
COMP4610/COMP6461

Week 9 - Visible Surface Algorithms,
Clipping and Shadows

<Print version>

Computer Graphics 4610 / 6461 1 / 29

Admin

Computer Graphics 4610 / 6461 2 / 29

Assignment 2
• Assignment 2 has now been released.
• If you would like to self-select a team, register your team by

5pm tonight
https://anu.au1.qualtrics.com/jfe/form/SV_9ZgePqjQdtOiCLc

• Unregistered students will be automatically allocated to
teams, and notified on Monday.

Computer Graphics 4610 / 6461 3 / 29

https://anu.au1.qualtrics.com/jfe/form/SV_9ZgePqjQdtOiCLc

Visible Surface Algorithms

Computer Graphics 4610 / 6461 4 / 29

Visibile-Surface Detection
• For displaying 3D scenes it is useful to be able to determine

which surfaces are visible.
• These algorithms are referred to as visible-surface detection

or alternatively hidden-surface elimination.
• Methods can either be in:

• object space - works at the object level.
• image space - works at the pixel level.

• In most cases algorithms form a potentially visible set,
which includes all visible elements, and, perhaps, some
non-visible ones.

Computer Graphics 4610 / 6461 5 / 29

Potentially Visible Set
• We want an algorithm that outputs a list of surfaces, which

includes all visible surfaces.
• Outputting everything would work, but it is (probably) not

efficient.
• The key is to quickly remove objects that are clearly not

visible. If a few non-visible objects are still included, this is
fine.

• Example: Let I be an objects bounding box intersects the
camera’s frustum. And V be an object being visible on
camera. We have

¬I =⇒ ¬V , however
I ≠⇒ V

Computer Graphics 4610 / 6461 6 / 29

The Painter’s Algorithm
• A simple way of drawing a 3D scene is to order the objects by the

distance from the viewer and paint them from furthest to closest.
• This an image space solution, and simple and works well.
• When using transparency this is often the only solution (efficient order

independent transparency remains an unsolved problem in computer
graphics).

• Sorting objects can be slow. Ideally we want a sorting algorithm that is
quick when there are few inversions [why?].

The Painter’s AlgorithmComputer Graphics 4610 / 6461 7 / 29

Visible Surface Algorithms

Image Based

Computer Graphics 4610 / 6461 8 / 29

The Painter’s Algorithm
Disadvantages

• Overlapping problem.
• Sorting triangles is slow.
• Overdraw.

What order makes this object draw correctly?

Computer Graphics 4610 / 6461 9 / 29

Depth Buffers
• One criticism of the painters algorithm is that you may end up redrawing

pixels multiple times. This is called overdraw.
• Reverse painter’s algorithm draws objects in reverse order (closest first),

while keeping track of the z-depth for each pixel.
• Just before a fragment’s color is calculated a quick z-depth test is

performed. If the new pixel is further away than the previous one it is
discarded, and no calculations are done.

• Depth testing can be enabled in OpenGL via GL_DEPTH_TEST, but
remember, if you use this to also clear the depth buffer each frame using
GL_DEPTH_BUFFER_BIT.

• The depth buffer allows any order of rendering, therefore implementations
of reverse painters algorithms almost always sort objects, rather than
individual triangles.

• The depth buffer also solves the overlapping problem, and is therefore
almost always enabled.

Computer Graphics 4610 / 6461 10 / 29

Z-Depth fighting
• Typically, we store z-buffer as a 32bit float (although some

[older] engines may use 16bit float).
• Normalized coordinates are used, which means your ‘near’

plane is at -1, and your ‘far’ plane is at 1. Therefore if you set
the far plane to very far away, you may lose precision on your
z-buffer.

• When two triangles exist on the same plane, they will have
mathematically the same z-depth. However, small rounding
errors will occasionally mean that their depth values will differ.
This causes ’z-fighting.

