
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Correctness and Efficiency

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Correctness and Efficiency May 2017 1 / 17

http://cs.anu.edu.au/courses/comp6700/lectures.html#A3


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Concept of an Algorithm
2 Correctness
3 Cost of Computation:

Time, T
Space (Memory, P)
Energy

4 Efficiency and Complexity of Algorithms
5 O-expression Notations
6 Complexity Classes
7 Linear Search and Selection Sort
8 Performance Measurement
9 Bubble Sort and Gap Sort
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Algorithms: Top-Down Design (Again)

Algorithms occupy the intermediate position between a solution and a method, both in terms of
generality and detail. The origin — mathematical (algebraic), the essence — transformation of
data (input → output) in a finite number of steps.

Writing a computer code often involves solving algorithmic problems. Some of these problems
can be handled by the top-down design approach:

1 Clearly state the problem that you are trying to solve
2 Define the inputs required by the program and the outputs to be produced
3 Decompose the program into classes and their associated methods
4 Design the algorithm that you intend to implement for each method

Repeat every step for devising the solution used at the higher level (step-wise refinement)

5 Turn the algorithm into pseudo-code (easily translatable into Java statements)
6 Test the resulting program

The top-down design is often used together with the bottom-up design — translating an existing
solution (like a mathematical solution into the code and integration separate parts into one
working code). The bottom-up design may also involve the data structure selection (or
construction); this is called the data-driven design.
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Algorithms: generality
A good algorithm always has a virtue of generality: it can be used on a family of data structures
with specific characteristics reduced to minimum. An example — sorting an array of N floats:

This problem is a particular case of a more general sorting problem: Given an array of N > 0
objects, return an array which contains these N objects in ascending (descending) order.

It is assumed that array elements can be compared, using unspecified criterion (in Java, it means
that the object class implements the Comparable interface). When implemented with such
generality, the algorithm is said to be generic. Computer algorithms are characterised by:

1 a large number of repetitive operations: large size array, looping constructs, pipelines
2 a particular data model in case of sorting and searching (“data model” here means type of

operations which can be performed of the DS)
3 correctness and efficiency, where correctness means that a right result is obtained for all

possible problem instances (size of the data structure, state of the input — sorted, unsorted,
random, nearly-sorted etc), while efficiency means how the time and computer resources
needed to successfully carry out the algorithm application scale with the problem size N
(number of elements in the DS).
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Algorithms: Complexity

To quantify the algorithm efficiency, one has to establish how T(N) — the number atomic
operations (they do not depend on N), needed to perform the algorithm — scales with the size of
the problem N. The time of execution depends on hardware platform and state of the execution
environment; it is not an invariant measure. The computer science uses the big-O notations
(pronounced “big-omicron” by eggheads, “big-o” by pub frequenters) to characterise the efficiency
(complexity) of an algorithm. It tells what is the leading term of the scaling dependency:

if lim
N→∞

T(N) = const · f (N), thenT(N) = O (f (N)),

when N becomes large enough. The dependence T(N) of an algorithm,

viewed as a problem, is referred to as complexity
viewed as a solution, is referred as efficiency
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Complexity classes
The function f(N) usually has one of the following types of behaviour:

the power law:

f (N) = Nβ , where β is a number equals
to 2 for the Selection Sort, and to 2.376 for “smart” matrix multiplication, etc. Such
polynomial problems are tractable.
the logarithm law:

f (N) = (log N)β , where β

is 1 for a binary search (in a sorted array, in a binary search tree). These are easy problems.
the exponential law:

f (N) = 10β N, where β

is 1/3 for the factorisation problem. Such problems with exponential behaviour are hard
(intractable). Examples: the traveling salesman problem, set partitioning etc.
A combination (as factors) of the above, eg,

f (N) = N · log2 N, for the QuickSort algorithm

f (N) = N3(log N)k, for the quantum Shor algorithm
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Correctness and Efficiency May 2017 6 / 17
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How complexity matters

Logarithmic scale in the ordinate axis!
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Ο, Ω and Θ

Some rigour

To proper understand the O–notations one should remember that O(f(N)) denotes not a single
function, but a class of functions with the designated asymptotic behaviour. If we say that a
function g(N) has an asymptotic of O(f(N)), g(N) = O(f(N)), it means not equality, but rather
the inclusion of g(N) into the same class.

The g(n) = O(f(N)) has meaning of the upper-bound, ie that its magnitude is at most as big as
const×f(N) (when N is large). At most! but it could also be (substantially) smaller. Hence, an
algorithm should not be dismissed outright if it is characterised by the efficiency of, say, O(N2)
(like in sorting), just because its actual performance can be better. Opposite to upper-bound is
an lower-bound estimate, ie that the function magnitude is at least as large as const×f(N) (N is
large). This asymptotic behaviour (different set) is notated with another symbol,
Omega: g(N) = Ω(f (N)). The Ω-properties of algorithms are harder to establish, but they are
more valuable.

