
COMP4610/COMP6461

Week 2 - Basic 2D Graphics
<Print version>

Computer Graphics 4610 / 6461 1 / 28

2D Graphics

Computer Graphics 4610 / 6461 2 / 28

2D Graphics

Line Drawing

Computer Graphics 4610 / 6461 3 / 28

Line Drawing
We often want to be able to draw a line segment between two points.

0 20 40 60 80 100
x

0

20

40

60

80

100
y

p0

p1

Computer Graphics 4610 / 6461 4 / 28

Line Drawing
How do you describe a line?

0 20 40 60 80 100
x

0

20

40

60

80

100

y

p0

p1

(x, y) = tv + p0

0 20 40 60 80 100
x

0

20

40

60

80

100

y

p0

p1

y = mx + b

What might be the problem with the second method?

Computer Graphics 4610 / 6461 5 / 28

Digital Differential Analyzer DDA

1 p r i v a t e s t a t i c v o i d lineDDA (Buf f e r ed Image bu f f , i n t x1 , i n t
y1 , i n t x2 , i n t y2 , i n t rgb) {

2 i n t dx = x2 − x1 ; // Could be improved by m u l t i p l y i n g
3 i n t dy = y2 − y1 ; // v a l u e s by s t e p and then
4 f l o a t x = x1 ; // u s i n g i n t e g e r a r i t h m e t i c .
5 f l o a t y = y1 ; // S t i l l needs 2 d i v i s o n s pe r p o i n t .
6 i n t s t e p s = Math . max(Math . abs (dx) , Math . abs (dy)) ;
7 f l o a t x i n c = (f l o a t) dx / s t e p s ;
8 f l o a t y i n c = (f l o a t) dy / s t e p s ;
9 b u f f . setRGB (Math . round (x) , Math . round (y) , rgb) ;

10 f o r (i n t i = 0 ; i < s t e p s ; i ++) {
11 x += x i n c ;
12 y += y i n c ;
13 b u f f . setRGB (Math . round (x) , Math . round (y) , rgb) ;
14 }
15 }

Computer Graphics 4610 / 6461 6 / 28

Bresenham’s Line Drawing Algorithm
Bresenham’s Line Drawing Algorithm transforms the problem of line
drawing into the decision to ‘step up’ or ‘step right’.

How would we handle lines slopping down? Or to the left?

Computer Graphics 4610 / 6461 7 / 28

Bresenham’s Line Drawing Algorithm
We want a way of deciding to go up or stay on the same line.

y = m(xk + 1) + b
dlower = y − yk = m(xk + 1) + b − yk

dupper = yk + 1 − y = yk + 1 − m(xk + 1)− b

Let:
pk = ∆x(dlower − dupper)

= 2∆y xk − 2∆x yk + c
pk+1 = 2∆y xk+1 − 2∆x yk+1 + c

pk+1 − pk = 2∆y(xk+1 − xk)− 2∆x(yk+1 − yk)

=

{
2∆y if pk < 0
2∆y − 2∆x otherwise

Computer Graphics 4610 / 6461 8 / 28

2D Graphics

Circles

Computer Graphics 4610 / 6461 9 / 28

Drawing Circles

A circle can be defined by,

(x − xc)
2 + (y − yc)

2 = r2

or alternatively in parametric form,

x = xc + r cos θ
y = yc + r sin θ

where θ ∈ R is an angle in radians.

Computer Graphics 4610 / 6461 10 / 28

2D Graphics

Java Graphics

Computer Graphics 4610 / 6461 11 / 28

Java Graphics
In some demos we will look at the following classes:

• Dimensions
• Graphics
• Color
• Font
• Image
• IconsIcon
• BufferedImage
• As well as some Graphics2D methods and associated classes.

Computer Graphics 4610 / 6461 12 / 28

2D Graphics

Splines

Computer Graphics 4610 / 6461 13 / 28

Splines
• Spline curves are composite curves formed with polynomial

sections.
• Spline surfaces are two sets of orthogonal spline curves.
• Control points are used to describe the curve.

Computer Graphics 4610 / 6461 14 / 28

Control points
Interpolate: curve must pass through control points. (like a bendy
ruler)

0 20 40 60 80 100
0

50

100

Approximate: control points guide the curve. (typically by setting
the direction the curve is traveling in)

0 20 40 60 80 100
0

50

100

Computer Graphics 4610 / 6461 15 / 28

Parametric Approaches
Curves can be described using parametric functions.

x = fx(u)
y = fy(u)

ustart ≤u ≤ uend

Curves can be characterised as:
• zero-order parametric continuous (location matches)
• first-order parametric continuous (slope matches)
• second-order parametric continuous (slope of slope matches)

Computer Graphics 4610 / 6461 16 / 28

Cubic Splines
Each piece of the spline is a cubic function.

p0

p1

p2
p3

Given n+1 control points we would have n different cubic functions
describing the curve between the interpolated control points

fx,k(u) = ax,ku3 + bx,ku2 + cx,ku + dx,k

fy,k(u) = ay,ku3 + by,ku2 + cy,ku + dy,k

for u ∈ [0, 1] with end points

xk = fx,k(0.0) xk+1 = fx,k(1.0)
yk = fy,k(0.0) yk+1 = fy,k(1.0)

Computer Graphics 4610 / 6461 17 / 28

Natural Cubic Splines
Natural cubic splines have adjacent curve sections with the same
1st and 2nd derivatives. Assuming we have n sections and n + 1
control points. Then in the x dimension we have:

• 4n variables to calculate that describe the curve
• 2n equations from end points, n-1 equations from asserting

1st derivatives are the same at boundaries, n − 1 equations
from asserting 2nd derivatives are the same at boundaries.

