Overview: Synchronous Computations

@ definition
@® synchronous computation example 1: solving linear systems with Jacobi lteration

B solution of linear systems (problem definition)

W fixed-point iterative linear system solvers and Jacobi iteration
W serial and parallel code

W partitioning and performance model

@® synchronous computation example 2: solving the Heat Equation in 2D

problem definition and finite-difference discretization

serial and parallel code

partitioning: strip (1D) versus block (2D) partitioning; performance modelling
the concept of ghost layer of points (aka halo)

avoiding deadlocks

early termination

@ synchronous computation example 3: Advection Equation in 2D-Assignment 1
(not covered in the lecture, similar to example 2)

Ref: Chapter 6: Wilkinson and Allen

COMP4300/8300 L8: Synchronous Computations 2024 44 q4o > p)

|

Synchronous computations (definition)

computations in which a group of processes perform local independent work BUT
must periodically wait for each of other (i.e., synchronize) before proceeding

(low-level) example: in SIMD computers the same instruction is executed on
several processors on different data before proceeding with the next instruction

in many cases, synchronization is a consequence of data exchange (e.g., to satisfy
data dependency among steps)

synchronous iteration (this lecture) is an important class of synchronous
computations

M to solve problems iteratively in such a way that several processes start together
at the beginning of each iteration and the next iteration cannot begin until all
processes have finished the preceding iteration

we will illustrate synchronous iteration with two examples: Jacobi iteration and
solution of the 2D Heat Equation in 2D

COMP4300/8300 L8: Synchronous Computations 2024 44 q4o > p) 2

Solution of Linear Systems (problem definition)

@® we aim at finding x € R” such that:
Ax=>b

with A € R"*" (nonsingular matrix) and b € R" (right-hand-side vector) given

@® in component-wise form, this problem reads (assuming 0-based indexing):

apop doi 't 40— X0 bg
aio at1 0 a1 p—1 x| _| b

\@n-1,0 1,1 = AnaAn-1) \Xn-1) \bn—1/
A X b

@® 1 is the number of equations/unknowns in the system

@ ubiquitous problem in computational science and engineering (CSE) applications
(e.g., numerical solution of PDEs using the finite element method)

@ high quality parallel message-passing libraries around (e.g., PETSc, Hypre,
Trilinos)

COMP4300/8300 L8: Synchronous Computations 2024 44 q4o > p)

Fixed-point Iterative Linear solvers and Jacobi Iteration

the most basic iterative solvers are the so-called linear fixed-point methods

in such methods, A is split as A = M — N, with M being nonsingular

starting from initial approximate solution x0), they iterate the recurrence given by:

D = 0Ly (h — Ax D)
residual
till some termination criterion is fulfilled (e.g., max # of iterations reached or
distance among xk+1) and 1K) “sufficiently small”)

@ in practice one uses a cheap-to-invert approximation M T~A" (note that if
M~ = A7 " then x{V) is already the solution)

@ if they convergence, they are guaranteed to converge to x; however, they don’t

always converge (they converge if and only if p(/ —M~1A) < 1, with p(B) being the

max eigenvalue of B in absolute value)

® Jacobi iteration (our example) choose M~ = D~1, with D being the diagonal of A
(a quite rough approximation of A~ 1)

COMP4300/8300 L8: Synchronous Computations 2024 44 q4o > p)

4

Sequential Jacobi lteration
the Jacobi recurrence in matrix form:

XD xR p=1 (p — Axb)y

can be written in component-wise form as:
x§k+1)-x(+< Zaljx) 1=0,....,n—1

// Init vector x
for (iter=0; iter<max_iter; iter++)

@® arrays b[] and a[]1[] hold b and A

{ (k)
for (i=0; i<m; i++) | @® arrays x[1 and new x[] hold x
sum=0.0 and;ﬂk+”
for (j=0; j<mn; j++) { . . :
sum = sum + alil[jl#*x[j1; @ for simplicity, we ignore early
} . iy .
new x[il=x[il+(b[il-sum)/alil[i]; stopping condition (typically based
} 11 P T
for (i=0; i<n; i++) on “sufficiently small” distance
x[il=new x[i]; among x(k+1) and x(k))
}

COMP4300/8300 L8: Synchronous Computations 2024 44 q4o > p)

5

Parallel Jacobi lteration
@ consider a row-wise partition of A and a (naive!) static mapping of a single row per
process, i.e., p =n (i.e., we have as many rows as processes)
@ the vector b is partitioned/mapped accordingly to the rows of A

® HOWEVER, the vectors x%) and x*+1) are not partitioned/mapped to the
processes, but replicated in all processes (why?)

