
Overview: Parallelisation via Pipelining

● definition

● pipelining example 1: adding m sets of n numbers each

■ sequential algorithm
■ pipelined parallel algorithm
■ performance analysis

● pipelining example 2: sorting (p =)n numbers

■ sequential insertion sort
■ pipelined parallel insertion sort
■ performance analysis

● pipelining example 3: solving unit lower triangular linear systems with (p =)n
equations/unknowns

■ sequential solver
■ pipelined parallel solver

Ref: Wilkinson and Allen Ch 5.

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 1

Pipelining

● parallelization technique applicable to a wide range of problems which are partially
sequential in nature

● the problem is split into a series of tasks/stages/processes that have to be
completed one after another (e.g., in sequence)

● applicable at many levels. For example, at the CPU core level, it is used to extract
parallelism out of a single stream of instructions (ILP); other examples of hardware
pipelining are systolic array processors (e.g. Google TPUs matrix-matrix multiplier)

● in a message-passing setting, it is realized by a set of processes logically
connected as an array or ring operating in “lock-step”, where, at every stage, each
process receives data from the left processor, and passes onwards data to the right
processor, typically after performing some calculations with the data received

● pipelining type of parallelism is not readily apparent in many cases, and one may
have to rearrange the order in which the operations are performed in order to
expose it (as, e.g., in the solution of triangular systems covered later on)

● harder to understand, and analyze, it may require extremely low-latency
interconnection networks to actually lead to significant speed-up in practical
scenarios

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 2

Example 1: Adding Numbers (Sequential Algorithm)

● let us assume that we have m different sets of n numbers each

● we want to sum the n numbers in each set, for all sets (m different sums)

● the sequential algorithm looks like

(assume numbers to be summed up are hold in a 2D array nums[m][n]):

for (i=0; i<m; i++) {
sums[i]=

compute sum (&nums[i][0],n);
}

function compute sum (x,n) {
result =0;
for (j=0; j<n; j++) {

result=result+x[j];
}
return result;

}

● a possible parallelization of this problem might be based on 1D data partitioning by

columns + partial/local sums + (all)reduce sum

● how can we parallelize this computation using pipelining? (this lecture)

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 3

Example 1: Adding Numbers (pipelined parallelization)

● partition the n numbers in each set across processes, i.e., 1D column-wise partition

of nums[m][n]

● assume p = n, i.e., the pipeline has as many processes as numbers in each set

● the numbers assigned to a given process are stored in a 1D array (nums col[m])

me= process rank id ();
for (i=0; i<m; i++) {
sums[i]=

compute sum (& nums col [i],me);
}

function compute sum (x,me) {
me>0 ? recv(&sum ,1,me −1) : sum=0;
sum=sum+x;
if ((me+1)<p)
send(&sum ,1,me+1);

return sum;
}

● how parallelism is being exploited when the algorithm is executed on a (suitable)

parallel computer? (next slide)

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 4

Example 1: Adding Numbers (visualizing pipelining parallelism)

−→ time
P0 + S + S + S + S + S + S + . . .
P1 R + S R;+ S R;+ S R;+ S R;+ S R;+ . . .
P2 R + S R;+ S R;+ S R;+ S R;+ . . .
P3 R + R + R + R + . . .

aaaaaaa︸ ︷︷ ︸
cycle1

aaaaa︸ ︷︷ ︸
cycle2

aaaaaaa︸ ︷︷ ︸
cycle3

. . .

aaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
n−1

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
m

● +: sum=sum+x; S: send(&sum,1,me+1) R: recv(&sum,1,me−1)

● assume eager sends (message transfer can proceed without intervention of

receiver process) and that the underlying parallel system can provide simultaneous

transfers between adjacent processors

● letters in red (next slide)

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 5

Example 1: Adding Numbers (visualizing pipelining parallelism)

−→ time
P0 + S + S + S + S + S + S + . . .
P1 R + S R;+ S R;+ S R;+ S R;+ S R;+ . . .
P2 R + S R;+ S R;+ S R;+ S R;+ . . .
P3 R + R + R + R + . . .

aaaaaaa︸ ︷︷ ︸
cycle1

aaaaa︸ ︷︷ ︸
cycle2

aaaaaaa︸ ︷︷ ︸
cycle3

. . .

aaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
n−1

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa︸ ︷︷ ︸
m

● letters in red (see figure)

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 6

General Pipeline Performance Analysis

● adding numbers example corresponds to a general class of pipelined algorithms

which aim to accelerate the execution of multiple instances of the same problem

● the performance of this sort of parallel pipelined algorithms can be modelled as:

■ assume each process performs similar actions in each pipeline cycle

■ work out computation and communication for a cycle

■ compute the total execution time as:

ttotal = (time for one pipeline cycle)∗ (number of cycles)

= (tcomp + tcomm)∗ (m + n−1)

where m is the number of instances and n the number of pipeline stages

(processes)

■ average time for a computation is then given by tav = ttotal
m

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 7

Example 1: Adding Numbers (Performance Analysis)