• ⇒ 2 degrees of freedom still to be determined!
Two common approaches:

• Set 2nd derivatives to 0 at the ends, or
• add points p−1 and pn+1.

Computer Graphics 4610 / 6461 18 / 28

Hermite and Cardinal Splines
Hermite Splines are piecewise cubic polynomial splines where the
tangents at the interpolated control points are specified.

Cardinal Splines are like Hermite splines but the tangents are not
explicitly specified rather they are calculated from adjacent control
points.

Computer Graphics 4610 / 6461 19 / 28

Bezier Curves
Linear Bezier Curve (just a line segment)

B(u) = (1 − u)P0 + uP1

Quadratic Bezier Curve
B(u) = (1 − u)2P0 + 2(1 − u)uP1 + u2P2

Cubic Bezier Curve
B(u) = (1 − u)3P0 + 3(1 − u)2uP1 + 3(1 − u)u2P2 + u3P3

Generalised Bezier Curve

B(u) =
n∑

i=0
(1 − u)n−iuiPi

for u ∈ [0..1].

Bezier curves can joined together in a piecewise fashion to form a Bezier spline. Affine
transformations on the control points transforms the curve similarly.

Computer Graphics 4610 / 6461 20 / 28

B-Spline Curves
B-Splines are similar to Bezier curves in that they use a number
of approximate control points. One advantage of B-Splines over
Bezier curves is that the degree of the polynomial can be controlled
independently from the number of control points. Also changes in a
control point only effects the curve in that neighbourhood. However
B-Splines are more complex to program then Bezier curves.

Computer Graphics 4610 / 6461 21 / 28

B-Spline Curves
With n control points, and setting d to the degree of the polynomials. The points on
the curve are calculated via a blending function:

B(u) =
n−1∑
i=0

PiBi,d(u), u ∈ [umin, umax]

n + d − 1 real values are defined. These are called the knots:

u0 ≤ u1 ≤ u2 ≤ ... ≤ un+d−2

The blending function is then defined recursively:

Bk,0(u) =
{

1 if u ∈ [uk , uk+1]

0 otherwise

Bk,d(u) =
u − uk

uk+d − uk
Bk,d−1(u) +

uk+d+1 − u
uk+d+1 − uk+1

Bk+1,d−1(u)

Computer Graphics 4610 / 6461 22 / 28

2D Graphics

Polygons

Computer Graphics 4610 / 6461 23 / 28

Polygons
Polygons can be described by a list of vertices (normally counter-clockwise).

Polygons can be:

(a) Convex internal angles < 180◦ (b) Concave not convex

When vertices are collinear or have repeated positions, then the polygon is de-
scribed as degenerate.
To simplify rendering, concave polygons may be broken up into convex polygons
and convex polygons may be broken up into triangles.

Computer Graphics 4610 / 6461 24 / 28

Identifying Interior of Polygons
There are two ways of defining/identifying if a point is in the interior
of a polygon or not.

(a) Odd-even rule draw any line from
the point in question to outside the
coordinate extents of the polygon and
count the number of edges of the
polygon crossed. If the count is even,
then the point lies outside the
polygon; otherwise, if the count is
odd, then the point is considered to be
an interior point.

(b) Non-zero winding number the
winding number is calculated by
counting the number of times the
perimeter of the polygon travels
around the point in a
counter-clockwise direction. If this
number is non-zero, then the point is
considered to be an interior point.

Computer Graphics 4610 / 6461 25 / 28

Filling Polygons
The odd-even rule can be used for filling polygons.

For each scan line:
• calculate intersections.
• sort in terms of their x values.
• use odd-even rule for filling.

A few special cases to be careful of:
• the scan line crossing vertices, horizontal edges, fractional x value and

determining interior.
• Is there a better way to do this if the polygon is convex?

Computer Graphics 4610 / 6461 26 / 28

Intersection of Line Segments
To determine if two line segments intersect we can use a parametric form for
the line.

vA = pA,1 − pA,0

vB = pB,1 − pB,0

PA(u) = uvA + pA,0

PB(u) = tvB + pB,0

We need to solve for u, t such that

PA(u) = PB(t)

with u ∈ [0, 1] and t ∈ [0, 1]. This gives us two equations and 2 unknowns.

Computer Graphics 4610 / 6461 27 / 28

Intersection of Line Segments
The solutions are:

t = vxA(yB − yA)− vyA(xB − xA)

vyAvxB − vxAvyB

u =
vxB(yA − yB)− vyB(xA − xB)

vyBvxA − vxBvyA

If t ∈ [0, 1]and u ∈ [0, 1] then the lines intersect!

Computer Graphics 4610 / 6461 28 / 28

	2D Graphics
	Line Drawing
	Circles
	Java Graphics
	Splines
	Polygons

