
COMP4610/COMP6461

Week 11 - Radiosity, CSG, and
Blender
<Print version>

Computer Graphics 4610 / 6461 1 / 35



Radiosity and other
Photo-realistic Methods

Computer Graphics 4610 / 6461 2 / 35



Radiosity
• Radiosity is all about tracking how energy radiates (via photons) from

one surface to another (works with heat too!).
• This involves implementing physical formulations of flux (radiant power).
• We only calculate viewer independent lighting, which means no specular

light, only diffuse.
• An exact solution can be found by solving a (large ) set of simultaneous

equations. However, usually an iterative approach is used instead.

Left direct lighting only Right indirect lighting via radiosity.
https://en.wikipedia.org/wiki/Radiosity_(computer_graphics)

Computer Graphics 4610 / 6461 3 / 35

https://en.wikipedia.org/wiki/Radiosity_(computer_graphics)


Radiant-Energy
• The energy of one photon (in joules) is: E = hf , where

h = 6.6× 10−34, and f is the frequency.
• Sum them over all frequencies. This is known as spectral

radiance: E =
∑

f

∑
photos

hf

• The radiant flux, or radiant power is (joules/sec or watts):
Φ = dE

dt

• The radiosity is the radient flux per unit area leaving a surface
(watts/meter2): B = dΦ

dA

• Intensity (or radiance) is radiant flux in a particular direction
per unit solid angle per unit area (watt/(m2·steradians)).
L = d2Φ

dAdΩcosθ

Computer Graphics 4610 / 6461 4 / 35



Basic Radiosity Model
• Lighting is calculated in a closed system in a viewer independent way.
• Assume all surfaces are: small, opaque, and ideal diffuse reflectors.
• The scene can be broken up into may small patches.
• Given n patches the radiant energy from patch k will be:

Bk = Ek + ρk

n∑
j=1

BjFjk
Aj

Ak• Emitted radiant energy.
• Percent of incident light that is reflected in all directions.
• Form factor (fraction of energy leaving patch j and arriving at patch k)
• This can be written in matrix form and solved, but the system of linear

equations is very large.

Computer Graphics 4610 / 6461 5 / 35



Progressive Refinement
Progressive refinement uses the following approach:

• The radiosity values Bi are initialised to the emitter values Ei

(mostly zero).
• Then repeatedly update patches where Bj is set to the

radiance from the previous pass.
• This can be repeated until the change in radiosity is within

our tolerance, or for a fixed number of passes.

Computer Graphics 4610 / 6461 6 / 35



Progressive Refinement

Credit https://en.wikipedia.org/wiki/Radiosity_(computer_graphics)

Computer Graphics 4610 / 6461 7 / 35

https://en.wikipedia.org/wiki/Radiosity_(computer_graphics)


Path Tracing
• Global illumination effects can be created by making use of

Monte Carlo approaches.
• Path tracing is like ray tracing with rays shot through pixels of

the screen, however, rather than just use perfectly
reflected/refracted angles, the ray is randomly scattered based
on the BRDF. As the ray is bounced around the scene colour
from direct light is incorporated. Many rays are shot through
the same pixel and the result is averaged.

• Path tracing will simulate effects such as soft shadows,
caustics, ambient occlusion, and indirect light.

• If the scene is accurately modelled then path tracing will
produce photo realistic images. However, there is an
enormous computation cost.

Computer Graphics 4610 / 6461 8 / 35



Path-tracing (16 samples)

Computer Graphics 4610 / 6461 9 / 35



Photon Mapping
• Photon mapping is a global illumination approach that first

creates a photon map. This is created by randomly shooting
photons from the light sources into the scene. When photons
hit the surfaces of the scene they are added to the photon
map, they are also recursively reflect from the surfaces based
on the BRDF.

• The Photon map is stored separated from the scene structure
in a BSP-tree (such as a kd-tree).

