
COMP4610/COMP6461

Week 8 - Introduction to Lighting
<Print version>

Computer Graphics 4610 / 6461 1 / 33

The Phong Lighting
Model

Computer Graphics 4610 / 6461 2 / 33

[Lighting Models]
Early lighting models were all about feasability rather than realism.
These lighting models are still common today, and can be tricky to
get to look right.

In contrast, modern lighting models look great by default, are easier
to work with, but have higher computational costs.

An early (1972) ‘halftone’ lighting model on limited hardware by Edwin
Catmull, who went on to found Pixar.

Computer Graphics 4610 / 6461 3 / 33

Phong Reflection Model

Image Brad Smith 2006 ShareALike 3.0 obtained from wikipedia

Computer Graphics 4610 / 6461 4 / 33

Phong Reflection Model
The Phong reflection model combines: ambient, diffuse, and spec-
ular lighting effects. All vectors are normalized.

Ip =
∑

m∈lights

kai
m

a︸︷︷︸
ambient

+

diffuse︷ ︸︸ ︷
kd(L

m ·N)imd + ksi
m

s (R
m · V)α︸ ︷︷ ︸

specular

(1)

Ip Intensity for the surface patch.
Lm Direction vector from surface toward light m.
Rm Lm perfectly reflected off the surface.
V Direction vector pointing towards viewer.
N Surface normal.

ka, kd, ks Material constants.
ima , i

m
d , i

m
s Lighting constants for light m.

Computer Graphics 4610 / 6461 5 / 33

Phong Reflection Model

Wikipedia https://en.wikipedia.org/wiki/Phong_reflection_
model#/media/File:Blinn_Vectors.svg

Computer Graphics 4610 / 6461 6 / 33

https://en.wikipedia.org/wiki/Phong_reflection_model##/media/File:Blinn_Vectors.svg
https://en.wikipedia.org/wiki/Phong_reflection_model##/media/File:Blinn_Vectors.svg

Blinn-Phong Reflection Model
It’s quite common to drop the reflected vector, and instead use the
normalized ‘half’ vector.

Ip =
∑

m∈lights

kai
m

a︸︷︷︸
ambient

+

diffuse︷ ︸︸ ︷
kd(L

m ·N)imd + ksi
m

s (N ·H)α︸ ︷︷ ︸
specular

(2)

where

H =
L+ V

|L+ V |
(3)

In cases where the surface is far away from the viewer, H can be
considered constant, and unlike R, need not be recalculated per-
pixel. Surprisingly, the Blinn-Phong simplification produces a better
approximation to BRDF than Phong (more on BRDF later).

Computer Graphics 4610 / 6461 7 / 33

Phong Clipping
When calculating Phong the diffuse and specular intensity may
sometimes be negative. Because of this we need to clip the intensity
to using max(·, 0).

For diffuse light this will be more apparent when there are multiple
lights. In this case ’negative’ light from one light will cancel out
the others light.

Computer Graphics 4610 / 6461 8 / 33

Phong and Colour
The Phong lighting model only specifies the light intensity for a
particular patch. For this reason, it is often necessary to apply the
formula three times for each of the primary colours.

In most cases, vectorized math can be used to perform these three
calculations simultaneously. In that case, Ip would be a three-vector
containing the RGB values, as would the material and lighting
constants.

Computer Graphics 4610 / 6461 9 / 33

Ambient Light
• Areas in shadow still receive some ‘ambient’ light.
• Lighting is independent of both viewer angle, and surface

normal → flat looking images.
• Ambient lighting is usually applied to the diffuse material

properties of a surface’s material.

Shadowed areas are not completely black.

Computer Graphics 4610 / 6461 10 / 33

Ambient Occlusion
In reality ambient light is not uniform, and can be occluded. This
affect can be applied as a post processing affect (SSAO), and gen-
erally makes lighting look much better.

Credit https://github.com/Unity-Technologies/PostProcessing

Computer Graphics 4610 / 6461 11 / 33

https://github.com/Unity-Technologies/PostProcessing

Diffuse Lighting
• Often called Lambertian reflectance.
• Assumes a rough surface that emits light evenly in all

directions.
• Therefore lighting is independent of the viewing angle (but

not the surface normal).
• Used extensively in early graphics as it just requires

calculating L ·N = cosα (for unit vectors).

Computer Graphics 4610 / 6461 12 / 33

Specular Lighting
• Lighting is dependant on the surface normal, and the viewing

angle.
• What we are seeing is actually blurry refelection of the light

source.
• Unlike diffuse lighting, this does not interpolate well, and so

should be calculated per pixel.
• The Phong lighting model uses (Rm · V)α. which is not

physically plausible, and may give poor results. (PRB resolves
this, more on that in future weeks...)

