
COMP4610/COMP6461

Week 3 - 2D Transformations
and Hierarchical Modeling

<Print version>

Computer Graphics 4610 / 6461 1 / 43

[Labs]
First Lab is due at the end of this week. Remember...

• It’s due 5pm Friday.
• Clarification on ‘nearly perfect solution’.
• Commit and push
• Add me as developer (u6857890)
• (working on script to automate this for future labs...)

Computer Graphics 4610 / 6461 2 / 43

[Q&A]
• Same time, but now moved to my office.
• We’ll be doing an online Q&A on Piazza.

Computer Graphics 4610 / 6461 3 / 43

[Assignment 1]
• This assignment is to be completed individually.
• Details are up on the course website.
• The assignment is due end of Week-6.

Computer Graphics 4610 / 6461 4 / 43

Transformations

Computer Graphics 4610 / 6461 5 / 43

2D Transformations
Transformations are useful for modelling and viewing a scene.

• They can be used to construct complex objects, and also to
move those objects around in a scene.

• Transformations are often combined using a hierarchy. (e.g
rotating an arm should also move the hand, but rotating the
hand should not rotate the arm.)

• Such transformations are useful and powerful tools for
computer graphics applications, however, at times they can be
tricky to get working properly.

Computer Graphics 4610 / 6461 6 / 43

Translation

P ′ = P +

[
tx
ty

]
.

Computer Graphics 4610 / 6461 7 / 43

Rotation (about origin)

P ′ =

[
cos θ − sin θ

sin θ cos θ

]
P

What if we want to rotate around a point other than the origin?

Computer Graphics 4610 / 6461 8 / 43

Scaling

P ′ =

[
sx 0

0 sy

]
P

Computer Graphics 4610 / 6461 9 / 43

Homogeneous Coordinates
By expanding to a 3x3 matrix we can combine all these transforma-
tions into a single matrix multiplication.

• The Cartesian point (x, y) is represented by the homogeneous
coordinate (wx,wy,w), where w is often set to 1.0 so that
(x, y) is represented by (x, y, 1).

• Also, when w ̸= 0 the homogeneous coordinate (x, y, w)

represents the Cartesian point (x/w, y/w). A single point in
Cartesian space is represented by a line in homogeneous space.
[Why might this be useful?]

Computer Graphics 4610 / 6461 10 / 43

Homogeneous Coordinates
Using Homogeneous coordinates, all of the transformations we have
looked at can be represented by a single matrix:

T (tx, ty) =

1 0 tx
0 1 ty
0 0 1


R(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1


S(sx, sy) =

sx 0 0
0 sy 0
0 0 1



Computer Graphics 4610 / 6461 11 / 43

Advantages of Homogeneous
Coordinates

• One common way to apply all transformations.
• We can now combine transformations (and invert them too).
• Will allow for projections later on...
• Allows points and vectors to be represented together in one

space.

Computer Graphics 4610 / 6461 12 / 43

Composite Transformations
• Any sequence of (linear) transformations is also a linear

transformation. Therefore they can be combined into a single
transformation matrix.

• The order of transformations within the sequence (usually)
matters.

• Rules for composition are as expected:
• T (a, b)T (c, d) = T (a+ c, b+ d)
• R(θ)R(ϕ) = R(θ + ϕ)
• S(a, b)S(c, d) = S(ac, bd)

Computer Graphics 4610 / 6461 13 / 43

Transformations

Other transformations

Computer Graphics 4610 / 6461 14 / 43

Reflection

• Reflection around the x-axis:

1 0 0

0 −1 0

0 0 1


• Reflection around y-axis

−1 0 0

0 1 0

0 0 1


• Reflection about both (same as R(180◦))

−1 0 0

0 −1 0

0 0 1



[How would you reflect around an arbitrary axis?]

Computer Graphics 4610 / 6461 15 / 43

Shear (uncommon)

1 shx 0

0 1 0

0 0 1



Computer Graphics 4610 / 6461 16 / 43

Identity
Does not change the input. 1 0 0

0 1 0

0 0 1



Computer Graphics 4610 / 6461 17 / 43

Graphics2D

Computer Graphics 4610 / 6461 18 / 43

Graphics2D
• Java Graphics2D has an AffineTransform class that allows us

to perform operations
• The bottom row is assumed to be 0, 0, 1 so matrices are 3x2

instead of 3x3.
• How this works:

• Graphics 2D keeps track of the current transformation matrix
• User can modify it by applying transformations
• This is very similar to how OpenGL works (later in the

course).

Computer Graphics 4610 / 6461 19 / 43

Graphics2D

Example

Computer Graphics 4610 / 6461 20 / 43

g.drawImage(...)

Computer Graphics 4610 / 6461 21 / 43

g.translate(iw/2, ih/2)

Computer Graphics 4610 / 6461 22 / 43

g.scale(1, -1)

Computer Graphics 4610 / 6461 23 / 43

g.scale(0.1, 0.1)

Computer Graphics 4610 / 6461 24 / 43

g.rotate(-0.4)

Computer Graphics 4610 / 6461 25 / 43

g.translate(100,100)

Computer Graphics 4610 / 6461 26 / 43

Aspect Ratio

Computer Graphics 4610 / 6461 27 / 43

Aspect Ratio
• The aspect ratio of a device/image is the ratio between the

width and the height of that device/image. This ratio is
commonly given by two numbers the width and then the
height (with a colon in between). Note that the width and
height are often simplified and only describe the ratio not the
actual length, or number of pixels. For example
1920 : 1080 → 16 : 9.

• Modern devices generally have square pixels. This makes
drawing shapes like circles and squares simpler (if this is not
the case then you need to add appropriate scaling
transformation).

