
Overview: Synchronous Computations

● definition

● synchronous computation example 1: solving linear systems with Jacobi Iteration

■ solution of linear systems (problem definition)

■ fixed-point iterative linear system solvers and Jacobi iteration

■ serial and parallel code

■ partitioning and performance model

● synchronous computation example 2: solving the Heat Equation in 2D

■ problem definition and finite-difference discretization

■ serial and parallel code

■ partitioning: strip (1D) versus block (2D) partitioning; performance modelling

■ the concept of ghost layer of points (aka halo)

■ avoiding deadlocks

■ early termination

● synchronous computation example 3: Advection Equation in 2D-Assignment 1

(not covered in the lecture, similar to example 2)

Ref: Chapter 6: Wilkinson and Allen

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 1

Synchronous computations (definition)

● computations in which a group of processes perform local independent work BUT

must periodically wait for each of other (i.e., synchronize) before proceeding

● (low-level) example: in SIMD computers the same instruction is executed on

several processors on different data before proceeding with the next instruction

● in many cases, synchronization is a consequence of data exchange (e.g., to satisfy

data dependency among steps)

● synchronous iteration (this lecture) is an important class of synchronous

computations

■ to solve problems iteratively in such a way that several processes start together

at the beginning of each iteration and the next iteration cannot begin until all

processes have finished the preceding iteration

● we will illustrate synchronous iteration with two examples: Jacobi iteration and

solution of the 2D Heat Equation in 2D

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 2

Solution of Linear Systems (problem definition)

● we aim at finding x ∈ R
n such that:

Ax = b

with A ∈ R
n×n (nonsingular matrix) and b ∈ R

n (right-hand-side vector) given

● in component-wise form, this problem reads (assuming 0-based indexing):







a0,0 a0,1 · · · a0,n−1

a1,0 a1,1 · · · a1,n−1
...

an−1,0 an−1,1 · · · an−1,n−1







︸ ︷︷ ︸

A







x0

x1
...

xn−1







︸ ︷︷ ︸
x

=







b0

b1
...

bn−1







︸ ︷︷ ︸

b

● n is the number of equations/unknowns in the system

● ubiquitous problem in computational science and engineering (CSE) applications

(e.g., numerical solution of PDEs using the finite element method)

● high quality parallel message-passing libraries around (e.g., PETSc, Hypre,

Trilinos)

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 3

Fixed-point Iterative Linear solvers and Jacobi Iteration

● the most basic iterative solvers are the so-called linear fixed-point methods

● in such methods, A is split as A = M−N, with M being nonsingular

● starting from initial approximate solution x(0), they iterate the recurrence given by:

x(k+1) = x(k) + M−1 (b−Ax(k))
︸ ︷︷ ︸

residual

till some termination criterion is fulfilled (e.g., max # of iterations reached or

distance among x(k+1) and x(k) “sufficiently small”)

● in practice one uses a cheap-to-invert approximation M−1 ≈ A−1 (note that if

M−1 = A−1 then x(1) is already the solution)

● if they convergence, they are guaranteed to converge to x; however, they don’t

always converge (they converge if and only if ρ(I −M−1A) < 1, with ρ(B) being the

max eigenvalue of B in absolute value)

● Jacobi iteration (our example) choose M−1 = D−1, with D being the diagonal of A

(a quite rough approximation of A−1!)

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 4

Sequential Jacobi Iteration

the Jacobi recurrence in matrix form:

x(k+1) = x(k) + D−1(b−Ax(k))

can be written in component-wise form as:

x
(k+1)
i = x

(k)
i +

1

aii

(

bi−
n−1

∑
j=0

ai jx
(k)
j

)

, i = 0, . . . ,n−1

✳✳✳ ✴✴ ■♥✐t ✈❡❝t♦r ①
❢♦r ✭✐t❡r ❂✵❀ ✐t❡r<♠❛① ✐t❡r ❀ ✐t❡r ✰✰✮
{
❢♦r ✭✐❂✵❀ ✐<♥❀ ✐✰✰✮ {

s✉♠ ❂✵✳✵
❢♦r ✭❥❂✵❀ ❥<♥❀ ❥✰✰✮ {
s✉♠ ❂ s✉♠ ✰ ❛❬✐❪❬❥❪∗①❬❥❪❀

}
♥❡✇ ① ❬✐❪❂①❬✐❪✰✭❜❬✐❪−s✉♠✮✴❛❬✐❪❬✐❪❀

}
❢♦r ✭✐❂✵❀ ✐<♥❀ ✐✰✰✮

①❬✐❪❂ ♥❡✇ ① ❬✐❪❀
}

● arrays ❜❬❪ and ❛❬❪❬❪ hold b and A

● arrays ①❬❪ and ♥❡✇ ①❬❪ hold x(k)

and x(k+1)

● for simplicity, we ignore early

stopping condition (typically based

on “sufficiently small” distance

among x(k+1) and x(k))

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 5

Parallel Jacobi Iteration

● consider a row-wise partition of A and a (naive!) static mapping of a single row per

process, i.e., p = n (i.e., we have as many rows as processes)

● the vector b is partitioned/mapped accordingly to the rows of A

● HOWEVER, the vectors x(k) and x(k+1) are not partitioned/mapped to the

processes, but replicated in all processes (why?)