Computer Graphics 4610 / 6461 13 / 33

[Tips and Tricks]
Some common issues with lighting...

• Make sure you don’t have a negative sign somewhere?
Remember, L goes from surface → light, not light → surface
etc.

• Remember to normalize your vectors. A common mistake is
to forget this.

• When debugging, I like to add a sphere to a scene just to
make sure that lighting is as expected.

• Normals can be tricky...

Computer Graphics 4610 / 6461 14 / 33

OpenGL
• OpenGL’s fixed function pipeline implements the Phong

reflectance model.
• Supports multiple lights, and control over material properties.
• Lighting is calculated per-vertex, using the Blinn-Phong

reflectance model.
• Shaders are required for per-pixel lighting. If using shaders

the entire model must be implemented by the user using
shaders (predominantly in the fragment shader).

Computer Graphics 4610 / 6461 15 / 33

OpenGL - Lighting

First we enable lighting,

g l . g l E n a b l e (g l . GL_LIGHTING) ;
g l . g l E n a b l e (g l . GL_LIGHT0) ;
g l . g l E n a b l e (g l . GL_NORMALIZE) ; // not r e q u i r e d , but a good i d e a . . .

then a light can be setup as follows,
f l o a t [] c o l o r = {0 .3 f , 0 . 7 f , 0 . 1 f , 1 } ;
g l . g l L i g h t f v (g l . GL_LIGHT0 , g l .GL_AMBIENT, ambientCo lor , 0) ;
g l . g l L i g h t f v (g l . GL_LIGHT0 , g l . GL_DIFFUSE , d i f f u s e C o l o r , 0) ;
g l . g l L i g h t f v (g l . GL_LIGHT0 , g l . GL_SPECULAR, s p e c u l a r C o l o r , 0) ;
// d e f i n e the l i g h t l o c a t i o n (x , y , z , 0) f o r d i r e c t i o n a l , (x , y , z , 1) f o r p o i n t .
// note : p o s i t i o n i s d e f i n e d a c c o r d i n g to the c u r r e n t model v iew ma t r i x .
g l . g l L i g h t f v (g l . GL_LIGHT0 , g l . GL_POSITION , l i g h t P o s i t i o n , 0) ;

and a material as follows.
g l . g l M a t e r i a l f v (g l .GL_FRONT_AND_BACK, g l . GL_AMBIENT_AND_DIFFUSE, c o l o r , 0) ;
g l . g l M a t e r i a l f v (g l .GL_FRONT_AND_BACK, g l . GL_SPECULAR, c o l o r , 0) ;
g l . g l M a t e r i a l f v (g l .GL_FRONT_AND_BACK, g l . GL_EMISSION , c o l o r , 0) ;
g l . g l M a t e r i a l f v (g l .GL_FRONT_AND_BACK, g l . GL_SHININESS , sh ine , 0) ;

Computer Graphics 4610 / 6461 16 / 33

OpenGL - Normals

For the lighting to work we also need to define normals at each
vertex.
g l . g l B e g i n (g l .GL_POLYGON) ;
g l . g lNormal3d (nx , ny , nz) ; // normal w i l l be sha r ed f o r the e n t i r e t r i a n g l e .
g l . g l V e r t e x 3 d (x1 , y1 , z1) ;
g l . g l V e r t e x 3 d (x2 , y2 , z2) ;
g l . g l V e r t e x 3 d (x3 , y3 , z3) ;
g l . g lEnd () ;

also, you can temporarily turn lighting off using,
g l . g l D i s a b l e (g l . GL_LIGHTING) ;
// draw someth ing .
g l . g l E n a b l e (g l . GL_LIGHTING) ;

which can be useful for drawing UI elements, or objects that are
unlit.

Computer Graphics 4610 / 6461 17 / 33

The Phong Lighting Model

Normals

Computer Graphics 4610 / 6461 18 / 33

Normals
• For a surface, the normal is a vector orthogonal to the surface.
• Normals are often calculated using the cross-product,

however is is also common to generate normals when creating
geometry.

• This method of ‘cheating’ the normal is quite useful, and used
in both bump mapping and normal mapping.

Left, surface has identical normals, flat looking shading. Right, surface
normals change over the surface giving smooth shading.

