
Logistics

● Assignment 1 released today! Available here

● Assignment 1 is due on Monday, 15th April 2024, 11:55PM (right after semester

break)

● Read assignment specification carefully and ask questions on the forum if required

● Next week lab there will be a 1-hour session on Q&A for the assignment

● Start early!

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 12

Heat Equation in 2D (problem definition)

● given an squared metal sheet and known temperature distribution at the sheet
edges, the 2D Heat Equation models the unknown temperatures in the middle

● let us denote by D the metal sheet (i.e., the domain of the equation) and by ∂D the
edges of the metal sheet (i.e., the boundary of D)

● the 2D Heat Equation is a PDE (Partial Differential Equation); its solution is an
unknown bivariate function u(x,y) : D → R such that:

{
∇2u = 0 in D

u= u∂D on ∂D

with u∂D(x,y) : ∂D → R being the known temperature distribution at ∂D
● ∇2(·) is the Laplacian operator, defined as (sum of 2nd partial derivatives):

∇2u =
∂2u
∂x2 +

∂2u
∂y2

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 13

Heat Equation in 2D (finite difference discretization I)

● the 2D Heat Equation PDE is a continuous

problem, we have to discretize it so that it

can be solved in a computer

● we will use the most simple method to

discretize it, the finite difference method

● transforms the PDE into a linear system by

approximating the partial derivatives

(covered later on) on a 2D grid of points

● for simplicity, we consider a square grid

(i.e., we have the same # of points in each

space dimension)

● we denote as h the grid size; distance

among two consecutive points in either the

vertical or horizontal space dimension

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 14

Heat Equation in 2D (finite difference discretization II)

● we use a 2D labeling of the grid

points, with 0 ≤ i ≤ n−1,

0 ≤ j ≤ n−1

● we denote by ui, j the approximate

value of u at the point labeled (i, j)
● mathematically, ui, j ≈ u(ih, jh)

● the value of ui, j at the boundary

points (in red) is known, HOWEVER

the value of ui, j at the interior nodes

(in black) is unknown

● we thus have (n−2)2 unknowns

● how can we formulate a discrete

problem to determine the value of

these unknowns? (next slide)

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 15

Heat Equation in 2D (finite difference discretization III)

● at each interior grid point, we approximate the (partial derivatives in the) PDE using

finite difference formulas (these are derived from truncated Taylor series)

● we will use the central finite difference formula for the second partial derivatives

● for an univariate function, f (x), the central difference formula is defined as

d2 f (x)
d2x

≈ f (x + h)−2 f (x) + f (x−h)
h2

● applying this formula to ∇2u = 0 at each interior grid point (xi,y j), we end up with

∇2u(xi,y j) =
∂2u
∂x2 (xi,y j) +

∂2u
∂y2 (xi,y j) = 0 ≈

u(xi + h,y j)−2u(xi,y j) + u(xi−h,y j)

h2 +
u(xi,y j + h)−2u(xi,y j) + u(xi,y j −h)

h2 = 0 →
−4ui, j + ui+1, j + ui−1, j + ui, j+1 + ui, j−1

h2 = 0 with 1 < i < n−1 and 1 < j < n−1

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 16

Heat Equation in 2D (linear system after discretization)

● relabeling ui, j as xk, with k = (i−2)n + j−2, and 1 < i < n−1, 1 < j < n−1, then

the previous expression can be re-written as (to-think: why?):

−4xk + xk+1 + xk−1 + xk+n + xk−n = 0 with k = 0,1, . . . , (n−2)2−1

● this is a linear system Ax = b, where

A ∈ R(n−2)2×(n−2)2 is a sparse matrix

(it has non-zeros only in 5 diagonals)

and b ∈ R(n−2)2 is zero for all interior

points BUT those (interior points)

which are adjacent to the boundary

points (to-think: why?)
A with (n−2)2 = 36

● let us now cleverly implement Jacobi iteration in order to solve this linear system by

efficiently exploiting its particular structure (next slide)

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 17

Sequential Jacobi iteration for FD-discretized 2D Heat Equation

... // set boundary of u new /u to b

... // init interior points of u new /u
for (iter = 0; iter < max iter ; iter ++)
{
for (i = 2; i < n −1; i++)

for (j = 2; j < n −1; j++)
u new [i][j] =

0.25∗(u[i −1][j]+u[i+1][j]+
u[i][j −1]+u[i][j+1]);

for (i = 2; i < n −1; i++)
for (j = 2; j < n −1; j++)

u[i][j] = u new [i][j];
}

Questions:

● are we explicitly storing entries of A?

● are we explicitly storing the zeros of b?

● we do NOT store A and b into arrays

a[][] and b[] as before (why not?)

● instead, we use two 2D arrays of the

same size as the grid, i.e., of size

n×n, namely u[][] and u new[][]

● on the interior points, u[][] and

u new[][] hold respectively the

values of x(k) and x(k+1) (i.e. Jacobi

iterates)

● on the boundary nodes, u[][] and

u new[][] are both initialized to the

known boundary values

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 18

Parallel Jacobi iteration for FD-discretized 2D Heat Equation

● consider a (naive!) static mapping of a single interior grid point per process (i.e., we

have as many interior grid points as processes)

● both u[][] and u new[][] are now partitioned/mapped to the processes (i.e., not

replicated as before with dense matrices)

● the message-passing code for a process not in contact with the boundary looks

like: (exercise: how would it look like for processes in contact with the boundary?)