• The solution is not to have two objects overlapping on the
same plane. I.e. if you add a poster to a wall, offset the
poster by a slight bias.

Computer Graphics 4610 / 6461 11 / 29

Z-Fighting

Two co-planar quads.

Computer Graphics 4610 / 6461 12 / 29

Advanced: Differed Renderer
• One way around the problem is to take advantage of the fact

that coloring the fragments is the slowest part. Therefore we
can simply ’draw’ the scene by writing everything needed to a
g-buffer. This would include the 3d position, the normals, as
well as albedo and specular.

• We then process the lighting in a single pass using the
g-buffer as input. This way we guarantee that lighting is
computed only once per pixel, making our worst case scenario
much faster.

• Differed renders have many limitations (how to handle
transparency for example), but are quite common.

• There’s an interesting discussion about the choices between
differed and forward rendering engines here:
https://blog.theknightsofunity.com/forward-vs-deferred-rendering-paths/.

Computer Graphics 4610 / 6461 13 / 29

https://blog.theknightsofunity.com/forward-vs-deferred-rendering-paths/

Visible Surface Algorithms

Object Based

Computer Graphics 4610 / 6461 14 / 29

Back-face Culling
• If a triangle faces away from the camera, then do not draw it.
• This is very easy to check this (clockwise / anticlockwise)
• For a triangle, this is simply checking if the normal’s z points

into the screen or out.
• These normals are usually calculated on the fly from the 3

points of the triangle.
• This will remove about half the triangles.
• In OpenGL, we get control over how things are drawn on the

’front’ and ’back’ face. e.g. we can set lighting for the front
face to be different from the back face.

Computer Graphics 4610 / 6461 15 / 29

Face Culling in OpenGL

OpenGL allows the user to specify how to cull faces.
g l E n a b l e (g l . GL_CULL_FACE) ; // e n a b l e c u l l i n g
g l C u l l F a c e (g l .GL_BACK) ; // d e c i d e i f we want f r o n t or back f a c e s to be removed
g l F r o n t F a c e (g l .GL_CW) ; // d e f i n e the o r d e r f o r the f r o n t f a c e .

Computer Graphics 4610 / 6461 16 / 29

Frustum Culling
• Very simple idea. Check if an objects bounding box intersects

the viewing frustum.
• Some care is needed if we are using shadows (as off-screen

objects affect the lighting of onscreen objects).
• Organising objects into a grid can make this very efficient.
• Minecraft and others do this this with chunks. However, in

this case you would need to load nearby chunks and update
them, but only draw the ones infront of the camera.

Computer Graphics 4610 / 6461 17 / 29

Binary Space Partitioning (BSP)
• This is an advanced method of quickly identifying a PVS for

static objects.
• First used in the Doom engine.
• How you divide up the scene matters.
• Must cut objects when the division plane intersects them.
• Generally not used much anymore, but was very popular (and

important) for a long time.
• Developed in 1980 (http://www.cs.unc.edu/~fuchs/

publications/VisSurfaceGeneration80.pdf) but was
not commonly used until 13-years later.

Computer Graphics 4610 / 6461 18 / 29

http://www.cs.unc.edu/~fuchs/publications/VisSurfaceGeneration80.pdf
http://www.cs.unc.edu/~fuchs/publications/VisSurfaceGeneration80.pdf

BSP - Example

For rules for traversal see https://en.wikipedia.org/wiki/Binary_space_partitioning

Computer Graphics 4610 / 6461 19 / 29

https://en.wikipedia.org/wiki/Binary_space_partitioning

Clipping

Computer Graphics 4610 / 6461 20 / 29

Clipping
Sometimes objects you are drawing sit outside the drawing area.
These should be clipped to the drawing area. This could be done
in image space. However, it is generally more efficient to do it in
object space. Objects completely outside the clipping area can be
culled. They can be left unchanged if they are entirely within the
clipping area, whereas those that border the clipping area need to
be modified.

