
COMP4610/COMP6461

Week 7 - Textures and Shaders
<Print version>

Computer Graphics 4610 / 6461 1 / 30

Admin

Computer Graphics 4610 / 6461 2 / 30

Textures

Computer Graphics 4610 / 6461 3 / 30

What is a Texture?

Textures allow us to add fine detail to 3D objects.

Computer Graphics 4610 / 6461 4 / 30

What is a Texture?
• Textures can be defined either by

• image textures: an array of colours.
• procedural textures a function which maps texture

coordinates to colours.
• Texture can be 1D, 2D or 3D.
• Texture coordinates range from 0.0 to 1.0
• Color can be grayscale, RGB, RGBA, and others.
• Texture coordinates are usually named u,v,w, but OpenGL

uses s, t, r (this is because w was already used...).
• To use 2D Textures on 3D objects some kind of mapping is

required.
• We refer to the ‘pixels’ of the texture as texels.

Computer Graphics 4610 / 6461 5 / 30

UV Space

Texture Space (s,t)
s

t

Object Space (x, y, z)

X, Y, Z object coordinates must be mapped to S,T (UV) coordinates.

Computer Graphics 4610 / 6461 6 / 30

Affine Mapping

Linear interpolation of texture coordinates over pixels produces incorrect results.
Therefore perspective correction needs to be applied. This involves multiplying
by 1

z
(hyperbolic interpolation), which was not practical on early hardware.

Blinn outlines how to do this using homogeneous coordinates in his 1992 paper
[1].

Credit https://en.wikipedia.org/wiki/Texture_mapping

GLSL still supports the affine interpolation via
n o p e r s p e c t i v e out vec4 uvCoord ;

Computer Graphics 4610 / 6461 7 / 30

https://en.wikipedia.org/wiki/Texture_mapping

Textures in OpenGL

During initialization
To render using textures you first need to generate a texture id
(handle), then load it, and enable texturing.

g l . g lGenTex tu r e s (1 , t ex ID) ;
g l . g l B i n d T e x t u r e (g l .GL_TEXTURE_2D, tex ID) ;
g l . glTexImage2D (g l .GL_TEXTURE_2D, 0 ,

g l .GL_RGB, width , he i gh t , 0 ,
g l .GL_RGB, g l . GL_UNSIGNED_BYTE,
B y t e B u f f e r . wrap (t e x t u r e D a t a)) ;

g l . g l E n a b l e (g l .GL_TEXTURE_2D) ;

When drawing
You need to bind the texture, then set UV coords at the vertices.

g l . g l B i n d T e x t u r e (g l .GL_TEXTURE_2D, tex ID) ;
g l . g l B e g i n (g l .GL_POLYGON) ;
g l . g lTexCoord2d (0 . 0 , 0 . 0) ;
g l . g l V e r t e x 3 d (0 . 0 , 0 . 0 , 0 . 0) ;
. . .
g l . g lEnd () ;

JOGL provides a class TextureIO that does some of this work for
us.

Computer Graphics 4610 / 6461 8 / 30

https://jogamp.org/deployment/v2.1.5/javadoc/jogl/javadoc/com/jogamp/opengl/util/texture/TextureIO.html

MIP Maps

• Textures have aliasing artifacts when zoomed out too far.
• Solution: Average over texels within a region... too slow.
• Better solution: Create a reduced resolution texture with high frequencies

filtered out.
• Sampling a single texel from the level-5 mipmap is effectively averaging

over 32 samples in the original texture.
• Can increase performance due to localised memory access patterns.

Computer Graphics 4610 / 6461 9 / 30

Texture Filtering

In OpenGL you can configure the filtering mode for both
magnification and minification.
OpenGL allows configuration of interpolation between texels, as
well as interpolation between mipmaps via

g l . g lT exP a r ame te r i (GL .GL_TEXTURE_2D, GL . GL_TEXTURE_MIN_FILTER, SETTING) ;

where SETTING is taken from the following table.

