Logistics

- Assignment 1 released today! Available here
- Assignment 1 is due on Monday, 15th April 2024, 11:55PM (right after semester break)
- Read assignment specification carefully and ask questions on the forum if required
- Next week lab there will be a 1-hour session on Q\&A for the assignment
- Start early!

Heat Equation in 2D (problem definition)

- given an squared metal sheet and known temperature distribution at the sheet edges, the 2D Heat Equation models the unknown temperatures in the middle
- let us denote by \mathcal{D} the metal sheet (i.e., the domain of the equation) and by $\partial \mathcal{D}$ the edges of the metal sheet (i.e., the boundary of \mathcal{D})
- the 2D Heat Equation is a PDE (Partial Differential Equation); its solution is an unknown bivariate function $u(x, y): \mathcal{D} \rightarrow \mathbb{R}$ such that:

$$
\left\{\begin{aligned}
\nabla^{2} u & =0 & & \text { in } \mathcal{D} \\
u & =u_{\partial \mathcal{D}} & & \text { on } \partial \mathcal{D}
\end{aligned}\right.
$$

with $u_{\partial \mathcal{D}}(x, y): \partial \mathcal{D} \rightarrow \mathbb{R}$ being the known temperature distribution at $\partial \mathcal{D}$

- $\nabla^{2}(\cdot)$ is the Laplacian operator, defined as (sum of 2nd partial derivatives):

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

Heat Equation in 2D (finite difference discretization I)

- the 2D Heat Equation PDE is a continuous problem, we have to discretize it so that it can be solved in a computer
- we will use the most simple method to discretize it, the finite difference method
- transforms the PDE into a linear system by approximating the partial derivatives (covered later on) on a 2D grid of points
- for simplicity, we consider a square grid (i.e., we have the same \# of points in each space dimension)
- we denote as h the grid size; distance
 among two consecutive points in either the vertical or horizontal space dimension

Heat Equation in 2D (finite difference discretization II)

- we use a 2D labeling of the grid points, with $0 \leq i \leq n-1$, $0 \leq j \leq n-1$
- we denote by $u_{i, j}$ the approximate value of u at the point labeled (i, j)
- mathematically, $u_{i, j} \approx u(i h, j h)$
- the value of $u_{i, j}$ at the boundary points (in red) is known, HOWEVER the value of $u_{i, j}$ at the interior nodes (in black) is unknown
- we thus have $(n-2)^{2}$ unknowns
- how can we formulate a discrete problem to determine the value of
 these unknowns? (next slide)

Heat Equation in 2D (finite difference discretization III)

- at each interior grid point, we approximate the (partial derivatives in the) PDE using finite difference formulas (these are derived from truncated Taylor series)
- we will use the central finite difference formula for the second partial derivatives
- for an univariate function, $f(x)$, the central difference formula is defined as

$$
\frac{\mathrm{d}^{2} f(x)}{\mathrm{d}^{2} \mathrm{x}} \approx \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

- applying this formula to $\nabla^{2} u=0$ at each interior grid point $\left(x_{i}, y_{j}\right)$, we end up with

$$
\begin{aligned}
& \nabla^{2} u\left(x_{i}, y_{j}\right)=\frac{\partial^{2} u}{\partial x^{2}}\left(x_{i}, y_{j}\right)+\frac{\partial^{2} u}{\partial y^{2}}\left(x_{i}, y_{j}\right)=0 \approx \\
& \frac{u\left(x_{i}+h, y_{j}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i}-h, y_{j}\right)}{h^{2}}+\frac{u\left(x_{i}, y_{j}+h\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i}, y_{j}-h\right)}{h^{2}}=0 \rightarrow \\
& \quad \frac{-4 u_{i, j}+u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}}{h^{2}}=0 \quad \text { with } 1<i<n-1 \text { and } 1<j<n-1
\end{aligned}
$$

Heat Equation in 2D (linear system after discretization)

- relabeling $u_{i, j}$ as x_{k}, with $k=(i-2) n+j-2$, and $1<i<n-1,1<j<n-1$, then the previous expression can be re-written as (to-think: why?):

$$
-4 x_{k}+x_{k+1}+x_{k-1}+x_{k+n}+x_{k-n}=0 \quad \text { with } \quad k=0,1, \ldots,(n-2)^{2}-1
$$

- this is a linear system $A x=b$, where $A \in \mathbb{R}^{(n-2)^{2} \times(n-2)^{2}}$ is a sparse matrix (it has non-zeros only in 5 diagonals) and $b \in \mathbb{R}^{(n-2)^{2}}$ is zero for all interior points BUT those (interior points) which are adjacent to the boundary points (to-think: why?)

