COMP6700/2140 Sorting and Searching

Alexei B Khorev and Josh Milthorpe

Research School of Computer Science, ANU

May 2017

«O>» <Fr «=Z» «E» Q>

http://cs.anu.edu.au/courses/comp6700/lectures.html#A5

BN
Topics

@ Recursive Algorithms: Divide and Conquer
@ Quick Sort

@ Merge Sort

@ Tim Sort — A Hybrid Algorithm
® Binary Search

o 2006 Binary Search Break: Abstraction Leaked ©

i
-

<O «Fr < > Q>
‘Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching ~ May2017 2/18

Divide and Conquer Strategy

Computational problems are difficult, often very difficult. When it is possible to reduce the
problem size and apply the same solving strategy (either divide again, or deal with an ultimately
reduced problem, which is usually trivial), one talks about divide and conquer algorithms.

o When only one sub-problem is generated after the reduction:

o binary search
o root-finding algorithms (bisection — discussed in P6, or more efficient Newton's method)

a recursive implementation can often be tail-call optimised.
o When the reduction results in two (or more, like in Karatsiba's number multiplication)
smaller sub-problems:
o Sorting algorithms, like Quick Sort and Merge Sort
o Fast-Fourier Algorithm (first discovered by Carl Gauss)
o Karatsuba's fast number multiplication algorithm (multiplication of two n-digit numbers can be done
with n'°82 3 ~ n'-58% jnstead of n? single-digit multiplications)

one sometimes talks of decrease and conquer strategy.
Sometimes (rarely), the reduction is linear, like n — n — 1 in the Tower of Hanoi problem; usually
it is geometrical (like in a geometrical progression), by the factor of p > 1 (p = 2 in Merge Sort,

or Binary Search). In the latter case, the efficiency is O(N - log,, N), where the cost of solving the
ultimately reduced problem (often having the size of 1) is O(1).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 3/18

https://cs.anu.edu.au/courses/comp6700/lectures/P6.pdf

Recursive Algorithms: QuickSort

Recursion is a very elegant way of thinking about some algorithms and some recursive algorithms
are very fast. However it is possible to write very slow recursive algorithms as well and some care
is needed. (For example, you need to be aware that there is an overhead in making all of the
method calls in the recursive factorial method.)

The most famous of all (and first recursive algorithm) is QuickSort, invented by Tony Hoare in
1962 before the very concept of recursions became known to computer professionals.

<t >=t

o The essence of QuickSort algorithm is the divide-and-conquer principle:
@ select a pivot — index of an element whose value is between min and max of the array
@ partition the array around the pivot — smaller elements go on the left, greater — to the right
@ apply the QuickSort recursively to the left and the right subarrays
@ recursion stops if subarray.length < 3

During the algorithm execution (after every partitioning is done) the following invariant must be
maintained for an array x[a..b] with the pivot value t = x[m]):

Vi, a<=1i<m, x[i] <= x[m] andV i, m <= i <= b, x[m] < x[4]

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 4/18

QuickSort: the Pseudo-code

m=1; t =x[ml; // selecting pivot
[1+1, ul //closed interval

for i =

if x[i] < t // before swapping, increment m to give the
swap(++m, i) // left subarray a room for the new element

That's how the “detailed” partitioning algorithm looks like pictorially (code is QuickSort.java):

@ during the loop execution

@ placing the pivot value in the

@ after the loop terminates

‘1‘ <t >=t
)

right place
‘ <t
/ ¥ T
‘ <t t ‘ >=t T / | x
T T T 1/ m / u
L L
! m u quicksort(l,m-1) quicksort(m+1,u)’
May 2017 5/ 18

COMP6700/2140 Sorting and Searching

Alexei B Khorev and Josh Milthorpe (RSCS, ANU)

http://cs.anu.edu.au/courses/comp6700/examples/algorithms/QuickSort.java

How Quicksort Shines

QuckSort is fast for generic (random-like) inputs, its efficiency is O(N - log, N).