• In the second stage of photon mapping a ray tracing approach
is use where the photon map provides the lighting information
for the surfaces struck by rays.

• Like path tracing photon mapping is also a Monte Carlo
approach, however, it is not as computationally demanding to
produce a similar result.

Computer Graphics 4610 / 6461 10 / 35



Photon Mapping Example

Photon mapping example from the POV-Ray raytracer.

Computer Graphics 4610 / 6461 11 / 35



Bidirectional Path Tracing
• It’s much more efficient to trace from the camera to the light

than the other way around (as most photons do not end up
hitting the camera lense).

• However some lighting effects work best (or require) that we
trace from the light to the camera (caustics).

• Bidirectional tracing aims to address this by tracing in both
directions.

• https://graphics.pixar.com/library/CausticConnections/paper.pdf

Computer Graphics 4610 / 6461 12 / 35

https://graphics.pixar.com/library/CausticConnections/paper.pdf


The Rendering Equation
Introduced in 1986 [1], the rendering equation describes the equilib-
rium radians leaving a point as an integral

Lo(x, ωo, λ, t) = Le(x, ωo, λ, t) +

∫
Ω

fr(x, ωi, ωo, λ, t)Li(x, ωi, λ, t)(ωi·n) dωi

This was derived from conservation of energy. Most of the lighting
models we have covered in this coarse can be considered approximate
solutions to this integral.

• Le is the emitted spectral radiance.
• Li is incoming spectral radiance.
• fr is the BRDF (which we can measure), but now includes the

wavelength λ and time t.

Computer Graphics 4610 / 6461 13 / 35



Solid Modeling

Computer Graphics 4610 / 6461 14 / 35



Solid Modeling
• Most 3D engines only model an objects surface.
• This simplification is usually good enough, but does have

some limitations, such as what happens if the camera is inside
the object, what is the objects physical mass etc?

• Solid modelling attempts to model 3d objects with an
emphasis on physical fidelity.

• Useful for CAD / simulations.
Often modeling a scene involves trade-offs between:

• How effectively the approach can model the aspect,
• the amount of processing the approach requires when

rendering,
• storage required.

Computer Graphics 4610 / 6461 15 / 35



Voxels
• Perhaps the simplest way to model solid objects is via voxels.
• A voxel is a cube of fixed size, arranges in a fixed spatial grid.

(the cube is the only space filling platonic solid)
• Used in medicine (CT scans).

Credit https://en.wikipedia.org/wiki/Voxel
Computer Graphics 4610 / 6461 16 / 35

https://en.wikipedia.org/wiki/Voxel


Swept surfaces
• A 3D object can be created by sweeping a shape through

space.
• Such representations will often be transformed into polygons

to be rendered within the graphics pipeline.

Computer Graphics 4610 / 6461 17 / 35



Constructive Solid Geometry
• Primitive solid shapes such as boxes, spheres, cones, etc... can

be used in conjunction with union, intersection, and difference
operators to construct complex shapes.

• Ray casting can be used directly on this representation for
rendering.

Computer Graphics 4610 / 6461 18 / 35



Octrees
An octree recursively divides cubes into eight smaller cubes when a
region of space is not uniform. Uniform regions form the leaf nodes
of the octree.

Computer Graphics 4610 / 6461 19 / 35



Blobby Objects
Objects can be defined by a sum of distribution functions over a
region of space. The surface of such objects is then defined to be
the points in space that sum to a particular value.∑

k

bke
akr2k = T (1)

Computer Graphics 4610 / 6461 20 / 35



Surface Modeling

Computer Graphics 4610 / 6461 21 / 35



Polygons
• A boundary representation that encloses the interior of an

object can be used to model most objects. These use a set of
surface polygons. Such polygons can be efficiently rendered
due to their simple linear form.

• Often other representations will be reduced to a set polygons
to be included into the rendering pipeline.

• The visual effectiveness of such representation can be greatly
improved incorporating techniques such as:

• textures,
• vertex norms, and
• bump mapping.