OpenGL Common Name
GL_NEAREST No filtering (without mipmaps)
GL_NEAREST_MIPMAP_NEAREST No filtering (with mipmaps)
GL_LINEAR Bilinear (without mipmaps)
GL_LINEAR_MIPMAP_NEAREST Bilinear (with mipmaps)
GL_LINEAR_MIPMAP_LINEAR Trilinear

Computer Graphics 4610 / 6461 10 / 30

Wrapping

In OpenGL we can control what happens texture coordanates
outside of [0, 1] are given, using

g lTe xPa ra me te r i (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, ∗) ;
g lTe xPa ra me te r i (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, ∗) ;

Credit https://open.gl/textures

Computer Graphics 4610 / 6461 11 / 30

https://open.gl/textures

UV Mapping

Computer Graphics 4610 / 6461 12 / 30

Planar Mapping
Simplest method. Just throw away one of the dimensions.

Credit: https://education.siggraph.org/static/HyperGraph/

Computer Graphics 4610 / 6461 13 / 30

https://education.siggraph.org/static/HyperGraph/

Spherical Mapping
Calculate longitude and latitude (or just use the normals...)

r =
√
(x2 + y2 + z2) (1)

u = atan2(y, x)/(2π) + 0.5 (2)
v = asin(z/r)/π + 0.5 (3)

Credit: https://education.siggraph.org/static/HyperGraph/
Computer Graphics 4610 / 6461 14 / 30

https://education.siggraph.org/static/HyperGraph/

Cube Maps
Use 6 planar maps. Quite useful for reflections, and skyboxes.

Credit: https://education.siggraph.org/static/HyperGraph/
Computer Graphics 4610 / 6461 15 / 30

https://education.siggraph.org/static/HyperGraph/

UV Unwrapping
Probably the most common method. Often requires human input
to define the seams. Might not make best use of the texture space.

Credit: https://en.wikipedia.org/wiki/UV_mapping
Computer Graphics 4610 / 6461 16 / 30

https://en.wikipedia.org/wiki/UV_mapping

Shaders

Computer Graphics 4610 / 6461 17 / 30

[Why Shaders?]
• Early on hardware for 3D graphics was very expensive and

limited.
• Features were typically implemented in hardware, and gave

only limited control over the lighting calculations.
• As more and more features were added, it became efficient for

hardware to implement very general operations in hardware,
then ‘build’ the predefined lighting algorithms out of these
basic operations, in either firmware or at the driver level.

• It became increasingly obvious that giving access to these
low-level operations would be a good idea. However, how
could this be done without locking into specific hardware
design choices?

• Shaders were the solution to this problem.

Computer Graphics 4610 / 6461 18 / 30

OpenGL Rendering Pipeline
• OpenGL provides a processing pipeline to produce real time

3D rendered images.
• OpenGL 1.1 uses a fixed pipeline. The GPU cards effectively

implemented this in fixed hardware. To provide more
rendering flexibility the computational intensive parts of the
pipeline became programmable, this was done via shaders.

Diagram based on information from
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

Computer Graphics 4610 / 6461 19 / 30

https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview

Vertex and Fragment Shaders
Shaders are short bits of ‘c like’ code that have mostly defined inputs
and outputs that can be run on the GPU in parallel. The two main
types of shaders are:

• Vertex - which transform individual vertices which make up
the scene to be renders. For the most part this involves
applying the model-view and perspective matrix
transformations. However it often will also involve
transformations of colours at these vertices and also texture
coordinates.

• Fragment - each triangle is divided up into fragments. Which
are basically potential pixels. The fragment shader will work
out the colour of that potential pixel, this will involve lighting
calculations and/or looking up texture values.

Computer Graphics 4610 / 6461 20 / 30

Basic Shader Processing
The GLSL (OpenGL Shading Language) has evolved over the years.
Initially it had more defined and constrained inputs and outputs
between shaders. Newer versions moving to more general and flexible
connections.

This diagram shows how information is provided to the vertex and
fragment shaders for GLSL 3.3.

