Oak Ridge US National Labs)

(∼10M cores, 1.1EFLOPs/s, ranked #1 Jun, 2023 Top500 list)

● Performance boost mostly based on adding hardware parallelism (e.g., higher

#cores/CPU) and heterogeneous hardware (CPUs, GPUs, . . .)

● To exploit such vast concurrency is a formidable task for CSE (breakthroughs in

scalable algorithms and software innovations)

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 15

https://www.top500.org/

Moore’s Law & Dennard Scaling

Two “laws” underpin exponential performance increase of microprocessors

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 16

Moore’s law

The number of transistors in a chip doubles every 24 months

Does this automatically imply that performance (per chip) doubles every 24 months?

No! Moore’s law is not a performance law! However, there has been a strong correlation

between the # of transistors and performance across time

How is that possible?

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 17

Dennard’s scaling law (until early 2000s)

The (dynamic) power consumption of a chip can be modelled as:

P = Q fCV 2

where Q # of transistors, f frequency, C capacitance, and V voltage supply

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 18

Dennard’s scaling law (until early 2000s)

According to Dennard’ law, if we scale feature size down by a factor of 1
κ

, we can scale

up frequency by κ, and scale down the capacitance and voltage by 1
κ

, resulting in a

(reduced) power consumption of (assuming Qκ = Q0):

P0 = Q0 f0C0V 2
0 → Pκ = Qκ fκCκV 2

κ = Q0 (κ f0)

(
1
κ

C0

)(
1
κ

V0

)2
=

(
1
κ2

)
P0

What about if we allow ourselves to keep Pκ constant? How many transistors Qκ can

we fit on the same chip? The answer is:

Qκ = κ
2Q0

As long as we keep scaling feature size down by 1
κ

, we can fit κ2 more transistors on

the same chip, increase their frequency by κ, and use the same power as before!

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 19

Until early 2000s – The uniprocessor era

Performance of single instruction stream microprocessors increased exponentially
(at a pace of ≈ 40% every 24 months)

● Exponential increase of clock rate

● Increase in Instruction Level

Parallelism (ILP)

■ Pipelining: from 5 up to 31

(Prescott) stages

■ Superscalarity: from < 1

instruction/clock to 4+

instructions/clock

● Many transistors for additional

optimizations

■ Increase in cache sizes

■ Prefetching

■ Sophisticated branch prediction

logic

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 20

Moore’s Law and Dennard Scaling Undermine Parallel Computing
● parallel computing looked promising in the 90’s, but many companies failed due to

the ‘free lunch’ from the combination of Moore’s Law and Dennard Scaling
■ Why parallelize my codes? Just wait 2 years, and processors will be 1.4x faster!

On several recent occasions, I have been asked whether parallel computing will soon be

relegated to the trash heap . . . Ken Kennedy, CRPC Director, 1994

● demography of Parallel Computing (mid 90’s, origin unknown)

Prossessor
speed (R)

Degree of
Parllelism (P)

(P,R+dR)

(P+dP,R)

(P+dP,R−dR)(P−dP,R−dR)

(P−dP,R+dR) (P+dP,R+dR)

Heretics

Luddites
Fanatics

Agnostics

True
Believers

Luke−warm
Believers

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 21

http://en.wikipedia.org/wiki/Moore's_law
http://en.wikipedia.org/wiki/Dennard_scaling
http://www.crpc.rice.edu/newsletters/oct94/director.html

The end of Dennard scaling and uniprocessor era (2002-2004)

With feature size below ≈ 100nm (nowadays around ≈ 10nm), we have that:

P = Q fCV 2 +V Ileakage

(Note: for “large enough” feature size, the term V Ileakage is negligible)

Unfortunately, Ileakage grows exponentially with downscaled V as we decrease feature

size by 1
κ

. Thus, the term V Ileakage blows up and dominates power consumption!

To keep power under control, large number of transistors are switched off (dark silicon

effect), operated at lower frequencies (dim silicon effect) or organized in different ways

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 22

The end of Dennard scaling and the uniprocessor era

The free lunch is over!
● Clock rate capped (< 4 GHz)

by power constraints

● ILP (superscalarity and

pipelining) reaches its limits

● Power usage saturated

(becomes a major concern)

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 23

The multicore era

The only way to sustain exponential growth in computational performance is by

efficiently exploiting parallel computers

● This is very much different from the
golden years of ILP where hardware
architects did all the work for us

● Programmers are now forced to bear
the burden of finding and exploiting
parallelism

● This is also an exciting era of
opportunities for computational
scientists: new algorithms and
efficient implementations make a
difference on what is achievable in
computing

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 24

Where are we now?