A with $(n-2)^{2}=36$
- let us now cleverly implement Jacobi iteration in order to solve this linear system by efficiently exploiting its particular structure (next slide)

Sequential Jacobi iteration for FD-discretized 2D Heat Equation

```
... // set boundary of u_new/u to b
... // init interior points of u_new/u
for (iter = 0; iter < max_iter; iter++)
{
    for (i = 2; i < n-1; i++)
        for (j = 2; j < n-1; j++)
            u_new[i][j] =
                    0.25*(u[i-1][j]+u[i+1][j]+
                            u[i][j-1]+u[i][j+1]);
    for (i = 2; i < n-1; i++)
        for (j = 2; j < n-1; j++)
        u[i][j] = u_new[i][j];
}
```

Questions:
are we explicitly storing entries of A ?
are we explicitly storing the zeros of b ?

- we do NOT store A and b into arrays $\mathrm{a}[\mathrm{]}[\mathrm{]}$ and $\mathrm{b}[\mathrm{]}$ as before (why not?)
- instead, we use two 2D arrays of the same size as the grid, i.e., of size $n \times n$, namely u[] [] and u_new [] []
- on the interior points, $u[][]$ and u new [] [] hold respectively the values of $x^{(k)}$ and $x^{(k+1)}$ (i.e. Jacobi iterates)
- on the boundary nodes, $u[][]$ and u_new [] [] are both initialized to the known boundary values

Parallel Jacobi iteration for FD-discretized 2D Heat Equation

- consider a (naive!) static mapping of a single interior grid point per process (i.e., we have as many interior grid points as processes)
- both $u[][]$ and u new [] [] are now partitioned/mapped to the processes (i.e., not replicated as before with dense matrices)
- the message-passing code for a process not in contact with the boundary looks like: (exercise: how would it look like for processes in contact with the boundary?)

```
... // Init }\mp@subsup{\mathbf{u}}{i+1,j}{},\mp@subsup{\mathbf{u}}{i-1,j}{},\mp@subsup{\mathbf{u}}{i,j+1}{},\mp@subsup{\mathbf{u}}{i,j-1}{
for (iter = 0; iter < max_iter; iter++)
{
    u_new i,j}=0.25*(\mp@subsup{u}{i+1,j}{}+\mp@subsup{\mathbf{u}}{i-1,j}{}+\mp@subsup{\mathbf{u}}{i,j+1}{}+\mp@subsup{\mathbf{u}}{i,j-1}{})
    send(&u_new i,j, 1, P}\mp@subsup{P}{i-1,j}{\prime}\mathrm{ );
    send(&u_new i,j, 1, ( 
    send(&u_new i,j, 1, P}\mp@subsup{P}{i,j-1}{\prime})\mathrm{ ;
    send(&u_new w,j, 1, P
    recv(&u i-1,j},1, P ( i-1,j)
    recv(&u\mp@subsup{u}{i+1,j}{,},1, P P P+1,j})
    recv(&ui,j-1},1, ( Pi,j-1)
    recv(&\mp@subsup{\mathbf{u}}{i,j+1}{},1, 1, Pi,j+1})
}
communication/synchronization is "local" (each process only synchronizes with nearest neighbours)
is this algorithm dead-lock free?
```


Partitioning

- better to feed each processor with larger workload
- regular 2D data (grid) can be either partitioned one-dimensionally (into horizontal or vertical strips) or two-dimensionally (into blocks)

- if p is the \# of processors, and $n \times n$ is the grid size, the work per process (assuming equal sized partitions) is proportional to $\frac{n^{2}}{p}$ for both strategies (why?)
- BUT ... communication differs among the two approaches! (next slide)