Even more valuable (and still harder to come by) are asymptotic with both lower- and upper
bounds: that a function g(N) is such that for sufficiently large N, there exist two constants, C1
and C2 (C1 > C2), that C2 · f(N) < g(N) < C2 · F(N). Such asymptotic sets are notated with the
symbol Θ :  g(N) = Θ(f(N)).
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“Greek” Asymptotes

bounded from above
g(n) = O(f(n))

bounded from below
g(n) = Ω(f(n))

bounded in between
g(n) = Θ(f(n))

One can proof that (something which is intuitively obvious):

g(n) = O(f(n)) and g(n) = Ω(f(n)) ⇐⇒ g(n) = Θ(f(n))

The reason (not because “programmers are stupid”) of why the O-notations are used
predominantly (when Ω would be more accurate) is explained in a classic Donald Knuth’s paper
“Big Omicron and Big Omega and Big Theta”, in SIGACT NEWS, Apr.-June 1967, pp.18–24.
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Linear Search
Problem: Given unsorted array of N elements (double’s), find the smallest element in a subarray.

Algorithm: (trivial, correctness follows from the facts that each element of the array will undergo
a comparison with the tentative result and comparisons of integers and real numbers are
transitive, ie from a> b and b > c follows a > c).

1 Assume tentatively that the first number in the array is the smallest element
2 Compare this number with every element in succession

If one of these subsequent numbers is smaller, replace the tentative choice by this element
3 When all of the index locations have been exhausted, return the tentative result

/** @param data an array of doubles
* @return value of smallest element */

public static double smallest(double[] data, int lo, int hi) {
assert (hi > lo);
int iSmallest = lo; //Initial value
for (int i=lo+1; i<=hi; i++)

if (data[i] < data[iSmallest]) iSmallest = i;
return data[iSmallest];

}

Complexity of this algorithm is O(N): we have to go from the first element to the very last one in
search of the smallest (unsorted nature of the array is essential).
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SelectionSort
1 In a loop which iterates a counter, i, over every index of an array in ascending order
2 At every step, do the following

Compute the smallestInRange (the index of the smallest element) between the present array index,
i, and the maximum array index. Call this index iSmallest
Interchange the array elements at i and iSmallest

/** @param data an array of doubles */
public static void

selectionSort(double[] data)
for (int i=0; i<data.length-1; i++) {

int iSmallest = SelectionSortTest.
smallestInRange(data,

i,
data.length-1);

// perform a swap if data[i] is smaller
if (data[i] < data[iSmallest]) {

double temp = data[i];
data[i] = data[iSmallest];
data[iSmallest] = temp;

}
}

}

How array changes “in-place”

step 1: 8.0 5.0 3.0 7.0
step 2: 3.0 5.0 8.0 7.0
step 3: 3.0 5.0 8.0 7.0
step 4: 3.0 5.0 7.0 8.0

Complexity

number of iterations, ~N
smallestInRange() is called on
average ∼ N

2
times at each step

which results into O(N2)

for an almost sorted array it is
O(N) (as the majority of swaps
are not performed)
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Algorithm correctness

Correctness and efficiency of algorithm implementations must be tested both theoretically (by
examining the code), and experimentally (by running comprehensive test harnesses with all
possible types of input data, and measuring the time-size dependence). The test harnesses
(special testing programs — not necessarily written in Java — and input/output data) represent
assets of the development as much as the code itself. Correctness is the primary goal of testing,
but the efficiency can also be an important (eg, to check a theoretical conclusion regarding the
algorithm complexity).

To check the correctness of our implementation of SelectionSort do the following (example
SelectionSortTest.java):

1 Create an array and initialise it with N numbers (include cases 0 and 1!)
2 Print the initial array, or run a routine to check that if it’s ordered
3 Run SelectionSort
4 Print the sorted array, or run a routine to check that if it’s ordered
5 Repeat the above for many different sizes and initialisations:

sorted arrays
unsorted arrays
almost sorted, reversed sorted
arrays with randomly chosen elements
boundary cases — 0 or 1 element long arrays, very long arrays

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Correctness and Efficiency May 2017 12 / 17
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Algorithm efficiency
To check the efficiency one has to:

1 Work with large N (the upper limit is determined by the memory constraints)
2 Measure how the time taken by the sorting method scales with N
3 Consider “randomised” arrays (initialised by using a pseudo-random number generator) and

limiting cases (fully and nearly sorted arrays, all and almost all equal elements etc). Often,
the efficiency changes (deteriorates) in the limiting cases, eg, QuickSort (discussed later) for
sorted array (N · log2 N → N 2), which may force to reconsider the algorithm implementation.

Time measurements

1 OK: use the Unix system utility command time -p when running the Java program (the full
path is needed for some shells):
/usr/bin/time -p java SelectionSortTest
Of three times printed, “user time” gives the time in seconds taken by the program including
“paging” interrupts.