We find ourselves in a chip development era characterized by:

● Transistors galore (this cannot be sustained forever, though, due to physical limits)

● Severe power limitations (maximize transistors utility no longer possible)

● Customization versus generalization

We are now seeing:

● (customized) accelerators, generally manycore with low clock frequency

■ e.g. Graphics Processing Units (GPUs), customized for fast numerical

calculations

● ‘dark silicon’: need to turn off parts of chip to reduce power

● hardware-software codesign: speed via specialization

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 25

The Top 500 Most Powerful Computers: November 2022

The Top 500 provides an interesting view of these trends (click here for full list)

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 26

http://www.top500.org
https://top500.org/lists/top500/list/2022/11

Top500: Performance Trends

(http://www.top500.org/resources/presentations/ (51st TOP500))

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 27

The Top500: Multicore Emergence

(http://www.top500.org/blog/slides-highlights-of-the-45th-top500-list/)

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 28

Exascale and Beyond: Challenges and Opportunities

Level Characteristic Challenges/Opportunities

among nodes

sheer #nodes, although different

balance among #nodes and

performance/node in top-ranked

supercomputers

(e.g., Frontier has “only” 9.4K

nodes but Fugaku has 159K nodes)

● programming

languages/environment

● fault tolerance

within a node

High heterogeneity

(e.g., Frontier, LUMI and

many more use CPUs and

GPUs)

● what to use when

● co-location of data with

the unit processing it

within a chip

energy minimization

(e.g. processor cores have

already dynamic frequency

and voltage scaling)

● minimize data size and

movement (e.g., use

just enough precision)

● specialized cores

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 29

https://en.wikipedia.org/wiki/Frontier_(supercomputer)
https://en.wikipedia.org/wiki/Fugaku_(supercomputer)
https://en.wikipedia.org/wiki/Frontier_(supercomputer)
https://en.wikipedia.org/wiki/LUMI

Why Parallel Programming is Hard

● writing (correct and efficient) parallel programs is hard!

■ hard to expose enough parallelism; hard to debug!

● getting (close to ideal) speedup is hard! Overheads include:

■ idling (e.g., caused by load unbalance, synchronization, serial sections, etc.)
■ redundant/extra operations when splitting a computation into tasks
■ communication time among processes

● Amdahl’s Law: Let f the fraction of a computation that cannot be split into parallel
tasks. Then, max speedup achievable for arbitrary large p (processors) is 1

f !!!

■ Let ts and tp denote serial and parallel exec times
■ tp = f ts + (1− f)ts

p
■ Sp = ts

tp
= p

p f +(1− f) (Speedup)

■ limp→∞ Sp = 1
f

■ e.g., if f = 0.05, then 1
f = 20

● counterargument (Gustafson’s Law): 1− f is not fixed, but increases with the
data/problem size N

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 30

http://en.wikipedia.org/wiki/Amdahl's_law
https://en.wikipedia.org/wiki/Gustafson's_law

Recommended further reading

The following two articles provide a crystal clear view of past, present, and future:

● Computing Performance: Game Over or Next Level? Computer, 44(1), 2011.

Publisher: IEEE.

● Time Moore: Exploiting Moore’s Law From The Perspective of Time. IEEE

Solid-State Circuits Magazine, 11 (1), 2019. Publisher: IEEE.

Only for intrepid readers:

● Computing Performance: Game Over or Next Level?, Full report from US National

Research Council, National Academies Press, 2011. Bonus: reprints for Moore’s

and Dennard’s Laws seminal papers.

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 31

https://ieeexplore.ieee.org/document/5688147
https://ieeexplore.ieee.org/document/8635346
https://nap.nationalacademies.org/catalog/12980/the-future-of-computing-performance-game-over-or-next-level

Additional references related to this lecture

● R. Dennard et al., “Design of Ion- Implanted MOSFETs with Very Small Physical

Dimensions”. IEEE J. Solid State Circuits, vol. 9, no. 5, 1974, pp. 256–268.

● V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D.A. Burger, “Clock Rate versus

IPC: The End of the Road for Conventional Microarchitectures”. In Proceedings of

the 27th Annual International Symposium on Computer Architecture, 2000, pp.

248-259.

● M. T. Bohr and I. A. Young, ”CMOS Scaling Trends and Beyond”, in IEEE Micro, vol.

37, no. 6, pp. 20-29, November/December 2017, doi: 10.1109/MM.2017.4241347.

● M. B. Taylor, ”A Landscape of the New Dark Silicon Design Regime”, in IEEE Micro,

vol. 33, no. 5, pp. 8-19, Sept.-Oct. 2013, doi: 10.1109/MM.2013.90.

● The Free Lunch Is Over. A Fundamental Turn Toward Concurrency in Software.

Herb Sutter. http://www.gotw.ca/publications/concurrency-ddj.htm

COMP4300/8300 L1: Introduction to Parallel Systems 2024 ◀◀ ◀ • ▶ ▶▶ 32

http://www.gotw.ca/publications/concurrency-ddj.htm