● single instance (i.e., m = 1), p = n (i.e., as many processes as numbers per set):

tcomp = t f

tcomm = ts + tw
ttotal = ((ts + tw) + t f)n

● multiple instances, p = n (i.e., as many processes as numbers per set):

ttotal = ((ts + tw) + t f)(m + n−1)

tav =
ttotal

m
≈ (ts + tw) + t f for m ≫ n

● multiple instances, data partitioning, i.e., p = n
d (with d data entries per processor)

ttotal = ((ts + tw) + dt f)(m +
n
d
−1)

d influences trade-off among communication and degree of parallelism

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 8

Example 2: Insertion Sort (sequential algorithm)

● we want to order a set of n numbers in decreasing order using insertion sort

● the algorithm works with an array of fixed size n, initially with no numbers in it

● for each iteration i, it inserts a new number into the array such that at the end of the

iteration the first i numbers inserted are already ordered in decreasing order

● to this end, it first finds the position where to insert the number, and shifts right the

remaining ones from that position on

● very poor sequential algorithm, O(n2) complexity

x=memalloc(n);
sz=0; // current array size
for (i=0; i<n; i++) {

num=rand ();
sz= sort insert (x,sz,num);

}

function sort insert (x,sz,num)
pos= find position (x,sz,num);
insert shift (x,sz,pos ,num);
return sz+1;

function find position (x,sz,num)
pos=0;
while (pos<sz && x[pos]>num)

pos=pos+1;
return pos;

function insert shift (x,sz,pos ,num)
tmp1=x[pos];
x[pos]=num;
while (pos<sz)

tmp2=x[pos +1];x[pos +1]= tmp1;tmp1=tmp2;
pos=pos+1;

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 9

Example 2: Insertion Sort (sequential algorithm)

assume we want to insert the numbers 5, 2, 1, 3, and 4

outer loop iteration array action
insert 5 5 store 5
insert 2 5 5 > 2?

5 2 store 2
insert 1 5 2 5 > 1?

5 2 2 > 1?
5 2 1 store 1

insert 3 5 2 1 5 > 3?
5 3 1 2 > 3? store 3; 2→
5 3 2 store 2; 1→
5 3 2 1 store 1

insert 4 5 3 2 1 5 > 4?
5 4 2 1 3 > 4?; store 4; 3→
5 4 3 1 store 3; 2→
5 4 3 2 store 2; 1→
5 4 3 2 1 store 1

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 10

Example 2: Insertion Sort (parallel pipelined algorithm)

5

5

5

5

5

5

2

2

3

4

1

2

3 1

2

1

3

4

1

2

3 1

2

5 4 3 2 1

4,3,1,2,5

4,3,1,2

4,3,1

4,3

4

1

2

3

4

5

6

8

10

P2 P4

5

4

9

7

5 4 3 2
1

Time
(cycles)

P0 P1 P3

● each process stores a single number

● process 0 accepts series of numbers one

at a time

● each process in the pipeline keeps the

largest number among those that have

passed through it (so that when it does not

receive more then it will have the largest

among all received)

● to this end:

■ if number received is smaller than the

one stored, then the received number

is passed onward (sent) to the next

process in the pipeline

■ if not, then the number received

replaces the currently stored one, and

the latter is passed onwards

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 11

Example 2: Insertion Sort (parallel pipelined algorithm)

● key observation: process i receives n− i numbers and passes onwards n− i−1

me= process rank id ();
n= num processes ();

// receive (or generate) 1st number and store it
me>0 ? recv(&num ,1,me −1) : num=rand ();
largest=num

num procs to the right =n−me −1
for (i=0; i<num procs to the right ; i++) {

// receive (or generate) next number in the series
me>0 ? recv(&num ,1,me −1) : num=rand ();

if (num>largest) {
send(&largest ,1,me+1); // pass largest number so far onwards
largest=num;

}
else // num <= largest

send(&num ,1,me+1); // pass received number onwards
}

● how parallelism is being exploited when the algorithm is executed on a (suitable)

parallel computer? (next slide)

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 12

Example 2: Insertion Sort (visualizing pipelined parallelism)

−→ time
P0 ”R” ”R”;>? S ”R”;>? S ”R”;>? S ”R”;>? S
P1 R R >? S R;>? S R;>? S
P2 R R >? S R;>? S
P3 R R >? S
P4 R

aaaaaa︸ ︷︷ ︸
cycle 1

aaaa︸︷︷︸
cycle 2

. . . aaaaaa︸ ︷︷ ︸
cycle n−1

. . . aaaaaa︸ ︷︷ ︸
cycle 2n−3

● ”R”: num=rand();

● R: recv(&num,1,me−1)

● S: send(&...,1,me+1)

● assume eager sends (message transfer can proceed without intervention of

receiver process) and that the underlying parallel system can provide simultaneous

transfers between adjacent processors

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 13

Pipelined Insertion Sort Performance Analysis

● sequential:

ts = (n−1) + (n−2) + · · ·+ 2 + 1 = n(n−1)
2

i.e. O(n2) – very poor algorithm!