✳✳✳ ✴✴ ■♥✐t ✈❡❝t♦r ①
✴✴ ✭❝♦♥s✐st❡♥t❧② ✐♥ ❛❧❧ ♣r♦❝❡ss❡s ✦✮

✐❂ ♣r♦❝❡ss r❛♥❦ ✐❞ ✭✮
❢♦r ✭✐t❡r ❂✵❀ ✐t❡r<♠❛① ✐t❡r ❀ ✐t❡r ✰✰✮
{

s✉♠ ❂✵✳✵
❢♦r ✭❥❂✵❀ ❥<♥❀ ❥✰✰✮ {

s✉♠ ❂ s✉♠ ✰ ❛❬✐❪❬❥❪∗①❬❥❪❀
}
♥❡✇ ① ❬✐❪❂①❬✐❪✰✭❜❬✐❪−s✉♠✮✴❛❬✐❪❬✐❪❀
✳✳✳ ✴✴ ❝♦❧❧❡❝t✐✈❡ ❝♦♠♠ ❤❡r❡✦
❢♦r ✭✐❂✵❀ ✐<♥❀ ✐✰✰✮

①❬✐❪❂ ♥❡✇ ① ❬✐❪❀
}

message-passing parallel program

(remainder: SPMD execution)

● at each outer loop iteration, each

process with rank i, computes x
(k+1)
i

(entry of next iterate mapped to it)

● collective communication acts as a

synchronization point

● this communication is such that all

processes end up in ♥❡✇ ①❬❪ with the

entries of x(k+1) computed by any

other processes

● let us discuss how to realize this

communication step (next slides)

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 6

Parallel Jacobi Iteration (communication)

● most naive approach: p broadcasts naively implemented using point-to-point

communication (not the way to go)

✐ ❂ ♣r♦❝❡ss r❛♥❦ ✐❞ ✭✮❀

❢♦r ✭❥❂✵❀ ❥<♥❀ ❥✰✰✮

✐❢ ✭✐✦❂❥✮ s❡♥❞✭✫ ♥❡✇ ① ❬✐❪✱✶✱❥✮❀

❢♦r ✭❥❂✵❀ ❥<♥❀ ❥✰✰✮

✐❢ ✭✐✦❂❥✮ r❡❝✈✭✫ ♥❡✇ ① ❬❥❪✱✶✱❥✮❀

Alternative 1 (deadlock-free?)

✐ ❂ ♣r♦❝❡ss r❛♥❦ ✐❞ ✭✮❀

❢♦r ✭r♦♦t ❂✵❀ r♦♦t<♥❀ r♦♦t ✰✰✮

✐❢ ✭✐❂❂r♦♦t✮

❢♦r ✭❥ ❂ ✵❀ ❥ < ♥❀ ❥✰✰✮

✐❢ ✭✐✦❂❥✮ s❡♥❞✭✫ ♥❡✇ ① ❬✐❪✱✶✱❥✮❀

❡❧s❡

r❡❝✈✭✫ ♥❡✇ ① ❬r♦♦t❪✱ ✶✱ r♦♦t✮❀

Alternative 2-reorder sends/recvs

(deadlock-free but still naive)

● less naive approach: p broadcasts implemented using broadcast collective (but still

not the way to go)

❢♦r ✭r♦♦t ❂✵❀ r♦♦t<♥❀ r♦♦t ✰✰✮

❜r♦❛❞❝❛st ✭✫ ♥❡✇ ① ❬r♦♦t❪✱ ✶✱ r♦♦t✮❀

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 7

Parallel Jacobi Iteration (communication)

● smarter approach (but still not the way to go): butterfly pattern (aka recursive

doubling) using point-to-point communication

0
P

1
P

2
P

4
P

5
P

6
P

7
P

3
P

Time

1st stage

2nd stage

3rd stage

p = 8 (thus s = 3)

● completes in s = log2(p) steps

● at each stage, we have
p
2 pairs of

communication process

● at each stage, message size

doubles (why?)

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 8

Parallel Jacobi Iteration (communication)

● smartest approach (the way to go): use MPI Allgather collective (it opens the

door for exploiting a highly optimized algorithm available at the MPI implementation

for the particular underlying high speed network at hand)

Data x Data x Data x
0 1 n−1

Process 0 Process 1 Process n−1

Send buffer

Receive buffer

MPI_Allgather() MPI_Allgather() MPI_Allgather()

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 9

Partitioning and Parallel Cost Analysis of Jacobi iteration

● let us be more clever, and partition A (and b) into blocks of n
p rows each

● let us denote by τ the number of Jacobi iterations

● as usual, t f is the time/flop, ts message start-up time, tw per-word time

● sequential algorithm time (2

flops/inner loop + 3 flops/outer

loop):

tseq = τ n(2n + 3)t f

● parallel computation (decreases

linearly with p):

tcomp = τ n
p(2n + 3)t f

● parallel communication

(increases linearly with p):

tcomm = τp(ts + n
ptw) = τ(pts + ntw)

● parallel algorithm time:

tpar = tcomp + tcomm

Assumptions:

● neglect the effect of the number of

links and th

● communication implemented

inefficiently with p broadcasts

● communication cost of a broadcast

equivalent to a single point-to-point

communication

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 10

Instantiating the Parallel Jacobi Iteration Time Model

Number of processors, p

4 8 12 16 20

Computation

Overall

Communication

24 28 32

Execution

time

instantiating the model

parameters as:

● ts = 105t f

● tw = 50t f

● fixed problem size of

n = 1000 (strong scaling)

COMP4300/8300 L8: Synchronous Computations 2024 ◭◭ ◭ • ◮ ◮◮ 11