Computer Graphics 4610 / 6461 28 / 43

Aspect Ratio
Applications will often have to draw to different device or window
aspect ratios. There are several approaches you can use to deal with
this, including:

• Draw in device coordinates.
• Draw in a fixed user coordinate system, which you transform

onto the device.
• Draw in a user coordinate system but have different

approaches for different aspect ratios.

Computer Graphics 4610 / 6461 29 / 43

Aspect Ratio

Suppose you wish to draw in a user coordinate system that has
(0, 0) at the centre of the screen, positive y going up, (−10, 10) as
the top left coordinate and (10,−10) the bottom right. Now
suppose the device you are drawing to is 640x480 (aspect 4:3),
with g being the Graphics2D object you are using for drawing.
Then you could use the following transformations:

1 g. scale (640.0/20.0 , 480.0/20.0) ;
2 g. translate (10.0 ,10.0) ;
3 g. scale (1.0 , -1.0);

The problem with the above approach is it will squash what you
draw. Another approach would be to scale the user coordinate area
such that it only uses a part of the screen. This could be done
with:

1 g. translate ((640.0 -480.0) /2.0 ,0.0);
2 g. scale (480.0/20.0 , 480.0/20.0) ;
3 g. translate (10.0 ,10.0) ;
4 g. scale (1.0 , -1.0);

Computer Graphics 4610 / 6461 30 / 43

Centering

Computer Graphics 4610 / 6461 31 / 43

Centering and Spacing Items
To position an item you are drawing within the center of a scene
you can do some simple math to calculate the offset from the side.

If you have k items you wish to space evenly within an area then the
space between these items will be:

width −
∑

i
= 1kwi

k + 1

Computer Graphics 4610 / 6461 32 / 43

Hierarchical Modeling

Computer Graphics 4610 / 6461 33 / 43

Hierarchical Modeling
Model the structure of your seen through function calls.

• Each method modifies the current transform, then restores it
once it’s done.

• Every method assumes it’s being draw in it’s ‘natural’
co-ordinate system.

• Transforms applied at parent level, automatically transferred
to children.

• Components can be reused (i.e. a wheel on a bike or car).
Issues

• Structure is not explicit.
• Transformations are tied to drawing.
• Each method must clean up the transform.

Computer Graphics 4610 / 6461 34 / 43

Hierarchical Modeling: Code example

1 private void drawCar (Graphics2D g, double x, double y) {
2 AffineTransform af = g. getTransform ();
3 g. translate (x, y)
4 drawBody (g);
5 g. translate (-1.0 , 1.0)
6 drawWheel (g); // drawn at (-1, 1)
7 g. translate (2.0 , 0)
8 drawWheel (g); // drawn at (+1 , 1)
9 g. setTransform (af);

10 }

Computer Graphics 4610 / 6461 35 / 43

Hierarchical Modeling
• Care needs to be taken such that any transformations that an

object uses for drawing itself are undone. Otherwise, it
becomes difficult to position subsequent objects properly.

• One approach that may be used is to...
• have a method for each object,
• objects are drawn at coordinates centred on (0,0),
• at the beginning of the method, the current transformation is

stored (pushed) and then restored (popped) before the method
returns.

Computer Graphics 4610 / 6461 36 / 43

Inverting Affine
Transformations

Computer Graphics 4610 / 6461 37 / 43

Inverting Affine Transformations
As we draw objects to the scene coordinates are transformed from
user coordinates to device coordinates. However, if a user interacts
with our drawing (via a device such as a touch screen or a mouse).
Then the coordinate our program obtains are device coordinates,
thus, if you wish to interact with objects in user coordinates then
you need to transform these device coordinates by inverting the
user → device transformation.

Computer Graphics 4610 / 6461 38 / 43

Java’s AffineTransform
• In Java the AffineTransform class provides a method that

will invert an affine transform. There are also methods that
will apply an inverted transformation to individual points.

• Inverted affine transforms are also affine transforms. Note:
some affine transformations can not be inverted.
[which ones?].

Computer Graphics 4610 / 6461 39 / 43

Scene Graph

Computer Graphics 4610 / 6461 40 / 43

Scene Graph
Another (better) approach is to use a scene graph.

• Nodes in a scene graph have attributes, transformations, and
a method for drawing that node.

• Nodes can have a list of children, who inherit their transform.
• With this approach converting from device → user

coordinates can be done without executing the drawing code,
rather, the transformations in the scene graph can be
traversed and inverted.

• We can easily traverse up (and down) the graph to calculate a
a ‘toLocal’ matrix transform, and it’s inverse ’toWorld’.

Computer Graphics 4610 / 6461 41 / 43

Scene Graph

Computer Graphics 4610 / 6461 42 / 43

[Course Representatives]
Roles and responsibilities:

• Act as the official liaison between your peers and convener.
• Be creative, available and proactive in gathering feedback from your

classmates.
• Attend regular meetings, and provide reports on course feedback to

your course convener and the Associate Director (Education).
• Close the feedback loop by reporting back to the class the outcomes

of your meetings.

Sign up here -> https://anu.au1.qualtrics.com/jfe/form/SV_
3L5pd93Aq9k21iS

Computer Graphics 4610 / 6461 43 / 43

https://anu.au1.qualtrics.com/jfe/form/SV_3L5pd93Aq9k21iS
https://anu.au1.qualtrics.com/jfe/form/SV_3L5pd93Aq9k21iS

	Transformations
	Other transformations

	Graphics2D
	Example

	Aspect Ratio
	Centering
	Hierarchical Modeling
	Inverting Affine Transformations
	Scene Graph

