Logistics

@® Assignment 1 released today! Available here

@® Assignment 1 is due on Monday, 15th April 2024, 11:55PM (right after semester
break)

@ Read assignment specification carefully and ask questions on the forum if required
@ Next week lab there will be a 1-hour session on Q&A for the assignment

@ Start early!

COMP4300/8300 L8: Synchronous Computations 2024 44 <o p pp 12

https://gitlab.cecs.anu.edu.au/comp4300/2024/comp4300-assignment1

Heat Equation in 2D (problem definition)

@ given an squared metal sheet and known temperature distribution at the sheet
edges, the 2D Heat Equation models the unknown temperatures in the middle

@ let us denote by D the metal sheet (i.e., the domain of the equation) and by 0D the
edges of the metal sheet (i.e., the boundary of D)

@ the 2D Heat Equation is a PDE (Partial Differential Equation); its solution is an
unknown bivariate function u(x,y) : D — R such that:

f Y oD

i

Vau = in D
u=>0 in . D -
U= uyqp on oP

oD

with 155 (x,y) : 9D — R being the known temperature distribution at 02
@ Vz(-) is the Laplacian operator, defined as (sum of 2nd partial derivatives):
?u 0%u

Veu =
YT +8y2

COMP4300/8300 L8: Synchronous Computations 2024 44 <P P> 13

Heat Equation in 2D (finite difference discretization)

@ the 2D Heat Equation PDE is a continuous
problem, we have to discretize it so that it
can be solved in a computer

@® we will use the most simple method to
discretize it, the finite difference method

@ transforms the PDE into a linear system by
approximating the partial derivatives
(covered later on) on a 2D grid of points

@ for simplicity, we consider a square grid
(i.e., we have the same # of points in each
space dimension)

@® we denote as & the grid size; distance
among two consecutive points in either the
vertical or horizontal space dimension

COMP4300/8300 L8: Synchronous Computations 2024 44 <P P> 14

Heat Equation in 2D (finite difference discretization Il)

@® we use a 2D labeling of the grid
points, with 0 <i<n—1,
0<j<n—1

@® we denote by u; ; the approximate
value of u at the point labeled (i, j)

® mathematically, u; ;j = u(ih, jh)

@® the value of u; ; at the boundary
points (in red) is known, HOWEVER
the value of i; ; at the interior nodes
(in black) is unknown

® we thus have (n — 2)? unknowns

@® how can we formulate a discrete

problem to determine the value of
these unknowns? (next slide)

COMP4300/8300 L8: Synchronous Computations 2024 44 <P P> 15

Heat Equation in 2D (finite difference discretization lll)

@ at each interior grid point, we approximate the (partial derivatives in the) PDE using
finite difference formulas (these are derived from truncated Taylor series)

® we will use the central finite difference formula for the second partial derivatives

@ for an univariate function, f(x), the central difference formula is defined as
dPflx) flx+h) —2f(x)+fx—h)
d2x h?
@ applying this formula to V2u = 0 at each interior grid point (x;,y j), we end up with

0°u 0°u
u(x17YJ) 2 (xza)’])"' ayz (x;)’])
u(xi+h,y;) —2u(x;,y;)+ulx; —h,y;) . u(xj,yj+h) —2u(x;,y;) +ulx;,y;—h)
h? h?

—4u; i+vUjq U U U . : -
l,] I+1,] lh27] l,J+ l,J] -0 Wlth1<l<n_1and1<]<n_1

=0—

COMP4300/8300 L8: Synchronous Computations 2024 44 <P P> 16

https://en.wikipedia.org/wiki/Finite_difference_method#Derive_difference_quotient_from_Taylor's_polynomial
https://en.wikipedia.org/wiki/Finite_difference#Higher-order_differences

Heat Equation in 2D (linear system after discretization)

® relabeling u; j as x;, with k= (i —2)n+j—2,and 1 <i<n—1,1<j<n—1,then
the previous expression can be re-written as (to-think: why?):