N=16

T T Y e s s Y

=1 |

=N

Isteps, 2'

™
OE E@ -~ v

o Total number steps in the level ¢ partitioning loops is the same, N

o For generic inputs, the subarrays have roughly the same length, N/ZZ

o The complete recursion calls tree — all branches have roughly the same height, ¢
o The sum of all partitioning steps at all levels is N- £ = N - logy N (“swoosh!™)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching

May 2017 6/18

How Quicksort Flounders

Yet, when an input becomes (almost) sorted, it degenerates to O(N?). Why?

N=16

[ITTTTTTITITTITT

=0

T
A
(I Irrm ™

I @
IIIIIIIII’IIII[_E g -

I O -

l{‘ Istep

N

Isteps, 1

o For (almost) sorted arrays, partitioning results into one subarrays having only one element
(may be a few)

o The recursion goes on, chipping off one element at a time
o The number of steps at every level is still N, but the number of levels is also N
o Hence the “snail"-like result: N- £ = N-N= N? (“disaster!")

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 7/18

Fine-tuning QuickSort

The full analysis of a complex algorithm such as QuickSort is quite involved. Its weakness is
taken care of to prevent performance problems, yet an industrial strength implementation (found
in good libraries) is more than 200 LOC long (instead of puny 20-30 in an “educational” case like

ours.)

t ‘ <=t ‘ 7
T T T T
I i, I u

Two-way partitioning in quicksort

o select the pivot not from the first element of the input, but from the middle, or randomly —
this will improve sorting of nearly sorted inputs

o do partitioning with two inner loops going from the opposite ends towards each other — this
will improve the performance for “all-equal” inputs

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 8 /18

Robust QuickSort

There is a relatively simple way to avoid the drastic performance worsening of QuickSort for
non-random input when the pivot selection is “attuned” to the value distribution in a way which
results in partitioning always resulting into subarrays of very unequal length.

o The main weakness of QuickSort is sorting a large number of short arrays at the end of
recursion chain.

o InsertionSort, on the other hand, is very effective if the input is an “array of subarrays” with
each subarray unsorted, but all values in it are greater than the largest value in the preceding
subarray, and not greater than the smallest value in the following subarray.

o Such “array of subarrays” is what quicksort () produces if stopped “prematurely”, when
subarray.length >= cutoff > 2.

o Completing the sorting with InsertionSort produces a robust routine:

QuickSort(data, O, data.length - 1, cutoff);
InsertionSort(data);

The hybrid QuickSort was used in java.util.Array.sort() methods (until JDK 7).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 9/18

MergeSort

The elegant merging algorithm begins with... well, merging two sorted arrays which preserves the
sorted order (the resulting “big” array is also sorted). The merging starts with choosing either the
first element of one or the first element of the other array. Then one looks at the next two
possible elements and chose one of them. The coding for this is straightforward but a little bit
long-winded. From time to time you will be selecting several elements from one of the arrays
before you select any from the other (for an implementation see MergeSortTest.java).

public static void mergeSort(5[9 10 1217 181120 32 |
int[] a, int from , int to) { 5(9 10 12[17 1181120 32 s
;flt(ﬁ:‘“j?f;:; iezg‘;; 50910 12[17| mergewih [I[8[11]2032] - 158
nergoBart (a, Trom; i) 59 10 12)17 181120 22 1589 10 |.
nergaSort (a, mid +1, t0); 59 10 12[17 181120 22 589 1011

merge(a, from, mid, to);

The idea of the merge sort is that you divide the original array into two parts, sort them and then
merge them. If you use recursion, then you can effectively keep dividing until the initial arrays
have size 1 so that they are trivially sorted and all you need to do is merge them. Because it uses
the same principle “divide-and-conquer”, the expected performance is the same as for QuickSort
O(N - logy N). A hybrid of MergeSort and InsertionSort — so called TimSort — is used in
Array.sort() since JDK 7.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 10 / 18

http://cs.anu.edu.au/courses/comp6700/examples/algorithms/MergeSortTest.java

TimSort

Until Java SDK 7, the Arrays.sort, Collections.sort and List.sort methods were using the
hybrid QuickSort algorithm roughly described above. The modern versions of the API (at least,
for Oracle and openjdk) use a different sorting algorithms, Tim Sort, which was developed not
too long time ago. It combines MergeSort with InsertionSort “Tim"” is a (modest) bloke who
developed it.

