
Overview: Message Passing

● message passing in a nutshell

● a bit of history (the advent of MPI-1)

● MPI basics

■ what is MPI?

■ motivation and history

■ “hello world” MPI program

■ code compilation and execution

● MPI point-to-point communication and transfer semantics

■ blocking semantics point-to-point communication

■ non-blocking semantics point-to-point communication

● MPI collectives, datatypes, and communicators

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 1

Message Passing in a Nutshell

● parallelism realized by multiple processes

(aka tasks) each with their own local

memory address space

● data is moved from address space of one

process to that of another by

sending/receiving messages

● processes may run on separate compute

nodes, different cores within a node, or

even on same processor core

● all variables in a process are local to this

process. No concept of shared-memory

● strictly required if target parallel computer

is distributed-memory.

● “de facto” standard is MPI

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 2

A bit of history (the advent of MPI-1)

● parallel computer vendors initially developed own message-passing APIs

■ e.g. Fujitsu’s APLib for the AP1000 series (1991–1998)

■ big issue: portability across machines was difficult (if not impossible)

■ one typically ended with a different version of the parallel code for each different

machine vendor !!!

● early work on a standard started in 1992 at Oak Ridge National Lab and Rice Uni

● at that stage, there was a plethora of different message passing environments

● target was C and FORTRAN applications

● MPI-1 released in May 94 (over 40 academic and government participants)

■ contains: point-to-point communications, collective operations, process

topologies

● minor clarifications: MPI 1.1 (June 95), MPI 1.2 (July 97)

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 3

https://www.fujitsu.com/global/about/corporate/history/products/computer/supercomputer/ap1000.html

What is MPI?

The Message Passing Interface (MPI) is a standardized specification of a set of library

subroutines for the portable and flexible development of efficient message-passing

parallel programs

● MPI Forum in charge of standardization (40 participating organizations, including

vendors, researchers, software library developers, and users)

● revised several times, with the most recent being MPI-4. Actual implementations

differ in the version/features of the standard they support

● supported on virtually all HPC platforms. Several free (e.g., OpenMPI, MPICH) and

commercial implementations (Intel MPI) available

● provides FORTRAN, C (this course), and C++ bindings

● very broad standard with a huge # of library subroutines (over 440 in MPI-3).

Fortunately, most applications merely require less than a dozen of those

● documentation for all versions of the MPI standard available here

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 4

http://www.open-mpi.org/
http://www.mpich.org/
https://software.intel.com/en-us/intel-mpi-library/
https://www.mpi-forum.org/docs/

How does MPI work?

MPI conforms with the following rules:

● Single Program Multiple Data (SPMD) model: the same program runs on all

processes. All processes taking part in a parallel calculation can be distinguished by a

unique identifier called rank

● The program is written in a sequential language like Fortran, C, or C++. Data

exchange is carried out via calls to MPI library subroutines

● All variables in a process are local to this process. There is no concept of

shared-memory

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 5

“Hello world” MPI program (I)
#include <mpi.h>
#include <stdio.h>
int main(int argc , char ∗∗ argv) {

int np, me, ierr;
ierr= MPI Init (&argc , &argv);
ierr= MPI Comm size (MPI COMM WORLD , &np);
ierr= MPI Comm rank (MPI COMM WORLD , &me);
printf(" Hello world I am % d out of % d \ n ", me, np);
ierr= MPI Finalize ();

}

● All MPI calls return an error code (here ierr) which tells the user program whether
MPI operation succeeded or not (MPI SUCCESS means no error)

● MPI Init initializes parallel environment. MUST precede any other MPI library call

● Upon initialization, MPI sets up the world communicator (MPI COMM WORLD)
→ A communicator defines a group of processes referred to by a handler
→ MPI COMM WORLD handler describes all processes started with parallel program
→ If required, other communicators can be defined as subsets of MPI COMM WORLD

→ Almost all MPI calls require a communicator handler as an argument

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 6

“Hello world” MPI program (II)

#include <mpi.h>
#include <stdio.h>
int main(int argc , char ∗∗ argv) {

int np, me, ierr;
ierr= MPI Init (&argc , &argv);
ierr= MPI Comm size (MPI COMM WORLD , &np);
ierr= MPI Comm rank (MPI COMM WORLD , &me);
printf(" Hello World , I am % d out of % d \ n ", me, np);
ierr= MPI Finalize ();