Modelling communication: strip versus block partition

- strip communication time:
(2 stages: bottom-top, top-bottom)

$$
t_{\mathrm{comm}}^{\mathrm{strip}}=2\left(t_{s}+n t_{w}\right)
$$

- block communication time:
(4 stages)

1D partition

Assumptions:

- neglect number of links and t_{h}
- the nodes can only send/recv single message at a time
- the messages of each stage can be delivered in parallel (e.g., mesh network topology)

2D partition

Strip vs Block Partition Cross-Over

- according to our model, which partition is better (i.e., leads to less overhead)?
- $t_{\text {comm }}^{\text {block }}>t_{\text {comm }}^{\text {strip }}$ if and only if $t_{s}>n\left(1-\frac{2}{\sqrt{p}}\right) t_{w}$
- let us instantiate the model with $n^{2}=1024, t_{w}=50 t_{s}$
- for different values of p (x-axis), the curve below provides the cross-over t_{s} (y-axis)

Ghost Layer of Points (aka Halo)

- most grid-based parallel codes store on each process extra layer(s) of adjacent grid points owned by neighbouring processes
- the grid points in these layers are referred to ghost points, and the set of all of these layers as halo region of the local portion of the grid
- the halo region is used to hold data values received as a result of the communication with nearest neighbours
- it is not actually needed, but significantly eases code implementation
- for the central finite difference formula a single layer of ghost points suffices (figure)

1D partition

2D partition

Avoiding Deadlocks

- the algorithm that we saw before to perform nearest neighbour exchanges was NOT deadlock-free
- two dead-lock free algorithms for 1D partitioning in horizontal strips are provided below (for processes not in contact with the top nor bottom boundary edges)
- note halo usage

```
me=process_rank_id()
if ((me%2) == 0) { // even process
    send(&u_new[1][1], n-2, me-1)); me=process_rank_id()
    recv(&u[0][1], n-2, me-1));
    send(&u_new[n/p][1], n-2, me+1));
    recv(&u[n/p+1][1], n-2, me+1));}
else { // odd process
    recv(&u[n/p+1][1], n-2, me+1);
    send(&u_new [n/p][1], n-2, me+1);
    recv(&u[0][1], n-2, me-1);
    send(&u_new[1][1], n-2, me-1);}
```

non-blocking sends/recvs

```
```

isend(\&u_new [1] [1], n-2, me-1));

```
isend(&u_new [1] [1], n-2, me-1));
isend(&u_new [n/p][1], n-2, me+1));
isend(&u_new [n/p][1], n-2, me+1));
irecv(&u[0][1], n-2, me-1));
irecv(&u[0][1], n-2, me-1));
irecv(&u[n/p+1][1], n-2, me+1));
irecv(&u[n/p+1][1], n-2, me+1));
waitall();
```

waitall();

```
reorder sends/recvs
- other solutions include: (1) buffered sends (MPI _BSend); (2) combined send/recvs: MP I Sendrecv, which are guaranteed to be deadlock free

\section*{Early termination}
- in a parallel setting, we have to ensure that all processes finish the iterative solver loop at once, i.e., at the same iteration (otherwise deadlock may occur)
- so far we have guaranteed that by always performing a fixed \# of Jacobi iterations
- iterative solvers typically may terminate early if, e.g., the distance among two consecutive iterates is "small enough"
- the distance among two vectors \(x\) and \(y\) can be measured, e.g., using the Euclidean norm \(\|x-y\|_{2}=\sqrt{\sum_{i=0}^{n-1}\left(x_{i}-y_{i}\right)^{2}}\) or the infinity norm (as in Lab \#3)
- in our parallelization of Jacobi solver for 2D Heat Equation, \(x\) (i.e., u[] ) and \(y\) (i.e., u new []) are distributed among processes
- in order to compute the norm in parallel, each processor computes a partial sum locally; then all processes execute an MP I All reduce (sum) collective communication to reduce the partial sums into a single sum on all processes
- the collective communication guarantees that all processes have the same value for \(\|x-y\|_{2}\) (up to rounding errors), and thus that early termination happens at once on all processes```

