
COMP4610/COMP6461

Week 10 - Advanced Lighting and
Ray Tracing

<Print version>

Computer Graphics 4610 / 6461 1 / 28



Admin

Computer Graphics 4610 / 6461 2 / 28



Lab-5
• This lab involves writing a ray-tracer.
• You will need to implement the (Blinn) Phong Lighting

model.

A slightly modified version of a Lab-5 solution.

Computer Graphics 4610 / 6461 3 / 28



BRDF

Computer Graphics 4610 / 6461 4 / 28



BRDF
The bidirectional reflectance distribution function (BRDF) charac-
terizes the amount of light reflected on a surface as the lights in-
cident direction and observation direction changes. The function is
often denoted:

fr(ωi, ωf) (1)

where ωi is the unit length vector that points to the light, and ωr

is the unit vector that points to the observer (with respect to the
surface normal).

Computer Graphics 4610 / 6461 5 / 28



BRDF
The BRDF is a ratio of the reflected radiance to the incident irradi-
ance and has units sr−1 (where sr is steradians or the solid angle).

BRDF is a property of a (real) materials surface that can be mea-
sured, and then modeled.

Computer Graphics 4610 / 6461 6 / 28



Better Material Modeling
As we model a surface of a material the diffuse and specular aspects can be
separated and modeled using different approaches. The colour can be additively
combined.

The Blinn-Phong approach is a simple and a good starting point for modeling
surface material, however, it is somewhat limited and does not model some
surfaces well. (e.g. with metal surfaces the amount of reflection is dependent
on the angle of the light source, or object like the moon or a tennis ball their in-
tensity is more uniform rather than be Lambertian in terms of the diffuse aspects)

One could empirically measure the BRDF of a material and then use this to
model the material.

There as also more complex aspects that may need to be considered such
as: subsurface scattering (skin), bumpy material, scratched surfaces (stainless
steel), wave properties (surface of a CD).

Computer Graphics 4610 / 6461 7 / 28



BRDF
Many the of the lighting models we have studies can be represented
by BRDF functions.

Credit: https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function

Computer Graphics 4610 / 6461 8 / 28

https://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function


BRDF Maps
If we consider only the angle of incidence, and the angle of reflection,
we can use a 2D map to store a BRDF function.

Credit: http://wiki.polycount.com/wiki/BDRF_map

Computer Graphics 4610 / 6461 9 / 28

http://wiki.polycount.com/wiki/BDRF_map


Plausiable BRDF
There are some properties that a BRDF must have to make it phys-
ically plausible. For example it must obey the following rules:

• Positivity. fr(ωr, ωi) ≥ 0

• Energy conserving.
∫
Ω
fr(ωr, ωi) cos θrdωr ≤ 1(∀ωi)

• Helmholtz reciprocity: fr(ωr, ωi) = fr(ωi, ωr)

Of cause, you can always create BRDF functions that do not follow
these rules, they just would not be able to exist in reality.

Computer Graphics 4610 / 6461 10 / 28



Fresnel Effects
Surfaces, such as metal, water, glass, etc., have Fresnel effects at glazing angles.
This is where the amount of light reflected increases (in a non-linear fashion) as
the angle of the incident light increases.

If you graph the amount of light reflect at different angles you could use these
graphs to better model materials. Blinn-Phong approach does not capture this
effect, instead to model this we use the Cook-Torrance model.

Source https://en.wikipedia.org/wiki/Reflectance

Computer Graphics 4610 / 6461 11 / 28

https://en.wikipedia.org/wiki/Reflectance


Rough Surfaces
The Lambertian model makes an assumption that the intensity of a surface is
the same from all viewing angles. Although a good approximation, particularly
for very smooth surfaces, this is generally not the case for the diffuse aspects of
rough surfaces.

So for rough surfaces, such as the moon or a tennis ball, the Oren-Nayar Model
will produce more realistic images.

Credit https://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_
reflectance_model

Computer Graphics 4610 / 6461 12 / 28

https://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_reflectance_model
https://en.wikipedia.org/wiki/Oren%E2%80%93Nayar_reflectance_model


Physical Based Rendering (PBR)
• PBR is an attempt to simulate real lighting using the

principles of physics. This has only become popular recently
(last 10-years) due to the computation required.

• Ideally we no longer want to distinguish between diffuse
non-reflective light and specular reflective light. Everything is
reflective... it’s just a matter of how much.

• The end result is ‘one shader to rule them all’ that produces
quite good results and can take as input real-world
measurements of surface materials.

