
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

COMP6700/2140 Recursive Operations

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 1 / 12

http://cs.anu.edu.au/courses/comp6700/lectures.html#A4


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Topics

1 Recursive Functions
2 Tail Recursion

Recursion stack
JVM Stack Machine Architecture §

3 Tail Recursion Optimisation
4 Recursions vs Iterations
5 Best Algorithm

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 2 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recursive methods
Methods which call themselves

A basic problem of calculating the factorial of N (trite, “cheesy” example — sorry):

N ! = N · (N − 1) · (N − 2) · . . . · 2 · 1 = N · (N − 1)!

One implementation is “old fashioned” iterative:

public static int factorial(int n) {
int r = 1;
for (int i=1; i<=n; i++)

r=r*i;
return r;

}

The recursive implementation:

public static int factorial(int n) {
assert (n >= 0) : "The factorial is tricky if the argument is negative!"
if (n == 0) return 1; // Base Case: recursion stops
return n * factorial(n-1); // Generic Case: a recursion call is made

}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 3 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recursion call stack

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 4 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tail recursion

What if the body of a value returning recursive method can be written in such a way that the
only recursive call is the one which is made in the return statement? For factorial, this would
require almost pointless and trivial modification:

public static int tailFactorial(int n, long a) {
assert (n >= 0) : "The factorial is tricky if the argument is negative!"
if (n == 0) return a;
return tailFactorial(n-1,n*a);

}

It is obvious, that mathematically factorial(x) and tailFactorial(x,1) are the same
function. Yet in computing:

It is often easier to do more work rather than less.

(quoted from the book From Mathematics to Generic Programming by Alexander A. Stepanov
and Daniel E. Rose)

So, what’s the point?

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 5 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tail recursion call stack

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 6 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tail Recursion Optimisation

Let’s rewrite again, but using reassignment of the passed arguments:

public static int tailFactorial(int n, long a) {
if (n == 0) return a;
a *= n; n--;
return tailFactorial(n,a); // when called, the above code is repeated verbatim

}

Such form of a tail recursion — when all the tail recursive calls are made with formal arguments
of the method being the corresponding arguments — is called a strict tail recursion. The recursive
call in the return statement results in all preceding statements of the method body repeating
themselves. Nothing gets changed if the last return statement is dropped, and instead the
remaining body is repeated until the base case (n = 0) is realised and the iteration terminated:

public static int tailFactorial(int n, long a) {
while (true) {

if (n == 0) return a;
a *= n; n--;

}
}

The recursion has been transformed into a loop — Tail-Call Optimisation!
Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 7 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tail recursion optimised

Recursion call stack is gone — no heavy (vertical) burden to carry.
Computation is horizontal now, the stack isn’t consumed, there is no bound on how long the
repetition can go.

Languages like Lisp could perform the tail recursion optimisation automatically, as the part of
their code compilation/interpretation. Java (and hence other JVM languages) cannot perform
TCO due to restrictions imposed by the JVM architecture. But there are means to deal with this
problem (wait till F6 lecture on “Recursion, Corecursion and Memoization in Functional Java
Programming”).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 8 / 12

http://cs.anu.edu.au/courses/comp6700/lectures/F6.pdf


.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The best algorithm
Imagine, 10% improvement in performance of the search engine in online mega-businesses like
Google or Amazon. The difference is tens of millions of dollars. A 10% more efficient algorithm in
a mobile battery-powered device means a few hours of longer work. A 10% less power consuming
servers may translate into 1–2% less gross country’s energy consumption (in South Korea, about
7-9% of total power is spent on running the internet and telephony servers).

What affects the algorithms performance?

1 Mathematical efficiency (O,Ω and Θ);
2 Time and Space resource requirements — CPU cycles T(N) and memory P(N) — and the

cost of their provision (how fast data can be brought to the processing unit, what is the
frequency of cache misses etc);

3 Which data structures are used and how do they map into the processor architecture (size
and layout of cache, bus parameters etc); as fas as the role of cache is concerned, the
situation can be similar to the binary search bug which reveals itself when we move to larger
data sizes. Here, instead of becoming buggy, an algorithm can drastically worsen its
performance — an example is the HeapSort, which is on par with QuickSort (O(N log N))
and doesn’t have the “worst case” problem, like QuickSort (O(N 2) on bad inputs). This
changes when the size becomes large, and the cache misses begin affect the performance.

With all these factors playing an important role, the finding and choice of the best algorithm has
been and still is a very non-trivial and important problem. Finding and implementing algorithms
will remain an important problem the IT industry has always to deal with.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 9 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recursions vs Loops

When one is better than another

Iterations are most often faster (recursions have method stack overhead), but this advantage
is not crucial
Iterations require less memory (recursions have limited depth due to finite stack size), and
this maybe crucial
Recursions often (not always!) result in a simpler (often, much simpler) implementation due
to the algorithm recursive nature (either due to the structure of mathematical definition, like
factorial or Fibonacci sequence, or due to recursive nature of the data structure on which the
algorithm operates, eg, trees)
Non-recursive algorithms on recursive data structures are possible, eg, search in a binary tree
(but it also involves a stack)
Recursive algorithms on non-recursive data structures (arrays, lists …) are possible (Quicksort
and others)
Proof of correctness for recursive algorithms often greatly assisted by the mathematical
induction method
When using recursion, always provide the base case (cases), and ensure that the recursive
calls converge to one of the base cases. Remember of the stack size limitation! Never use
recursion for processing user inputs!

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 10 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Other algorithms
Study of algorithm is at the core of Computer Science. “Simple fundamental algorithms is the
ultimate portable software” (R. Sedgewick, J. Bentley). “Not so fast, guys!” (Alexander
Stepanov)

Algorithm Intensive CS Fields

1 Sorting and searching on various data structures
2 Graphs and Networks (include data mining)
3 Optimisation (incl. parse trees in compiling)
4 Number theory including encryption (factorisation, elliptic curve arithmetic)
5 Computational geometry and computer graphics
6 Numerical computations (matrix multiplication and spectral analysis, Newton’s method etc)

Few references

“Introduction to Algorithms”, by Thomas H. Cormen, Sharles E. Leiserson, Ronald L. Rivest
and Clifford Stein, McGraw-Hill, 3d Ed, 2007
“Fundamentals of Algorithms”, by Gilles Brassard and Paul Bratley, Prentice-Hall, 1996
“The Art of Computer Programming” 3rd Edition, by Donald Knuth, Addison-Wesley,
1997–1998; volumes:

1 “Fundamental Algorithms”
2 “Seminumerical Algorithms”
3 “Sorting and Searching”

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 11 / 12



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Where to look for this topic in the textbook?

Very little about recursive algorithms and algorithms in general is discussed in the textbook (it
teaches users how to program, not developers of programming resources, like libraries and API).
You should seek other sources of knowledge in these areas, both in printed form and (much more
and growing) online.

Hortsmann’s Core Java for the Impatient, Ch. 3.3, 3.8
Oracle’s Java Tutorial chapter Algorithms — again, it deals with the JFC usage, not much
with the intricacies of generic algorithm implementation.
One modern (and relatively light) text is “Algorithms in a Nutshell”, 2ed, by George T.
Heineman, Gary Pollice, and Stanley Selkow (O’Reilly, 2017)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Recursive Operations May 2017 12 / 12

http://docs.oracle.com/javase/tutorial/collections/algorithms/index.html