}

● The calls to MPI Comm size and MPI Comm rank determine the number of

processes running the parallel code, and the unique identifier (called rank) of the

calling process, respectively

→ The ranks in a communicator are consecutive, starting from zero

● The call to MPI Finalize shuts down the parallel program

→ No process except 0 is guaranteed to execute any code after MPI Finalize

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 7

Code compilation and execution

The way MPI programs are compiled and started is NOT fixed by the standard

● Compiler and linker need special options that specify where modules and libraries,
resp., can be found. Considerable variation in those locations among installations

● Most MPI implementations provide compiler wrapper scripts (e.g., mpicc) that
automatically supply the required options to the underlying native compiler

● Typically a script called mpirun is provided to start a message-passing program
→ Processor cores may have to be allocated from batch system in advance
→ How exactly processes are created is entirely up to the implementation
→ Typically mpirun uses the batch system’s infrastructure to launch processes

● For our example, a “common” implementation may require the following steps:

$ mpicc -O3 hello.c -o hello
$ mpirun -np 4 ./hello
Hello World, I am 0 out of 4
Hello World, I am 2 out of 4
Hello World, I am 1 out of 4
Hello World, I am 3 out of 4

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 8

MPI messages

● A MPI message is defined as a 1D array of elements of a particular MPI data type

● MPI data types can be either basic (see table below) or derived

MPI data type C data type
MPI CHAR char
MPI INT int
MPI FLOAT float
MPI DOUBLE double
MPI BYTE unsigned char
... ...

● MPI derived types created by calling appropriate MPI calls (later in the lecture)

● MPI needs to know the data type of messages as it supports heterogeneous

environments where it may be necessary to perform on-the-fly data conversions

● MPI data types on sender and receiver MUST MATCH for messages to proceed

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 9

Point-to-point communication (I)

● data exchange that involves exactly one sender and one receiver

● both ends are identified uniquely by their ranks

● each message carries an extra integer, called tag, that MUST MATCH on both ends

● tag is programmer-defined and can be used to create classes of messages; may just

be set to some constant value if not needed
● the basic (but not unique!) call to send data from one process to another is MPI Send:

int MPI Send (void ∗buf , // message buffer
int count , // # of items
MPI Datatype datatype , // MPI data type
int dest , // destination rank
int tag , // message tag
MPI Comm comm); // MPI communicator handler

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 10

Point-to-point communication (II)

● the basic (but not unique!) call to receive a message is MPI Recv:

int MPI Recv (void ∗buf , // message buffer
int count , // maximum # of items
MPI Datatype datatype ,// MPI data type
int source , // source rank
int tag , // message tag
MPI Comm comm , // MPI communicator handler
MPI Status ∗ status); // pointer to status object

● status is an output argument which may be used to guess parameters that have not

been fixed by the MPI Recv arguments. In particular:

■ Actual message size (count is only a maximum value at receiver side)

■ Sender’s rank if receive not tailored to particular sender (source=MPI ANY SOURCE)

■ Message tag if receive not tailored to particular tag (tag=MPI ANY TAG)

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 11

Blocking semantics (crucial slide)

MPI Send and MPI Recv have blocking semantics, meaning that:

1. buffer can safely be written upon MPI Send return without altering on-going comm

2. one can be sure that the message has been received upon MPI Recv return

● this provides high freedom in the actual implementation of MPI Send, i.e., it JUST specifies that it
MUST comply with blocking semantics

● internally, it may work synchronously (e.g., it may return once message transfer has at least started
after a handshake with the receiver process)

● however, it may also copy the message to an internal buffer and return immediately, allowing
handshake and transmission progress to occur in the background

● it may even switch its behaviour depending on any explicit or hidden parameters

● e.g., most MPI implementations provide a (small) internal buffer for short messages, and switch to
synchronous mode when internal buffer is full or too small

● this has to be taken into account when writing parallel programs to avoid so-called deadlocks

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 12

Possible implementation of MPI Send

One possible implementation of MPI Send with “small” message sizes

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 13

Another possible implementation of MPI Send

Another possible implementation of MPI Send with “large” message sizes

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 14

Let us think ...

Consider the execution of the following MPI program on two processes, attempting to

send each other’s a array:

char a[N]; int rank;

MPI Comm rank (MPI COMM WORLD , &rank);

// code to initialize a goes here ...

MPI Send (a, N, MPI CHAR , 1−rank , 0, MPI COMM WORLD);

MPI Recv (a, N, MPI CHAR , 1−rank , 0, MPI COMM WORLD ,

MPI STATUS IGNORE);

Do you anticipate any issue with this MPI program? If yes, how would you solve it?