● parallel:

■ each pipeline cycle

tcomp = tc
tcomm = (ts + tw)

■ total execution time (note: p = n here):

ttotal = (tcomp + tcomm)(2n−3) = (tc + ts + tw)(2n−3)

i.e. overall O(n) scaling!

Exercise: how can we extend the pipelined insertion sort algorithm so that P0 receives

the series of ordered numbers one at a time after passing onwards his last number at

cycle n−1? (Hint: think about bidirectional pipeline communication)

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 14

Example 3: Unit Lower Triangular Systems (problem definition)

● we aim at finding x ∈ Rn such that:
Lx = b

with L ∈ Rn×n (a dense nonsingular unit lower triangular matrix) and b ∈ Rn given

● in component-wise form, this problem reads (assuming 0-based indexing):

1 0 · · · 0
l1,0 1 · · · 0

...
ln−1,0 ln−1,1 · · · 1

︸ ︷︷ ︸
L

x0
x1
...

xn−1

︸ ︷︷ ︸
x

=

b0
b1
...

bn−1

︸ ︷︷ ︸
b

● n is the number of equations/unknowns in the system

● the solution of this problem is required in a final step when using direct methods

(i.e., LU factorization) to solve general linear systems Ax = b

● highly scalable parallel implementations available in the public domain, mostly

based on 2D block cycling partitioning, though (e.g., MAGMA, ScaLAPACK)

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 15

Solving Unit Lower Triangular Systems (forward substitution)

● unit lower triangular systems can be easily solved using forward substitution

1. solve for x0 as x0 := b0;

2. substitute x0 into the second equation, and solve for x1 as x1 := b1− l1,0x0

3. and so on . . .

● each component xi is obtained by means of the following recurrence:

xi = bi−
i−1

∑
j=0

li jx j, i = 0, . . . ,n−1

where xi depends on the previous i−1 components of x

● Sequential code: (one-to-one transcription of previous recurrence)

for (i = 0; i < n; i++) {
sum = b[i];
for (j = 0; j < i; j++)

sum = sum − l[i][j]∗x[j];
x[i]=sum;

● do you foresee any parallelization challenges of this sequential algorithm?

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 16

Forward Substitution: Pipeline Solution I

● consider a row-wise partition of L and a static mapping of a single row per process,

i.e., p = n (i.e., we have as many rows as processes)

● the vector b is partitioned/mapped accordingly to the rows of L

● the vector x is replicated in all processes

● a first attempt to pipelining could look like as (see figure below):

■ process 0 computes x0 and sends its value to the next process

■ in general, process i receives the values x0,x1, . . . ,xi−1 from processor i−1

and computes xi; then, it sends x0,x1, . . . ,xi to process i + 1

Compute x1 Compute x2 Compute x3Compute x0

x 0

x 0

x 0

x 0

x 1 x 2

x 1 x 2

x 1

x 3

P0 P1 P2 P3

● what’s wrong with this pipelined algorithm?

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 17

First “Pipelined” Algorithm for Forward Substitution

● := : x[i]=sum;

● ∗ : l[i][j]∗x[j]

● − : sum = sum − ...;

−→ time
P0 := S
P1 R ∗ − := S
P2 R ∗ − ∗ − := S
P3 R ∗ − ∗ − ∗ − :=

● P3 gets x0 very late, but it was already available at the first step!

● how can we reorder the steps in the pipelined algorithm such that we eagerly foster

that data arrives (i.e., that data dependencies are satisfied) as soon as possible?

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 18

Forward Substitution: Pipeline Solution II

me= process rank id ();

n= num processes ();

sum = b[me];

for (j = 1; j < me; j++) {
recv(&x[j], 1, me −1);
if (me+1 < n) send(&x[j], 1, me+1);

sum = sum − a[i][j]∗x[j];
}
if (me+1 < n) send(&sum , 1, me+1);

x[me] = sum

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 19

“Pipelined” Algorithm for Forward Substitution

● := : x[i]=sum;

● ∗ : l[i][j]∗x[j]

● − : sum = sum − ...;

−→ time
P0 := S
P1 R S ∗ − S :=
P2 R S ∗ − R S ∗ − S :=
P3 R S ∗ − R S ∗ − R S ∗ − S :=
...

● assuming a perfect synchronization of sends/recvs as above, the parallel execution

time will be given by the the cost of n−1 data transfers plus the time spent by the

last processor to calculate xn−1 once it receives the first message

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 20

General Class of Pipelined Problems (Time Diagram)

● the pipelined algorithm for forward substitution actually belongs to a general class

of pipelined algorithms in which the information to start the next process can be

passed forward before the process itself has completed all its internal operations

Time

P0

P1

P2

P3

P4

P5

First value passed

Final value computed

Processes

COMP4300/8300 L9: Parallelisation via Pipelining 2024 ◀◀ ◀ • ▶ ▶▶ 21

