
COMP4610/COMP6461

Week 6 - Physics and Introduction to
3D Graphics

<Print version>

Computer Graphics 4610 / 6461 1 / 38

Admin

Computer Graphics 4610 / 6461 2 / 38

[Feedback for Labs]
• Lab feedback is provided via Wattle.
• This includes individual marks for the three tasks, and

comments.
• If you would like additional feedback please discuss with your

tutor.
• Feedback will be provided on Tuesday week, (i.e. 6 working

days later), ready for the first lab.

Computer Graphics 4610 / 6461 3 / 38

[A few Small Changes to the Labs]
• Future labs / assignments have been renamed to

comp4610-xxx (to avoid collisions).
• There is no longer any need to add me as a developer. This is

done automatically when you fork (you should see a marker
user added automatically).

• We now send out a confirmation email receipt at 7 PM letting
you know your work was received.

Computer Graphics 4610 / 6461 4 / 38

[Assignment 1]
• First Assignment is due at the end of this week
• Remember to follow the instructions on the spec.
• Your submission should include a 5-minute video

demonstrating your solution.
• Videos should be submitted as part of your repo. Just make

sure they are <100MB.
• The assignment spec makes mention of being able to use

JUnit for testing. If you would like to do this, feel free. I’ve
added the JARs back into the repo.

Computer Graphics 4610 / 6461 5 / 38

3D Viewing
Transformations

Computer Graphics 4610 / 6461 6 / 38

3D Viewing
• Viewing processes for a 3D scene are in many ways similar to

that of 2D. However, the extra dimension brings with it a host
of complexities such as lighting and viewing projections.

• Coordinates undergo a series of transformations to produce
the final image on the screen.

Introduction to Computer Graphics (D.J. Eck) Ch 3.3

Computer Graphics 4610 / 6461 7 / 38

3D Viewing
This means we need to...

1 Apply a model transform (position rotate and scale the object
into the world)

2 Apply a view transform (transform the view based on the
camera’s location and rotation)

3 Apply a projection transform (project the 3d scene onto the
2d viewing plane.

• In OpenGL [1,2] are handled by the MODELVIEW matrix,
while [3] is handled by the PROJECTION matrix.

• In general, [1,2] change every frame, while [3] (almost) never
changes.

Computer Graphics 4610 / 6461 8 / 38

Viewing Transformation

Computer Graphics 4610 / 6461 9 / 38

Projection

Computer Graphics 4610 / 6461 10 / 38

Orthogonal Projection

• Orthogonal projections are parallel projections in which
objects appear the same size as their distance from the viewer
changes.

• The view volume (frustrum) forms a hyper rectangle
(cuboid).

• glOrtho() will turn viewing coordinates into normalised
projected coordinates. These normalised coordinates are a
cube of side length 2 centred on the origin.

In OpenGL
g l u . gluOrtho2D (0 . 0 , dim . getWidth () , 0 . 0 , dim . g e t H e i g h t () ,) ; // o p t i o n 1
g l . g lOrtho2D (0 . 0 , dim . getWidth () , 0 . 0 , dim . g e t H e i g h t () , −1, 1) ; // o p t i o n 2

Computer Graphics 4610 / 6461 11 / 38

Orthogonal Projection

Introduction to Computer Graphics (D.J. Eck) Ch 3.3

Computer Graphics 4610 / 6461 12 / 38

Perspective Projection

• Projection requires dividing by z.
• A homogeneous matrix can be used to describe a perspective

transformation.
• There are two functions that can be used in OpenGL to give

a perspective projection. They are:
gluPerspective (theta , aspect , dnear , dfar);
glFrustum (xwmin , xwmax , ywmin , yzmax , dnear , dfar);

Computer Graphics 4610 / 6461 13 / 38

Perspective Projection

Introduction to Computer Graphics (D.J. Eck) Ch 3.3

Computer Graphics 4610 / 6461 14 / 38

Perspective Projection
Perspective projection requires a division in the calculation. This can
be achieved by using the division that is done when homogeneous
points are converted into cartesian points. So the matrix used by
OpenGL for perspective projection glFrustrum(l,r,b,t,n,f) is

2n

r−l
0 r+l

r−l
0

0 2n

t−b

t+b

t−b
0

0 0 − f+n

f−n

2fn

f−n

0 0 −1 0

Computer Graphics 4610 / 6461 15 / 38

Break

Computer Graphics 4610 / 6461 17 / 38

OpenGL

Computer Graphics 4610 / 6461 18 / 38

Graphics APIs

Computer Graphics 4610 / 6461 19 / 38

OpenGL in more detail
• OpenGL 1.1

• Fixed function pipeline.
• Devices typically implemented commands in hardware.
• Fairly good software fallback.
• Easy to setup, hard to customize.