@ at each outer loop iteration, each

(k+1)

i

. // Init vector x
// (COHSlStently in all processes !) process With rank i, Computes X

i=process _rank id ()

for (iter=0; iter<max iter; iter++) (entry of next iterate mapped to it)
{ : L
sum=0.0 @ collective communication acts as a
for (j=0; j<m; j++) { : : :
sum = sum + alil[jl*x[jl; synchronization point
}
A PR TP @® this communication is such that all
. // collective comm here! processes end up in new_x[] with the
for (i=0; i<n; i++) . (k+1)
x[il=new_x[il; entries of x computed by any
J other processes
message-passing parallel program @ let us discuss how to realize this
(remainder: SPMD execution) communication step (next slides)

COMP4300/8300 L8: Synchronous Computations 2024 44 o> p) 6

Parallel Jacobi Iteration (communication)

@® most naive approach: p broadcasts naively implemented using point-to-point

communication (not the way to go)

i = process rank id ();
for (j=0; j<n; j++)

if (i!'=j) send(&new_x[il,1,j);
for (j=0; j<n; j++)

if (i'=j) recv(&new x[jl,1,j);

Alternative 1 (deadlock-free?)

i = process rank id();
for (root=0; root<m; root++)
if (i==root)
for (j = 0; j < nj; j++)
if (i'=j) send(&new x[i],1,]j);
else

recv(&new_x[root]l, 1, root);

Alternative 2-reorder sends/recvs
(deadlock-free but still naive)

@ less naive approach: p broadcasts implemented using broadcast collective (but still

not the way to go)

for (root=0; root<n;

root++)
broadcast (&new _x[root],

1, root);

COMP4300/8300 L8: Synchronous Computations

2024 44 q4op p) /

1st stage

2nd stage

3rd stage

Parallel Jacobi Iteration (communication)

@® smarter approach (but still not the way to go): butterfly pattern (aka recursive
doubling) using point-to-point communication

P, P, P, P, P P P P

Q><Q ‘ ‘ ‘ ‘ Q @® completes in s = logs(p) steps

(3O (30 0O)}) ® at each stage, we have £ pairs of

>> = " communication process

C \<> ‘; ;:EZ; i> @® at each stage, message size
]

oo ORnO R ORORe doubles (why?)

COMP4300/8300 L8: Synchronous Computations 2024 44 q4o > p)

Parallel Jacobi Iteration (communication)

@® smartest approach (the way to go): use MPI_Allgather collective (it opens the
door for exploiting a highly optimized algorithm available at the MPI implementation
for the particular underlying high speed network at hand)

Process 0 Process 1 Process n—1
Data x,, h Data x, h Datax b
Send buffer
Yy v \/ Yy v \/ Yy v \/
.ceive buffer S (N A I A A
MPI_Allgather() MPI_Allgather() MPI_Allgather()

COMP4300/8300 L8: Synchronous Computations 2024 44 o> p) 9

Partitioning and Parallel Cost Analysis of Jacobi iteration

@ let us be more clever, and partition A (and b) into blocks of % rows each
@ let us denote by T the number of Jacobi iterations
@® as usual, ¢ is the time/flop, 7; message start-up time, #,, per-word time
@ sequential algorithm time (2
flops/inner loop + 3 flops/outer
loop): Assumptions:
fseq =T n(2n+3)t¢ @ neglect the effect of the number of
@ parallel computation (decreases links and #,
linearly with p): @® communication implemented
fcomp =T %(Zn +3)tf inefficiently with p broadcasts
@® parallel communication @® communication cost of a broadcast
(increases linearly with p): equivalent to a single point-to-point
fcomm = TP(fs + 5tw) = TPts +nty) communication

@ parallel algorithm time:

Ipar = Icomp + Icomm

COMP4300/8300 L8: Synchronous Computations 2024 44 q4op> pH

time

Instantiating the Parallel Jacobi Iteration Time Model

Overall

Communication

Computation

instantiating the model
parameters as:
® ;=10
® = S0z ¢
@ fixed problem size of
n = 1000 (strong scaling)

COMP4300/8300 L8: Synchronous Computations

2024 d4d<4 <P p)

11