... // Init ui+1, j, ui−1, j, ui, j+1, ui, j−1
for (iter = 0; iter < max iter ; iter ++)
{

u new i, j = 0.25∗(ui+1, j+ui−1, j+ui, j+1+ui, j−1);
send(& u new i, j, 1, Pi−1, j);
send(& u new i, j, 1, Pi+1, j);
send(& u new i, j, 1, Pi, j−1);
send(& u new i, j, 1, Pi, j+1);
recv(&ui−1, j, 1, Pi−1, j);
recv(&ui+1, j, 1, Pi+1, j);
recv(&ui, j−1, 1, Pi, j−1);
recv(&ui, j+1, 1, Pi, j+1);

}

● communication/synchronization is

“local” (each process only

synchronizes with nearest

neighbours)

● is this algorithm dead-lock free?

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 19

Partitioning

● better to feed each processor with larger workload

● regular 2D data (grid) can be either partitioned one-dimensionally (into horizontal or

vertical strips) or two-dimensionally (into blocks)

 1D partition
(horizontal strips) 2D partition

● if p is the # of processors, and n×n is the grid size, the work per process

(assuming equal sized partitions) is proportional to n2

p for both strategies (why?)

● BUT ... communication differs among the two approaches! (next slide)

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 20

Modelling communication: strip versus block partition

● strip communication time:

(2 stages: bottom-top, top-bottom)

tstrip
comm = 2(ts + ntw)

● block communication time:

(4 stages)

tblock
comm = 4(ts +

n√
p

tw)

Assumptions:

● neglect number of links and th
● the nodes can only send/recv single

message at a time

● the messages of each stage can be

delivered in parallel (e.g., mesh

network topology)

 1D partition 2D partition

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 21

Strip vs Block Partition Cross-Over

● according to our model, which partition is better (i.e., leads to less overhead)?

● tblock
comm > tstrip

comm if and only if ts > n
(

1− 2√
p

)
tw

● let us instantiate the model with n2 = 1024, tw = 50ts

● for different values of p (x-axis), the curve below provides the cross-over ts (y-axis)

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 22

Ghost Layer of Points (aka Halo)

● most grid-based parallel codes store on each process extra layer(s) of adjacent grid

points owned by neighbouring processes

● the grid points in these layers are referred to ghost points, and the set of all of these

layers as halo region of the local portion of the grid

● the halo region is used to hold data values received as a result of the

communication with nearest neighbours

● it is not actually needed, but significantly eases code implementation

● for the central finite difference formula a single layer of ghost points suffices (figure)

 1D partition 2D partition

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 23

Avoiding Deadlocks

● the algorithm that we saw before to perform nearest neighbour exchanges was

NOT deadlock-free

● two dead-lock free algorithms for 1D partitioning in horizontal strips are provided

below (for processes not in contact with the top nor bottom boundary edges)

● note halo usage

me= process rank id ()
if ((me%2) == 0) { // even process
send(& u new [1][1] , n−2, me −1));
recv(&u[0][1] , n−2, me −1));
send(& u new [n/p][1], n−2, me+1));
recv(&u[n/p+1][1] , n−2, me +1));}

else { // odd process
recv(&u[n/p+1][1] , n−2, me+1);
send(& u new [n/p][1], n−2, me+1);
recv(&u[0][1] , n−2, me −1);
send(& u new [1][1] , n−2, me −1);}

reorder sends/recvs

me= process rank id ()
isend(& u new [1][1] , n−2, me −1));
isend(& u new [n/p][1], n−2, me+1));
irecv(&u[0][1] , n−2, me −1));
irecv(&u[n/p+1][1] , n−2, me+1));
waitall ();

non-blocking sends/recvs

● other solutions include: (1) buffered sends (MPI BSend); (2) combined send/recvs:

MPI Sendrecv, which are guaranteed to be deadlock free

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 24

Early termination

● in a parallel setting, we have to ensure that all processes finish the iterative solver
loop at once, i.e., at the same iteration (otherwise deadlock may occur)

● so far we have guaranteed that by always performing a fixed # of Jacobi iterations

● iterative solvers typically may terminate early if, e.g., the distance among two
consecutive iterates is “small enough”

● the distance among two vectors x and y can be measured, e.g., using the

Euclidean norm ||x− y||2 =
√

∑n−1
i=0 (xi− yi)2 or the infinity norm (as in Lab #3)

● in our parallelization of Jacobi solver for 2D Heat Equation, x (i.e., u[]) and y (i.e.,
u new[]) are distributed among processes

● in order to compute the norm in parallel, each processor computes a partial sum
locally; then all processes execute an MPI Allreduce (sum) collective
communication to reduce the partial sums into a single sum on all processes

● the collective communication guarantees that all processes have the same value
for ||x− y||2 (up to rounding errors), and thus that early termination happens at
once on all processes

COMP4300/8300 L8: Synchronous Computations 2024 ◀◀ ◀ • ▶ ▶▶ 25