The combination of MergeSort and InsertionSort is done as follows:

@ Segment (starting with 2) the original array into parts (of possibly equal length), store the
segments starting positions and lengths on the stack

@ Apply the segmentation until the segment length drops down to chosen parameter value, for
shorter segments use InsertionSort to sort them in-place

@ When two consecutive segments are sorted, merge them to preserve ordering using the values
stored on the stack.

The key reason for MergeSort and TimSort to avoid deterioration of performance is the “always
divide in two" principle (no pivot selection which can result into long branches of recursions).

TimSort was found to be buggy in SDK 7 implementation (some researches claim that fixing it in
JDK 8, at least, in OpenJDK, did not solve all the problems).

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 11 /18

http://bugs.java.com/view_bug.do?bug_id=8011944

Introsort

Introsort (also called introspective sort) is another hybrid sorting algorithm with the “usual” fast
generic performance O(N - log N), and optimal degenerate case one. It uses QuickSort at the
beginning, and when (if) the recursion depth exceeds log N (which indicates that QuickSort is
about to go “awol”) switches to HeapSort (the O(N - log N)-algorithm which does not use
divide-and-conquer recursive trick; it's briefly described in A9). Here is Introsort’s pseudo-code:

procedure sort(A : array):
let maxdepth = |log(length(A))] * 2
introsort(A, maxdepth)

procedure introsort(A, maxdepth):
n + length(A)
if n <= 1:
return // base case
else if maxdepth = O:

heapsort (4)
else: // assume that partition does pivot selection,

p + partition(A) // and p is the final position of the pivot
introsort(A[0O:p], maxdepth - 1)
introsort (A[p+1:n], maxdepth - 1)

The Introsort is the base for sort algorithm used in the venerable Standard Template Library, the
collection of generic data structures and algorithm used in C++.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 12 /18

http://cs.anu.edu.au/courses/comp6700/lectures/A9.pdf
https://en.wikipedia.org/wiki/Introsort

BinarySearch

This is another quintessential computational task — searching in a sorted database, the simplest
case of which is a one-dimensional array. The algorithm seems almost trivial:

@ find the middle index mid, compare value of its element with the target

@ if the target is smaller than x[mid], apply the BinarySearch to the left subarray
@ if the target == x[mid], Bingo!

@ if the target is greater than x[mid], apply the BinarySearch to the right subarray

o find position of target a = 3.7 in the array —
o if found return the value of target index: (2)
o if not found return the special value -1

‘ -1.2 ‘ 0.6 | 3.7 ‘ ‘ 13.1 ‘52,0‘

Despite such almost trivial principle, it's notoriously hard to achieve a correct implementation. D.
Knuth, in the Vol. 3, reports that while the first BinarySearch algorithm was published in 1946,
the first correct implementation was only achieved in 1962. The critical concept is a loop
invariant — see next slide and Ch.4 of “Programming Pearls” by Jon Bentley. BinarySearch is a
O(logy N) algorithm. It's often used “inside” other algorithms, eg, for finding roots of nonlinear
equations via the Newton's method.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 13 /18

Réle of invariants (*)

Implementing an algorithm in (pseudo-)code is often a more complex task than it may seem, even
for simplest cases, like a binary search algorithm. Programs are like mathematical formulae. The
latter can be (very) complex. Their validity is ensured by application of mathematical axioms and
rules of logic at every step of formula manipulation.

The algorithm correctness is ensured in a similar way with the addition of an invariant which is a
formal expression of the algorithm purpose.

Algorithm'’s invariant is a formal assertion about the program state which must be true at every
stage of program execution. The invariant assertion involves input, program variables and output.
A (single-threaded) program usually contains:

o Sequence control statements

o Selection control statements (conditionals)
o Iteration control statements (loops)

o Function calls

A program A built from these elements, A = A1A2 ... A;...Ap, will be correct if each of them
preserves the invariant, and the program itself terminates. (Termination of loops and function
calls should be proved independently.)

o Correctness of pre-condition (which should include the invariant) {P;} for A; implies
o Correctness of post-condition {Q;} (also includes the invariant), which serves as a
precondition for {Piy1}

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 14 /18

Invariants in BinarySearch (*)

Correctness of a program (including an algorithm) is established by demonstrating that the full
computational chain A= A1Az ... A;... A, (provided it terminates) preserves the invariant.
Deduction {P;}Ai{Q;} is performed using logic and “obvious” mathematics (Hoare's logic and
Dijkstra’s Weakest Precondition).