• The downside is that it is quite complicated (I’ve seen PBR
shaders that are 100’s of lines of code).

Computer Graphics 4610 / 6461 13 / 28



PBR Book

The ANU library has (digital) copies of this book.

Computer Graphics 4610 / 6461 14 / 28



Ray Tracing

Computer Graphics 4610 / 6461 15 / 28



Overview
• Ray Tracing is a very old idea.
• Ray Tracing is often easier to implement than rasterized 3D.
• The basic idea is calculate lighting by tracing light rays, rather

than a ’bag of tricks’.
• Used in high end rendering engines (e.g. Octane)
• The downside is it’s (very) slow.

Computer Graphics 4610 / 6461 16 / 28



Ray Casting
Ray Casting - Shoot a ray through the scene and return the first
object hit. This can be useful for non-graphical applications as well
(e.g. collisions).

Casting a ray through a scene.
Credit https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Computer Graphics 4610 / 6461 17 / 28

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)


Ray Tracing
Ray Tracing - Shoot a ray of light from the eye, through a pixel’s
center. When it hits a surface cast the following rays...

• A single ray to each light source, to test if patch is in shadow or not. If
not calculate lighting according to a reflection model.

• (if needed) A single ray refracted through the object to for transparent
surfaces (e.g. water).

• (if needed) A single ray reflected off the surface for shiny surfaces.

Ray Tracing. https://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Computer Graphics 4610 / 6461 18 / 28

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)


Ray-Sphere Intersection
Spheres are very simple to trace against (simpler than triangles or
boxes). And are therefore often used as bounds for more complex
objects.

Computer Graphics 4610 / 6461 19 / 28



Ray-Polygon Intersection
Rays are first intersected with the polygon’s plane. Then we just
need to check if the point found is inside or outside the polygon.

Computer Graphics 4610 / 6461 20 / 28



Ray-Polygon Intersection
Vertices of the polygon, along with the intersection point are then
projected onto the polygon’s plane. Then we perform an inside-
outside test.

Computer Graphics 4610 / 6461 21 / 28



Reflection and Refraction
Given unit vectors u and N the reflected vector R can be calculated.
The transmission direction T also requires the indices of refraction.
Fresnel equations can be used to find the intensity of light.

Computer Graphics 4610 / 6461 22 / 28



Limitations of Ray Tracing
• Basic ray tracing still uses a simple ambient lighting model.
• (indirect) Shadows from reflected or refracted sources are not

visible.
• Caustics not visible.

Computer Graphics 4610 / 6461 23 / 28



Aside: Gamma Space vs
Linear Space

Computer Graphics 4610 / 6461 24 / 28



Gamma curves
• Most monitors display color using sRGB.
• This involves a complex relationship between the RGB values

and the actual luminance output by the monitor.
• The mapping from RGB values to luminance is not linear.

Therefore if you take two colors and average them you get a
new colour that is not a blend of the two.

• Instead you need to ’undo’ the gamma transform, apply your
operation in linear space, then ’redo’ the gamma transform.

Top, intensity non linear. Bottom, intensity is linear.

Computer Graphics 4610 / 6461 25 / 28



Example
Consider a two values, stored in gamma space with γ = 2.0

l1 = 0.5, l2 = 1.0

If we add them together naively we have.

lgamma = 0.5 + 1.0 = 1.5

Which would produce a luminance 1.52 = 2.25, however what we
should do is

llinear = 0.52 + 1.02 = 1.25 ̸= 2.25

Typically this step is ignored, and all arithmetic is performed in
gamma space, rather than linear space. In many cases you can
get away with this, but it will produces non-realistic results.

Computer Graphics 4610 / 6461 26 / 28



Linear Space Processing
To process operations correctly there are two options. One is to
assume everything is gamma space, then convert, transform, and
convert back again. This can be a bit slow, but is usually how
things are done.

The other is to keep everything in linear space, so no transforms
are needed, then convert once to gamma space at the end. This
method requires converting images to linear space on loading, and
also requires 32-bit floating point for intermediate RGB values. For
this reason it is not used much.

Computer Graphics 4610 / 6461 27 / 28



Raytracer Example

In my solution to lab-5, I perform all operations in linear space (this
is not required), then transform them once at the end. This gives
much softer lighting.

Left: Linear space lighting, Right: Lighting (incorrectly) performed in
gamma space.

Computer Graphics 4610 / 6461 28 / 28


	Admin
	BRDF
	Ray Tracing
	Aside: Gamma Space vs Linear Space