—AXp + Xjp{ +Xfe—{ +Xfyn + Xi—pn, =0 with k=0,1,...,(n—2)2—1

@ this is a linear system Ax = b, where
2 2
A € Rn—2)"X(n=2)% i5 3 gparse matrix
(it has non-zeros only in 5 diagonals)

|

|

|

|

I

|

|

| []
T i i i

L [

| mmm

|

lm

|

|

|

+

|

|

|

|

|

|

|

]

2 i
and b € R"—=2)" is zero for all interior J ot

points BUT those (interior points)
which are adjacent to the boundary

points (to-think: why?)
A with (n — 2)? = 36

@ let us now cleverly implement Jacobi iteration in order to solve this linear system by
efficiently exploiting its particular structure (next slide)

COMP4300/8300 L8: Synchronous Computations 2024 44 <o p pp 17

Sequential Jacobi iteration for FD-discretized 2D Heat Equation

. // set boundary of u new/u to b
. // init interior points of u _ new/u
for (iter = 0; iter < max_iter; iter++).

{

for (i = 2; 1
9

10jl+uli+11[j1+
§-11+uli1[+11); ®
-1; i++)

n-1; j++)
ew

[il[j];

.
=:’/\Iﬂl—ll-‘ll/\izl

Questions:
@

@® are we explicitly storing entries of A?
@® are we explicitly storing the zeros of b?

we do NOT store A and b into arrays
al[]1[] and b[] as before (why not?)
instead, we use two 2D arrays of the
same size as the grid, i.e., of size

n X n, namely ul[][] and u new[][]
on the interior points, u[] [] and
u_new[] [] hold respectively the

k+1) (i.e. Jacobi

values of x(K) and x!
iterates)

on the boundary nodes, u[][] and
u_newl[] [] are both initialized to the

known boundary values

COMP4300/8300 L8: Synchronous Computations

2024 44 o> p) 18

Parallel Jacobi iteration for FD-discretized 2D Heat Equation

@ consider a (naive!) static mapping of a single interior grid point per process (i.e., we
have as many interior grid points as processes)

@ both u[]1[] and u_new[] [] are now partitioned/mapped to the processes (i.e., not
replicated as before with dense matrices)

® the message-passing code for a process not in contact with the boundary looks
like: (exercise: how would it look like for processes in contact with the boundary?)

// Init g, W1, Wiji1, W 1
for (iter = 0; iter < max_iter; iter++)

(. e
Wonew;; = 0.25%(un 4uis +u st); @ communication/synchronization is
send (&u_new;;, 1, Py;); “local” (each process only
send (&u_new;;, 1, P.1;);
send (&u new,;;, 1, P 1); synchronizes with nearest

send (&u_new;;, 1, P ji1);

recv(&u;—1;, 1, Pi1;); neighbours)

recv (&uyq;, 1, Pu1j); - - :
recv (&uiy 1, 1, Pyo1)s @® is this algorithm dead-lock free?
recv (&u; i1, 1, Piji);

COMP4300/8300 L8: Synchronous Computations 2024 44 <P P> 19

Partitioning

@ better to feed each processor with larger workload

@ regular 2D data (grid) can be either partitioned one-dimensionally (into horizontal or
vertical strips) or two-dimensionally (into blocks)

P Py
P 2008008
0Ll il Tl lil
P B P
ST
DD s 4 B
P43 p
6 L] 1]]l 8
1D partition P
(horizontal strips) 2D partition

@ if pis the # of processors, and n X n is the grid size, the work per process
2
(assuming equal sized partitions) is proportional to % for both strategies (why?)

@® BUT ... communication differs among the two approaches! (next slide)

COMP4300/8300 L8: Synchronous Computations 2024 44 <P P> 20

Modelling communication: strip versus block partition

@ strip communication time:

(2 stages: bottom-top, top-bottom)

stri
tcorr?m = 2(ts + nty)

@® block communication time:
(4 stages)

n
(Ol0cK At + —1,,)

comm \/]_9

i n grid points

i n grid points

v

1D partition

Assumptions:
@ neglect number of links and ¢
@ the nodes can only send/recv single
message at a time
@ the messages of each stage can be
delivered in parallel (e.g., mesh
network topology)

A % grid points

7

% grid points § ; i grid points

v % grid points

2D partition

COMP4300/8300 L8: Synchronous Computations 2024 <44 <o p PH 21

Strip vs Block Partition Cross-Over

@ according to our model, which partition is better (i.e., leads to less overhead)?