Computer Graphics 4610 / 6461 22 / 35



NURBS (high level surfaces)
• Often a system will use call-back functions to enable complex surfaces.
• Non-uniformm rational B-splines (NURBS) are a generalization of both

Bezier splines and B-splines and provide a very powerful and effective way
of representing a surface.

• To construct NURBS you need:
• control points,
• the degree of the polynomial,
• weight factors, and
• a knot vector.

• OpenGL has NURBS.

Computer Graphics 4610 / 6461 23 / 35



Particle Systems
• Particle systems can be used to add visual effects like: smoke, moving

water, falling leaves, fog, snow, dust, hair, sparks, ’magic’ effects, etc.
• Simple physics that models position, velocity, acceleration, and collision

can be used.
• ‘Static particles’ are rendered over their entire lifecycle. This can produce

effects like hair.
• Particles are normally rendered using a quad that are always facing the

viewer (billboard quad).

Computer Graphics 4610 / 6461 24 / 35



Blender

Computer Graphics 4610 / 6461 25 / 35



Nanite (geometry
virtualization)

Computer Graphics 4610 / 6461 26 / 35



Geometry Virtualization
Nanite is the virtual geometry system used in Unreal Engine 5.0.

These notes are based on the Siggraph 2021 presentation found here
and here.

Computer Graphics 4610 / 6461 27 / 35

https://www.youtube.com/watch?v=eviSykqSUUw&ab_channel=SIGGRAPHAdvancesinReal-TimeRendering
https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf


Nanite

Credit www.unrealengine.com

Computer Graphics 4610 / 6461 28 / 35

www.unrealengine.com


The Problem
• Rescaling textures is straightforward, ‘rescaling’ meshes (in terms of the

number of vertices) is very hard.
• Converting to voxels looks bad and is too large storage wise.
• Ideally, we want a method that can take a high resolution mesh and

quickly re-sample it (just like mipmaps).
• Once we have this, we can just import film grade meshes into our game

and have them ‘just work’.

Computer Graphics 4610 / 6461 29 / 35



Mesh Simplify
Works by breaking the mesh into clusters then simplifying the clus-
ter. Note that the boundary remains unchanged.

Making this work without cracks is difficult.

Computer Graphics 4610 / 6461 30 / 35



Mesh Simplify
• The idea is to (in realtime) simplify meshes by collapsing edges.
• This took at least 1-year full time to do.
• Returns an estimate of the vertex error in worlds space, which is projected

onto the screen to get pixel error.
• Because of this, we can simplify a mesh down to the point where errors

are sub-pixel. Because of this it would be almost impossible to see any
difference.

• Might not work with shiny materials, where small changes in normal
make a big difference.

• I’m surprised this worked. Many people have tried, and failed, to get this
going

Computer Graphics 4610 / 6461 31 / 35



Micropoly Software Rasterizer
• Using this process, many triangles end up being only a few pixels wide.
• Surprisingly, they found that a software rasterizer outperformed the GPU

for these triangles (by 3x).
• Both the GPU and CPU work on drawing the triangles, CPU for small

clusters, GPU for large.

Computer Graphics 4610 / 6461 32 / 35



Nanite: What it doesn’t do
• Only works with static meshes.
• Not great for many small things (grass, leaves, hair).
• No translucency support.

Computer Graphics 4610 / 6461 33 / 35



Next Week
Next week we’ll be looking at anti-aliasing, image formats, as well
as a super resolution, and ray tracing denoising.

Computer Graphics 4610 / 6461 34 / 35



References
[1] James T Kajiya. “The rendering equation”. In: Proceedings of

the 13th annual conference on Computer graphics and interac-
tive techniques. 1986, pp. 143–150.

Computer Graphics 4610 / 6461 35 / 35


	Radiosity and other Photo-realistic Methods
	Solid Modeling
	Surface Modeling
	Blender
	Nanite (geometry virtualization)
	References