Choice of the invariant for a particular algorithm is more like an art than science. In the case of
binary search in a linear array-like DS, the invariant can be formulated as follows (as taken from
Jon Bentley’s book “Programming Pearls”):

o The expression mustbe (range) is a short form of “if t is inside the array then it must be in
range” (this is an implication, the preposition “if t is inside” matters!).

o The expression cantbe (range) is a short for “t cannot be in range”.

o Inside a for-loop {mustbe(range)} serves as the loop invariant, which an assertion about
the program which is true at the start and at the end every loop iteration.

If the algorithm preserves the invariant (and if it terminates), we can be (“almost”) assured that
the result is correct. The algorithm analysis (“walk-through™) must establish that the invariant is
never broken (including the proof that the algorithm halts at some point) at each execution step.

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 15 /18

http://cs.anu.edu.au/courses/comp6700/references.html#prog-pearls

Breaking by blindness to obvious *)

Again

o mustbe(range) means that the search target t must be inside the range 1...u
o cantbe(range) means that t cannot be in range

Here is the BinarySearch pseudo-code with the invariant:

01
02
03
04
05
06
07
08
09
10
11
12

{ mustbe(0, n-1) } 13
1l =0; u=n1; 14
{ mustbe(l, u) } 15
loop 16
{ mustbe(l, u) } 17
if 1 >u 18
{1 >u && mustbe(l, u) } 19

{ t is not in the array } 20

p = -1; break 21

{ mustbe(l, u) & 1 <= u } 22
m=(1+uw /2 23

{ mustbe(l, u) && 24

1 <=m<=u} 25

26

27

case
x [m]

< t:

{ mustbe(l, u) && cantbe(0, m) }

mustbe(m+1, u) }
= m+1l

mustbe(l, u) }
== t:

x[m] ==t }

= m; break

> t:

mustbe(l, u) && cantbe(m, n) }
mustbe(l, m-1) }
= m-1

mustbe(l, u) }

{ mustbe(1, u) }

Alexei B Khorev and Josh Milthorpe (RSCS, ANU)

COMP6700/2140 Sorting and Searching May 2017 16 / 18

Latest Bug in BinarySearch

Bugs can stay hidden for a long time until execution environment changes and they get
“activated”. This happened to Java's implementation of the binary search as it was used in
java.util. Arrays binarySearch() methods:

1: public static int binarySearch(int[] a, int key) {
2: int low = O; int high = a.length - 1;

3: while (low <= high) {

4: int mid = (low + high) / 2; // Where the problem lurks!
5: int midVal = a[mid];

6: if (midVal < key)

T: low = mid + 1;

8: else if (midVal > key)

9: high = mid - 1;

10: else

11: return mid; // key found

12: }

13: return -(low + 1); // key not found.

14: }

The bug struck in 2006, when the size of the search array became too large and some int values
exceeded the allowed range. The solution is to replace the line 4 on:

int mid = low + ((high - low) / 2); OR int mid = (low + high) >>> 1;

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 17 / 18

http://cs.anu.edu.au/courses/comp6700/lectures/j_bloch_bsort.pdf

Where to look for this topic in the textbook?

Very little about recursive algorithms and algorithms in general is discussed in the textbook (it
teaches users how to program, not developers of programming resources, like libraries and API).
You should seek other sources of knowledge in these areas, both in printed form and (much more
and growing) online.

o Hortsmann's Core Java for the Impatient, Ch. 3.3, 3.8

o Oracle’s Java Tutorial chapter Algorithms — again, it deals with the JFC usage, not much
with the intricacies of generic algorithm implementation.

o One modern (and relatively light) text is “Algorithms in a Nutshell”, 2ed, by George T.
Heineman, Gary Pollice, and Stanley Selkow (O'Reilly, 2017)

Alexei B Khorev and Josh Milthorpe (RSCS, ANU) COMP6700/2140 Sorting and Searching May 2017 18 / 18

http://docs.oracle.com/javase/tutorial/collections/algorithms/index.html

