
Overview: Performance Measures and Models

● parallel speedup and efficiency

● parallel overheads

● scalability (strong/weak)

● Amdahl’s Law (strong scaling law)

● Gustafson’s Law (weak scaling law)

● measuring time

Ref: Schmidt et. al. Section 2.5; Grama et. al. chapter 5; Wilkinson & Allen chapter 1

COMP4300/8300 L5: Performance Measures and Models 2024 ◀◀ ◀ • ▶ ▶▶ 1

Parallel Speedup and Efficiency

● Speedup is a measure of the relative performance between a single and a

multiprocessor parallel system when solving a fixed size problem

Sp = execution time on single processor
execution time using p processors =

tseq
tpar

● (should we use walltime or CPU time?)

● tseq typically defined as the time for the fastest known sequential algorithm

■ sometimes (but not always) we need a different algorithm for parallelization

● ideally, Sp = p (aka linear speedup)

● can super-linear speed-up (Sp > p) happen in practice ? Yes

■ Examples: super-linear complexity; cache memory effects

● Efficiency is a measure of how far we are from ideal speedup. Defined as:

Ep =
Sp
p

● clearly, 0 < Ep ≤ 1. Optimally, Ep = 1

COMP4300/8300 L5: Performance Measures and Models 2024 ◀◀ ◀ • ▶ ▶▶ 2

Parallel Overheads
● can we expect Sp = p for arbitrarily large p? No!!!

● why not? Parallelization-related overheads (examples):

■ interprocessor communication and synchronization
■ idling (caused typically by load imbalance, data dependencies, serial parts)
■ excess computation (e.g., higher #iters. with p, communication-avoiding algs)

in practice, one leverages performance

analysis tools (e.g., Intel ITAC) to

obtain Gantt charts like the one on the

left; see also here for tools available on

Gadi

● a problem that can be solved without communication is called embarrassingly
parallel. Clearly, will have Ep ≈ 1 for large p

● however, even under this scenario Ep will always drop for some (large) p due to
resource underutilization caused by very little data winded up on each processor

COMP4300/8300 L5: Performance Measures and Models 2024 ◀◀ ◀ • ▶ ▶▶ 3

Scalability

scalability is a very broad term, used in many different contexts, which relates to the
ability of a parallel system (algorithm + code + hardware) to exploit efficiently increasing
computational resources

● hardware scalability: does increasing the size of the hardware give increased
performance? e.g., aggregated memory bandwidth is typically limited as we scale
p in shared-memory multiprocessors

● algorithmic scalability: at which rate does the complexity of an algorithm (number of
operations and memory) grow with increasing problem size?

■ Example: for two dense N ×N matrices, doubling the value of N increases the
cost of matrix addition by a factor of 4, but the cost of matrix multiplication by a
factor of 8 (i.e., O(N2) versus O(N3) complexity)

● strong parallel scalability: at which rate the efficiency of a parallel algorithm decays
with increasing number of processors and fixed problem size?

● weak parallel scalability (previous two combined): at which rate the efficiency of
parallel algorithm decays as we increase BOTH the number of processors and
problem size?

COMP4300/8300 L5: Performance Measures and Models 2024 ◀◀ ◀ • ▶ ▶▶ 4

Amdahl’s Law: definition

● considers “sequential parts” as the only source of overhead

● to what extent is Sp limited by this factor ?

● let f the (sequential) fraction of a computation that cannot be split into parallel

tasks. Then, max speedup achievable for arbitrary large p is 1
f !!!

■ tpar = f tseq +
(1− f)tseq

p

■ Sp =
tseq
tpar

= p
p f +(1− f)

■ limp→∞ Sp = 1
f

tpar

Serial section Parallelizable sections

One processor

Multiple
processors

tseq

ft seq (1−f)t

seq

p processors

seq

(1−f)t /p

● it is a strong scaling law, assumes fixed problem size

COMP4300/8300 L5: Performance Measures and Models 2024 ◀◀ ◀ • ▶ ▶▶ 5

Amdahl’s Law: Speedup Curves

Amdahl’s law with fixed f and ↑ p (left), and fixed p and ↑ f (right)

COMP4300/8300 L5: Performance Measures and Models 2024 ◀◀ ◀ • ▶ ▶▶ 6

Gustafson’s Law

● Amdahl’s law was thought to show that large p would never pay off

● However, it assumes fixed problem size executed on more and more processors

● In practice, this is not the case. One typically tailors problem size to p (weak

scaling)

● A more realistic assumption is that parallel fraction can be arbitrarily extended

● Assume that the sequential portion of a parallel code is independent on p, and that

the problem size can be scaled s.t. the parallelizable portion is p times larger.

Then, the scaled speed-up:

Sscaled
p =

T scaled
seq
Tpar

=
Tseq f +pTseq(1− f)
Tseq f +Tseq(1− f) = f +p(1− f)

f +(1− f) = f + p(1− f) = p− f (p−1),

is now an unbounded linear function with p (with slope depending on f)

● it is a weak scaling law, assumes problem size scaled in proportion with p

COMP4300/8300 L5: Performance Measures and Models 2024 ◀◀ ◀ • ▶ ▶▶ 7

Measuring Time

● in order to evaluate performance of parallel algorithms we need to accurately
measure computation times

● broadly speaking, there are two kind of times: wall clock time (i.e., elapsed time)
and CPU time

● we will use wall clock times all the way through in this course (as, among others, we
also want to measure e.g., overhead of system calls required to implement
communication)

● two important timer parameters are timer resolution (tR) and overhead (tO)

● tR is the smallest unit of time that can be accurately measured by the timer

■ the lower the tR the higher the resolution
■ if the event to be time is shorter than timer resolution, we can’t measure it!

● tO relates to the instructions which are executed and included in the measured time
and not strictly related to the event being measured

● tR and tO can be estimated measuring (differences between) repeated calls to a timer
function (Lab #1)

COMP4300/8300 L5: Performance Measures and Models 2024 ◀◀ ◀ • ▶ ▶▶ 8