@ (Dlock SUR it and only if 7 > n (1 _ %) oo

® Ict us instantiate the model with n2 = 1024, 1,, = 50¢;

@ for different values of p (x-axis), the curve below provides the cross-over ¢ (y-axis)

2000 —

Strip partition best

A

Isi;mup 1000 =

Block parution best

'l | 3 1] L] I
| 10 100 1000
R
Processors, p

COMP4300/8300 L8: Synchronous Computations 2024 44 <o p pp 22

Ghost Layer of Points (aka Halo)

@® most grid-based parallel codes store on each process extra layer(s) of adjacent grid
points owned by neighbouring processes

@ the grid points in these layers are referred to ghost points, and the set of all of these
layers as halo region of the local portion of the grid

@ the halo region is used to hold data values received as a result of the
communication with nearest neighbours

it is not actually needed, but significantly eases code implementation

@ for the central finite difference formula a single layer of ghost points suffices (figure)

]
-.-..-.3----§----i.-.|.- 3
. .4 is, Lis, e,

1D partition 2D partition

COMP4300/8300 L8: Synchronous Computations 2024 44 <P P> 23

Avoiding Deadlocks

@ the algorithm that we saw before to perform nearest neighbour exchanges was
NOT deadlock-free

@® two dead-lock free algorithms for 1D partitioning in horizontal strips are provided
below (for processes not in contact with the top nor bottom boundary edges)

@ note halo usage

me=process rank id ()
if ((me%2) == 0) { // even process
send(4u new[1][1], n-2, me-1)); me=process_rank_id ()
recv (&ul[O0][1], n-2, me-1)); isend(&u_new[1][1], n-2, me-1));
send (&u new[n/pl[1], n-2, me+1)); isend (&u new[n/p]l[1], n-2, me+1));
recv(&uln/p+11[1], n-2, me+1));} irecv (&Zul[0][1], n-2, me-1)):
else { // odd process . " > T ;)
recy (guln/p+11[1]1, n-2, me+1); irecv(&uln/p+1]1[1], n-2, me+1));

send (&u_new[n/p]l[1], n-2, me+1); waitall ()
recv(&ul[0][1], n-2, me-1);) .
send (¢u_new [11[1], n-2, me-1);} non-blocking sends/recvs

reorder sends/recvs

@ other solutions include: (1) buffered sends (MPI_BSend); (2) combined send/recvs:
MPI Sendrecv, which are guaranteed to be deadlock free

COMP4300/8300 L8: Synchronous Computations 2024 <44 <o p PH 24

Early termination

@ in a parallel setting, we have to ensure that all processes finish the iterative solver
loop at once, i.e., at the same iteration (otherwise deadlock may occur)

so far we have guaranteed that by always performing a fixed # of Jacobi iterations

iterative solvers typically may terminate early if, e.g., the distance among two
consecutive iterates is “small enough”

@ the distance among two vectors x and y can be measured, e.g., using the

Euclidean norm ||x — yl||o = \/Z?=61 (x; — y;)? or the infinity norm (as in Lab #3)

@ in our parallelization of Jacobi solver for 2D Heat Equation, x (i.e., u[]) and y (i.e.,
u_new[]) are distributed among processes

@ in order to compute the norm in parallel, each processor computes a partial sum
locally; then all processes execute an MPI_Allreduce (sum) collective
communication to reduce the partial sums into a single sum on all processes

@ the collective communication guarantees that all processes have the same value
for ||x — y||2 (up to rounding errors), and thus that early termination happens at
once on all processes

COMP4300/8300 L8: Synchronous Computations 2024 44 <P P> 25