Computer Graphics 4610 / 6461 21 / 30

Example Vertex Shader

The below vertex shader transforms points based on provided
model-view and perspective transformation matricies. It just passes
through to colour value for each vertex.
#v e r s i o n 330 c o r e
i n vec3 aPos ;
i n vec3 c o l o r ;
un i fo rm mat4 mvMat , pMat ;
out vec4 v e r t e x _ c o l o r ;
vec4 mc ;
v o i d main () {

v e r t e x _ c o l o r = vec4 (c o l o r , 1 . 0) ;
mc = vec4 (aPos . x , aPos . y , aPos . z , 1 . 0) ;
g l _ P o s i t i o n = (pMat ∗ mvMat) ∗ mc ;

}

Computer Graphics 4610 / 6461 22 / 30

Example Fragment Shader

The below fragment shader uses the interpolated colour values to
determine the final colour of the fragment.
#v e r s i o n 330 c o r e
out vec4 FragCo lo r ;
i n vec4 v e r t e x _ c o l o r ;
v o i d main () {

FragCo lo r = vec4 (v e r t e x _ c o l o r . x , v e r t e x _ c o l o r . y , v e r t e x _ c o l o r . z , 1 . 0) ;
}

Computer Graphics 4610 / 6461 23 / 30

Handling Uniforms

Uniforms need to be passed to OpenGL via gl.glUniform...

i n t mvMatrixID = g l . g lGe tUn i f o rmLoca t i on (
shaderProgram , "mvMat") ;

g l . g lUn i f o rmMa t r i x 4 f v (mvMatrixID , 1 , f a l s e
, mat r i x . g lGetMvMatr i x f ()) ;

Computer Graphics 4610 / 6461 24 / 30

GLSL
GLSL is for the most part standard c code. The 2 key exception are
that pointers and recursion are not permitted. Although there are
a number of extra but built in functions and operators that simplify
graphics calculations. These include:

• Vector and matrix types and their associated operators
(multiplication, inverse, determinate, transpose)

• Geometric functions (length, distance, dot, cross, normalize,
reflect, refract).

• Texture lookup functions.
• Handy maths functions (max, min, clamp).
• Trigonometry and exponential functions.

Computer Graphics 4610 / 6461 25 / 30

Getting it Going
To get a shader approach working in OpenGL you need to:

• Load, compile, link the shader program,
• setup the buffers for providing the data for the shader,
• setup any uniforms you are using, setting there values before

you draw,
• set the input attributes to point to buffers you are using, and
• do the drawing.

In my experience this is usually about 120 lines of code, and if you
get it 95% correct it won’t work at all. For this reason we have
provided a very basic working example as part of Lab-3.

Computer Graphics 4610 / 6461 26 / 30

Shaders and Textures

Computer Graphics 4610 / 6461 27 / 30

Using Textures with Shaders

We can access our texture in the shader using (note we usually
modulate the texture color with the vertex color)
i n vec3 V e r t e x C o l o r ;
i n vec3 TexCoord
un i fo rm sampler2D ourTextu re ;
v o i d main ()
{

FragCo lo r = t e x t u r e (ourTexture , TexCoord) ∗ vec4 (Ve r t exCo lo r , 1 . 0) ;
}

By default this uses the first texture unit, GL_TEXTURE0, we
can bind textures to other units using
g l A c t i v e T e x t u r e (GL_TEXTURE2) ;
g l B i n d T e x t u r e (GL_TEXTURE_2D, ourTextu re ID) ;

The number of available texture units is hardware dependant, but
for OpenGL 4.0 it will always be ≥ 16. If UV coordinates are not
shared between textures use glMultiTexCoord2d.

Computer Graphics 4610 / 6461 28 / 30

References

[1] James F Blinn. “Hyperbolic interpolation”. In: IEEE
Computer Graphics and Applications 12.4 (1992), pp. 89–94.

Computer Graphics 4610 / 6461 29 / 30

Aside: AI Generated
Graphics

Computer Graphics 4610 / 6461 30 / 30

	Admin
	Textures
	UV Mapping
	Shaders
	Shaders and Textures
	References
	Aside: AI Generated Graphics