• OpenGL 2.0
• Programmable pipeline via shaders.
• Still has support for fixed function pipeline (via emulation).
• This is what we typically use in this course.
• Harder to setup, easier to customize.

• OpenGL ES
• The embedded systems subset of OpenGL.
• Drops fixed-function support.
• Probably the most widely deployed 3D graphics API in history.
• WebGL is based on this.

Computer Graphics 4610 / 6461 20 / 38

OpenGL

OpenGL as a state machine

Computer Graphics 4610 / 6461 21 / 38

Allegro (a mostly stateless graphics library)

1 void al_draw_triangle (float x1 , float y1 , float x2 , float y2
, float x3 , float y3 , ALLEGRO_COLOR color , float
thickness)

Computer Graphics 4610 / 6461 22 / 38

Allegro (a mostly stateless graphics library)

1 void al_draw_filled_triangle (float x1 , float y1 , float x2 ,
float y2 , float x3 , float y3 , ALLEGRO_COLOR color)

Computer Graphics 4610 / 6461 23 / 38

Allegro (a mostly stateless graphics library)

1 int al_draw_prim (const void* vtxs , const ALLEGRO_VERTEX_DECL
* decl , ALLEGRO_BITMAP * texture , int start , int end , int

type)

Computer Graphics 4610 / 6461 24 / 38

OpenGL (a stateful graphics library)

1 gl. glBegin (GL2. GL_POLYGON);
2 gl. glVertex2d (0.0 , 0.0);
3 gl. glVertex2d (50.0 , 100.0) ;
4 gl. glVertex2d (-50.0 , 100.0) ;
5 gl. glEnd ();

Computer Graphics 4610 / 6461 25 / 38

OpenGL (a stateful graphics library)

1 gl. glBegin (GL2. GL_POLYGON);
2 gl. glColor3f (1.0 , 0.0 , 0.0);
3 gl. glVertex2d (0.0 , 0.0);
4 gl. glVertex2d (50.0 , 100.0) ;
5 gl. glVertex2d (-50.0 , 100.0) ;
6 gl. glEnd ();

Computer Graphics 4610 / 6461 26 / 38

OpenGL (a stateful graphics library)

1 gl. glPolygonMode (GL_FRONT_AND_BACK , GL_LINE);
2 gl. glBegin (GL2. GL_POLYGON);
3 gl. glVertex2d (0.0 , 0.0);
4 gl. glVertex2d (50.0 , 100.0) ;
5 gl. glVertex2d (-50.0 , 100.0) ;
6 gl. glEnd ();

Computer Graphics 4610 / 6461 27 / 38

OpenGL (a stateful graphics library)

1 gl. glPolygonMode (GL_FRONT_AND_BACK , GL_LINE);
2 gl. glBegin (GL2. GL_POLYGON);
3 gl. glVertex2d (0.0 , 0.0);
4 gl. glVertex2d (50.0 , 100.0) ;
5 gl. glVertex2d (-50.0 , 100.0) ;
6 gl. glEnd ();
7 gl. glPolygonMode (GL_FRONT_AND_BACK , GL_FILL);

Computer Graphics 4610 / 6461 28 / 38

OpenGL (a stateful graphics library)

1 gl. glEnable (gl. GL_TEXTURE_2D);
2 gl. glBindTexture (gl. GL_TEXTURE_2D , texture);
3 gl. glBegin (GL2. GL_POLYGON);
4 gl. glTextCoord2d (0.0 , 0.0);
5 gl. glVertex2d (0.0 , 0.0);
6 gl. glTextCoord2d (1.0 , 0.0);
7 gl. glVertex2d (50.0 , 0.0);
8 gl. glTextCoord2d (1.0 , 1.0);
9 gl. glVertex2d (50.0 , 50.0) ;