Computer Graphics 4610 / 6461 19 / 33

Transforming Normals
• Normals undergo a transformation that is based on the model-view

matrix. These normals are important for the lighting calculations.
• If M is the upper left 3x3 matrix of the model view matrix then the

transformation matrix on the normals is (M−1)T . We can derive this by
asserting that the new normal must have the same dot product between
any vector and the original normal and that of the transformed vector and
the new transformed normal. That is if n is the original normal, m is the
new normal and u is any vector then we expect:

m ·Mu = n · u (4)

• The matrix (M−1)T may not preserve the length of the normal vector.
As the reflection model may expect unit length normals these vectors may
require normalization. This may be done within a shader. Or in the fixed
pipeline approach this is enabled by: gl.glEnable(gl.GL_NORMALIZE)

Computer Graphics 4610 / 6461 20 / 33

Limitations of the Phong Model
• The Phong model is a combination of three different ‘wrong’ lighting

models.
• Because of this the lighting model may break conservation of energy.
• Phong looks OK for plastic like surfaces, but is much worse for natural

looking surfaces.
• However, with enough tweaking you can almost always get things to look

right using Phong. This is especially true when combined with normal
maps, and textures.

• It can be tricky for artists to express their ideas in terms of the
parameters provided by Phong (specular color, shininess etc). Also, we
could take measurements from real world objects, but how do these
measurements map to the Phong lighting model?

• Different shaders are needed for special cases (metal shader, Fresnel,
mirrored surfaces, etc).

• Is there a better way? Yes, we will cover this in week 10.

Computer Graphics 4610 / 6461 21 / 33

The Phong Lighting Model

Shading

Computer Graphics 4610 / 6461 22 / 33

Flat Shading (Per surface)
• Single lighting calculation for each polygon.
• Minimal lighting calculations required.
• Can be used stylistically.

Computer Graphics 4610 / 6461 23 / 33

Gouraud Shading (Per Vertex)
• Lighting is calculated at the vertices and then interpolated

across the pixels of the polygon.
• Originally interpolated in pixel space, but Blinn later improved

the algorithm to perform perspective correct interpolation.
• Works well if lighting does not change quickly.
• Sometimes need to subdivide large surfaces to improve

lighting quality.

Spot light on a tiled surface using Gourad Shading.
Computer Graphics 4610 / 6461 24 / 33

Phong Shading (Per Pixel)
• The surface normals are interpolated across the pixels of the

polygon and then the Phong reflection model is used to
calculate the colour at each pixel.

• Requires a lot more computation at each pixel (in comparison
to Gouraud shading).

• With modern GPUs and their programmable shaders we can
simply and efficiently implement Phong shading.

Spot light on a tiled surface using Phong shading

Computer Graphics 4610 / 6461 25 / 33

The Phong Lighting Model

Lighting Sources

Computer Graphics 4610 / 6461 26 / 33

Introduction
• Photorealism requires:

• accurate representation of the surfaces (and their properties)
that make up scene, and

• accurate modeling of light and its interaction within the scene.
• Both of these are complex, can use large amount of memory

and are computationally intensive. Hence, simplification is
required to reduce programming complexity, memory
footprint, and computational overhead.

Computer Graphics 4610 / 6461 27 / 33

Types of light source
• In theory, everything is a light, but in practise we model light

emitting objects separately.
• Common light types include

• Ambient lights
• Point lights
• Directional lights
• Area lights

Computer Graphics 4610 / 6461 28 / 33

Ambient Lights
• All objects receive some baseline light
• Common to set this to something low (0.1,0.1,0.1). But may

also want to tint it blue, if outside.
• Points in shadows should use this lighting.
• Sometimes ambient light is baked into the model (either as

vertex colors or as a texture). But SSAA is usually the way to
go.

Computer Graphics 4610 / 6461 29 / 33

Point Lights
• A very common type of light source.
• Defined by a location, and the intensity.
• Calculate direction of light based on a vector from the surface

to the light.
• Point lights have no size.
• Area lights can be approximated by generating multiple point

lights. However, this is slow.
• Light should attenuate at 1

d2
but we don’t typically use this.

Instead we either apply no no drop off, or a linear drop off.

Computer Graphics 4610 / 6461 30 / 33

Directional Lights
• Defined a direction.
• Not that different from a very distant point-light.
• When using shadow maps (more on this later) directional

lights require only a single shadow map (point lights need a
cube, i.e. 6 maps).

• A good choice for for sunlight.

Computer Graphics 4610 / 6461 31 / 33

Global Illumination
• In reality every surface is emitting.
• This is called Global Illumination. In this model we can

simply give ambient color to objects, then they become lights.
• This approach can also be approximated using lots of

low-intensity point lights.
• More on this when we get to radiosity and raytracing.

Computer Graphics 4610 / 6461 32 / 33

Global Illumination

A GI lighting model. Scene is illuminated primarily from the two
light-boxes.

Computer Graphics 4610 / 6461 33 / 33

	The Phong Lighting Model
	Normals
	Shading
	Lighting Sources