2 Better: to call the java.util.Date class, and to read times in milliseconds. The overhead
here is the creation and call to Date objects. Also, in a time-sharing system, there is no way
to find the time for your particular process alone (In both pervious approaches, the overhead
effect flattens out for large N).

3 Best: call the system clock via System.currentTimeMillis(), or create a utility class
similar to StopWatch.java to include such calls for calculating elapsed times.
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Example of Time Measurements

A measurement example program (written by C. Hortsmann years ago)

SelectionSortWithTiming.java — the original sorting program with timing based on
System.currentTimeMillis() calls
ArrayUtil.java — a utility class to create random array and also perform element’s swapping
StopWatch.java — the helper class to set the time counting on/off

To study the performance of a particular selection sort implementation, one should run this
program multiple times, with the length of input arrays changing from 0, 1, few and progressively
larger and ultimately very large (how large?), using different “filling” for each case: random
(several, with different random seed), sorted (both descended and ascended), all equal, and
almost sorted. Why? Because, even the most accurate theoretical estimate will not tell you how
different parts (search, writing temporary data and reading it etc) of execution will be carried out
in a real CPU, its cache(s) and the main memory.
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Bubble Sort and Gap Sort
These are two elegant algorithms for solving the sorting problem. Neither is as “naïvely intuitive”
as the selection sort or the insertion sort in the next section. The gap sort is an amazingly fast
variant of the bubble sort The essence of the BubbleSort algorithm:

1 Run an inner loop which repeatedly steps through every element in the array from left to
right comparing adjacent elements, and if the left element is larger than the right element,
then the elements are swapped. The (new) right element then becomes the left element of
the next comparison and so on.

2 After one inner loop, the largest element is “floated” to the right hand side. The order of the
other elements may have changed.

3 After the second inner loop, the second largest element has floated right to be the
data.length-2 element. The algorithm terminates when it makes one pass with no
interchanges.

The gist of this (and other algorithms which try to improve the SelectionSort efficiency) is to
minimise repetitive swaps. Yet, BubbleSort is still O(N2) (demonstrate BubbleSortTest.java).

The analogous GapSort improves the efficiency, but the reason for this isn’t well understood. The
algorithm achieves an intermediate performance between a standard O(N2) and O(N · log2 N)
(the actual asymptotic fluctuates). GapSort compares elements which are separated by a “gap”
number of elements (rather than one element as in the bubble sort). The initial gap is taken
pretty large — approximately 3/4 of the size of the array. It is reduced in size every outer
iteration by a “magic” factor (�1.3). Intuitively, the gapping is effective in reducing the number of
unnecessary swaps (demo in GapSortTest.java).
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Insertion Sort
A simplified algorithm is the insertion sort (inspired by card playing):

1 In a loop from left to right (i = 0..(length-1)), set a temporary variable tmp = data[i]
2 As we go along, the subarray on the left grows from 0 to lenght-1 and always remains sorted
3 Insert tmp in to the appropriate place k in the left subarray, k = 0..(i - 1) in such a way

that it remains sorted
4 Shift array items to the right when necessary. The left subarray is enlarged by 1.

The insertion can be done naively, or via binary search (because the array on left, in which the
insertion is done, is sorted). The naïve version is demonstrated in InsertionSortTest.java.

The efficiency of InsertionSort is still O(N2), for generic (random) inputs. But for almost sorted
inputs, it becomes almost O(N). This property of InsertionSort is valuable, since the most
efficient famous QuickSort (see below) suffers deterioration in such cases. By combining the two
algorithms, an improved QuickSort can be implemented with much more robust performance.

“An algorithm must be seen to be believed” (D. Knuth) — demo SortingApplet.

A useful site with major sorting algorithms (animated like the above) including both time and
space complexity analyses is Sorting Algorithm Animations.

Note on sorting an important version of sorting is a so called stable sort: when you must preserve
the order of any pair of elements which are equal for the purpose of sorting. Stable sorting is
more complex and may have worser performance.
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Where to look for this topic in the textbook?

Hortsmann’s Core Java for the Impatient (not discussed)
Oracle’s Java Tutorial chapter Algorithms has only passing reference to O-expression
notation (but does discuss sorting and searching algorithms somewhat)
To study algorithms properly, one should take a whole course and/or use of those
bodice-ripper books:

“Introduction to Algorithms”, by Thomas H. Cormen, Sharles E. Leiserson, Ronald L. Rivest and
Clifford Stein, McGraw-Hill, 3d Ed, 2007
“Fundamentals of Algorithms”, by Gilles Brassard and Paul Bratley, Prentice-Hall, 1996
“The Art of Computer Programming” 3rd Edition, by Donald Knuth, Addison-Wesley, 1997–1998;
volumes:

1 “Fundamental Algorithms”
2 “Seminumerical Algorithms”
3 “Sorting and Searching”
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