Below is an example of lines being clipped to a rectangular area.
Computer Graphics 4610 / 6461 21 / 29

Cohen-Southerland Line Clipping
• The Cohen-Southerland line clipping approach is a very old approach that

aims to efficiently deal with lines that are either completely within or
completely outside the clipping area.

• This approach works be creating region codes for the end points of the
line. A region code is made up of 4 bits corresponding to TOP,
BOTTOM, LEFT, and RIGHT. So if the point is above the rectangle
then the TOP bit is set to 1 otherwise it is set to zero, if the point is to
the LEFT of the rectangle the LEFT bit is set to 1 otherwise it is set to
0, etc...

• The two region codes for the points can be bitwise or(ed) and if the
resulting code is 0000 then the line is completely within the clipping area
and can be left unmodified.

• The two region codes for the points can be bitwise and(ed) and if the
resulting code is not 0000 then the line is completely outside the clipping
region and can be culled.

Computer Graphics 4610 / 6461 22 / 29

Cohen-Southerland Line Clipping
• In other cases the line can be intersected with a boarder of

the rectangle reducing the length of the line. This processes is
repeated until either line is removed completely or it sits
within the clipping rectangle. Note that the region codes can
be used to determine which board to interest the line with.

Example of Cohen-Southerland Line Clipping
Computer Graphics 4610 / 6461 23 / 29

Shadows

Computer Graphics 4610 / 6461 24 / 29

Overview
Shadows are a bit tricky (you have to consider all other objects when
color for each pixel...) O(N 2). Some common methods are

• Raytracing: easy, but slow.
• Shadow Volumes: not used much anymore, gives very sharp

shadows.
• Shadow Mapping: a good compromise but has problems.
• Pregenerate the lighting, save to a light map (Unity and

others have this), then have a second system for dynamic
lights/objects.

Computer Graphics 4610 / 6461 25 / 29

Projection Shadows
• Project a 3D object onto a 2D surface, then draw it using a

dark colour.
• Instead of projecting an object, you can project a sprite, often

a circle.

Credit https://www.researchgate.net/publication/236592293_Real-Time_Shadow_Using_a_Combination_
of_Stencil_and_the_Z-Buffer (CCA 4.0) international

Computer Graphics 4610 / 6461 26 / 29

https://www.researchgate.net/publication/236592293_Real-Time_Shadow_Using_a_Combination_of_Stencil_and_the_Z-Buffer
https://www.researchgate.net/publication/236592293_Real-Time_Shadow_Using_a_Combination_of_Stencil_and_the_Z-Buffer

Shadow Volumes
• Produces very sharp shadows using the stencil buffer.
• Shadows look very sharp.
• Doom3 uses this.
• Requires a Stencil buffer.
• Includes an algorithm called the "Carmack reverse" which

John Carmack invented, but is not allowed to distribute, as it
was somehow patented by another party.

Computer Graphics 4610 / 6461 27 / 29

Shadow Volumes

Credit https://en.wikipedia.org/wiki/Shadow_volume (CC BY-SA 3.0)

Computer Graphics 4610 / 6461 28 / 29

https://en.wikipedia.org/wiki/Shadow_volume

Shadow Maps
This is very common, 9 times out of 10, shadow maps are what you
want to be using. It works by...

• Calculating a depth map based on the distance from the
light’s position (in a similar way to calculating the texture in
the previous slide).

• Then as each fragment in the scene is rendered calculate the
distance between that fragment and the light source.

• If this distance is larger than the depth one looks up in the
depth map then the fragment is in shadow.

This is quite fast - requires just 1 texture lookup, but does require
rendering the depth map from the perspective of each light. Might
be best to make some lights not cast shadows, or some objects to
not cast shadows, or use simplified models for shadow casters.

Computer Graphics 4610 / 6461 29 / 29

	Admin
	Visible Surface Algorithms
	Image Based
	Object Based

	Clipping
	Shadows