10 gl. glTextCoord2d (0.0 , 1.0);
11 gl. glVertex2d (0.0 , 50.0) ;
12 gl. glEnd ();

Computer Graphics 4610 / 6461 29 / 38

OpenGL

OpenGL 1.1 Vs OpenGL 2.0

Computer Graphics 4610 / 6461 30 / 38

"Hello Triangle" in OpenGL 1.1 (5 lines of code)

1 gl. glBegin (GL2. GL_POLYGON);
2 gl. glVertex2d (0.0 , 0.0);
3 gl. glVertex2d (50.0 , 100.0) ;
4 gl. glVertex2d (-50.0 , 100.0) ;
5 gl. glEnd ();

Computer Graphics 4610 / 6461 31 / 38

"Hello Triangle" in OpenGL 2.0 (>100 lines of code)

1 // load our shaders ...
2 try {
3 vertexShaderString = Files . readAllLines (Paths .get("./

shaders / task3 .vert")). toString ();
4 fragmentShaderString = Files . readAllLines (Paths .get("./

shaders / task3 .frag")). toString ();
5 } catch (IOException e) {
6 // pass
7 }
8 matrix = new PMVMatrix ();
9 // setup and load the vertex and fragment shader programs

10 matrix . glMatrixMode (GL2. GL_PROJECTION);
11 matrix . glOrthof (0.0f, (float) dim. getWidth () , 0.0f, (float)

dim. getHeight () , -1.0f, 1.0f);
12 matrix . glMatrixMode (GL2. GL_MODELVIEW);
13 // setup and load the vertex and fragment shader programs
14 shaderProgram = gl2. glCreateProgram ();
15 vertexShader = gl2. glCreateShader (GL2. GL_VERTEX_SHADER);
16 String [] vertexShaderArrayStrings = { vertexShaderString };
17 int [] vertexShaderArrayLengths = { vertexShaderString . length

() };
18 gl2. glShaderSource (vertexShader , 1, vertexShaderArrayStrings

, vertexShaderArrayLengths , 0);
19 ... (>80 additonal lines of code ...)

Computer Graphics 4610 / 6461 32 / 38

OpenGL

Texturing

Computer Graphics 4610 / 6461 33 / 38

Basic Texturing
• We cover texturing in more detail later on in the course.
• JOGL provides a class to help with texture loading TextureIO
• Textures are assigned handles.
• To enable texturing you need to.

1 enable texture2d with glEnable(GL_TEXTURE2D)
2 bind the texture you want glBind(...)
3 define UV coordinates for each vertex using glTexCoord2d(...)

• UV coordinates are always [0, 1].

Computer Graphics 4610 / 6461 34 / 38

OpenGL

Common Commands

Computer Graphics 4610 / 6461 35 / 38

Common OpenGL Commands
Documentation for the OpenGL API can be found here
https://registry.khronos.org/OpenGL-Refpages/gl2.1/
Some of the more important commands to know are...

• glBegin, glEnd
• glClear, glClearColor
• glPushMatrix, glPopMatrix, glMatrixMode
• glVertex, glTexCoord
• glTranslate, glRotate, glScale

Computer Graphics 4610 / 6461 36 / 38

https://registry.khronos.org/OpenGL-Refpages/gl2.1/

glBegin / glEnd
The glBegin and glEnd commands are used to delimit the vertices
of a primitive. Only a limited subset of OpenGL commands with
within a begin/end block. Usually we just want to use glColor,
glVertex, and glTexCoord.
There are also several primitives to choose from, including

• GL_POINTS
• GL_LINES
• GL_TRIANGLES
• GL_POLYGON (we mostly use this in the labs)

Computer Graphics 4610 / 6461 37 / 38

[After the break...]

Shaders...

Computer Graphics 4610 / 6461 38 / 38

	Admin
	3D Viewing Transformations
	Projection
	Break
	OpenGL
	OpenGL as a state machine
	OpenGL 1.1 Vs OpenGL 2.0
	Texturing
	Common Commands