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 15

Non-blocking point-to-point communication (concept)

● MPI has support for non-blocking sends (MPI Isend) and receives (MPI Irecv)

● Merely initiate message transmission and return very quickly to the user code

● The message buffer must not be used as long as user code has not been notified that it

is safe to do so

● If MPI implemented efficiently, sync and data transfer can occur in the background,

leaving CPU free for useful computations (comm/comp overlap)

● Many non-blocking sends/receives can be pending at any time on a given process

● Non-blocking/blocking calls are mutually compatible
→ MPI Send matches MPI Irecv, MPI Isend matches MPI Recv, . . .

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 16

Non-blocking point-to-point communication (Isend and Irecv)

● MPI Isend initiates a non-blocking send
int MPI Isend (const void ∗buf , // message buffer

int count , // # of items
MPI Datatype datatype , // MPI data type
int dest , // destination rank
int tag , // message tag
MPI Comm comm , // MPI communicator
MPI Request ∗ request) // request handle

● Compared to MPI Send, and additional output argument, request handle

● Serves as an identifier to later refer to “pending” communication request

● Correspondingly, MPI Irecv initiates a non-blocking receive
int MPI Irecv (void ∗buf , int count , MPI Datatype datatype ,

int source , int tag , MPI Comm comm ,
MPI Request ∗ request)

● Compared to MPI Recv, no status provided as output

● No actual communication has taken place when the call returns to user code!

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 17

Non-blocking point-to-point communication (Test or Wait)

● Check a pending comm for completion can be done with MPI Test or MPI Wait:
int MPI Test (MPI Request ∗request , // pending request

int ∗flag , // true if request complete
MPI Status ∗ status) // status object

int MPI Wait (MPI Request ∗request , // pending request
MPI Status ∗ status) // status object

● MPI Test tests for completion, returns true if buffer can be safely used

● MPI Wait blocks until message buffer can be safely used

● status only contains useful information only if pending communication is a completed

receive (i.e., flag must be true in case of MPI Test)

● Checking multiple pending comms for completion can be done with MPI Waitall

(homework: to investigate this function)

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 18

MPI Collective Operations (brief coverage)

● barrier: synchronizes all members in a communicator

■ it should not be used in general, only for debugging or profiling purposes

● broadcast: send same message to many processors

■ must define processors in the group (specified by a communicator)
■ must define who sends and who receives information
■ has blocking semantics; may or may not synchronize processors

(implementation dependent)

e.g. MPI Bcast(A, n, MPI DOUBLE, 0/∗root∗/, MPI COMM WORLD);

● scatter: 1 process sends unique data to every other in group

● gather: reverse of above

● reduction: gather + an arithmetic/logical operation

■ result goes to just one process, or goes to all processes (All variants)

All the above can be constructed from simple sends and receives ... BUT MPI provides
(usually highly optimized, underlying network tailored) calls to perform all of these. Use
them!

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 19

MPI Derived Datatypes

● often, we want to send or receive m items of data with a stride s > 1 (e.g. a column

in a row-major matrix)

● e.g. for double precision, if s represents the number of elements between the start

of each block, we can create a datatype with an implicit stride:
MPI Datatype sVec;
MPI Type vector (1 /∗ number of blocks ∗/, 1 /∗ block length ∗/, s,

MPI DOUBLE , &sVec);
MPI Type commit (&sVec);
...
MPI Send (A, m, sVec , ...)

● alternatively, we could do:
MPI Type vector (m, 1, s, MPI DOUBLE , &matCol);
MPI Type commit (& matCol);
..
MPI Send (A, 1, matCol , ...);

● this allows MPI to handle the allocation, copying to/from and de-allocation of

temporary buffers

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 20

A note of communicators

● MPI allows to create new communicators by duplicating or splitting other

communicators (e.g., MPI COMM WORLD)

● using MPI COMM WORLD all the way through in MPI programs is in general

dangerous, as there might be message mismatches among those that are

internally generated by a library and those generated by the application program

● Solution: define a different communicator for user application program and library:

User

Process 0

User

Process 1

Library

Process 1

User

Process 2

Library

Process 0

User

Process 3
Communicator 1

Communicator 2Library

Process 2

Library

Process 3

COMP4300/8300 L4: Message Passing 2024 ◀◀ ◀ • ▶ ▶▶ 21

